

Enhanced Solutions for Misuse Network

Intrusion Detection System using SGA and

SSGA

	�ام ا
	�ارز��� ��� ���

���م آ�� ا �����
��ل ا�
ا
 �
��
����� ا
����� ا
 ���� وا
	�ارز��� ا
#"ةا��
ا

By:

Sabah Abdulazeez Jebur

Supervisor:

Dr. Hebah H. O. Nasereddin

A Thesis Submitted In Partial Fulfillment of the Requirements of the

Master Degree in Computer Information Systems

Faculty of Information Technology

Middle East University

June, 2015

II

	����ت او � �����ق ا�و� ���و�� ���� �� ر�� ا"!ض ����� ا��� ����ا�� %��ح #��ا�

�&�
 .ا�	,��ت او ا�&+*�ت او ا�"�اد #)� '

 :ا��!/+.

III

IV

Acknowledgments

All credit and success is due to the Merciful Allah always and forever.

I would like to extend my deepest gratitude to my supervisor Dr. Hebah

Nasereddin for all of her helpful comments and guidance's throughout

this work.

I am grateful to my parents and family who always provided help and

support throughout my academic life and career.

 I would like to express my heart-felting gratitude to my wife for her love,

concern, support, encouragement and inspiration throughout my

research work and life.

I am thankful to my brother and true friend Ward Ahmed for his

illuminating views and support throughout the work of this thesis.

Last but not least, I would like to express my sincere appreciation to the

Iraqi Government for giving me the opportunity to complete my Masters

Degree in Jordan.

V

Dedication

To my father and mother

To my beloved Wife

To my brothers and sisters

No words can make me express my gratitude and love.

To the martyrs' souls of Iraq.

VI

Table of Contents

Authorization Statement II

Examination Committee Decision III

Dedication IV

Acknowledgments V

Table of Contents VI

List of Tables IX

List of Figures XI

List of Abbreviations XII

Abstract XIII

 XV ا���%1

Chapter One: Introduction

1.1 Preface 1

1.2 Problem Statement 3

1.3 Contribution 4

1.4 Objectives 4

1.5 Limitations 4

1.6 Thesis Outline 5

Chapter Two: Theoretical Background & Literature Review

2.1 Overview 6

2.2 Computer Security 6

2.2.1 Threats & Attacks 7

2.2.2 Intruders & Viruses 7

2.3 Intrusion Detection (ID) 7

2.4 Intrusion Detection System (IDS) 8

2.5 Intrusion Detection Systems Classifications 8

2.5.1 Misuse-based Detection Technique 9

2.5.2 Anomaly-based Detection Technique 9

2.5.3 Host-based Intrusion Detection System (HIDS) 9

2.5.4 Network-based Intrusion Detection System (NIDS) 10

2.6 Network Attacks 11

VII

2.6.1 Denial of Service Attack (DoS) 11

2.6.2 Probing 11

2.6.3 Remote to Local Attack (R2L) 12

2.6.4 User to Root Attack (U2R) 12

2.7 Genetic algorithm (GA) 12

2.8 Working mechanism of Genetic Algorithm 13

2.8.1 Population 13

2.8.2 Evaluation 13

2.8.3 Encoding 14

2.8.4 Selection 14

2.8.5 Crossover Operator 16

2.8.6 Mutation Operator 19

2.8.7 Replacement 19

2.8.8 Stopping Criteria 20

2.9 GA Categories 20

2.9.1 Simple Genetic Algorithm (SGA) 20

2.9.2 Steady State Genetic Algorithm (SSGA) 21

2.10 SGA versus SSGA 22

2.11 Network Intrusion Detection Dataset 23

2.12 Literature Review 27

Chapter Three: Methodology & Proposed Model

3.1 Methodology 32

3.2 Processing Phase 35

3.2.1 NSL-KDD dataset 35

3.2.2 Encoding of Features 35

3.2.3 Features Selection 36

3.2.4 Rules Filtering 37

3.3 Genetic Algorithm Phase 37

3.3.1 Evaluation 38

3.3.2 Selection 39

3.3.3 Crossover Operator 40

3.3.4 Mutation Operator 40

VIII

3.3.5 Replacement 40

3.3.6 Stopping Criteria 40

3.4 Testing Phase 41

3.5 Proposed Models Evaluation 41

Chapter Four: Systems Structure & Experimental Results

4.1 Overview 42

4.2 Processing Phase 43

4.2.1 NSL-KDD Dataset 43

4.2.2 Encoding of Features 45

4.2.3 Features Selection 48

4.2.4 Rules Filtering 50

4.3 Genetic Algorithm Phase 52

4.3.1 Evaluation 52

4.3.2 Selection 54

4.3.3 Crossover 55

4.3.4 Mutation 56

4.3.5 Replacement 57

4.4 Testing Phase and Experimental Results 58

4.4.1 Experimental Results for SGA based IDS 58

4.4.2 Experimental Results for SSGA based IDS 60

4.5 Results Discussion and Analysis 62

4.6 Comparing the Proposed Research Results against other Studies 66

Chapter Five: Conclusion & Future Work

5.1 Conclusion 68

5.2 Future Work 69

References 70

IX

List of Tables

2.1 List of KDD99 Dataset features with their descriptions and data types 25

3.1 The most suitable features for each attack category 36

4.1 Details information about training dataset 44

4.2 Details information about testing dataset 45

4.3 The encoding of the string features of NSL-KDD dataset 47

4.4 Results of DR and FPR for each attack using the selected features by

Mukkamala
48

4.5 Results of DR and FPR for each attack using the selected features by

Chou
48

4.6 Results of DR and FPR for each attack according to Amiri using the

selected features by FFSA
49

4.7 Results of DR and FPR for each attack according to Amiri using the

selected features by MMIFS
49

4.8 The selected features sets for this research 50

4.9 Number of rules before and after filtering for Dos attacks category 51

4.10 Number of rules before and after filtering for Probe attacks category 51

4.11 Number of rules before and after filtering for U2R attacks category 51

4.12 Number of rules before and after filtering for R2L attacks category 52

4.13 Working of Support Confidence Framework 53

4.14 Rootkit attack rules with reduced features and fitness values (actual data) 54

4.15 The selected individuals from Rootkit attack using SUS selection (Actual data) 55

4.16 Results of applying Uniform crossover over Rootkit attack dataset (actual

data)
56

4.17 Results of applying TTR over Neptune attack individuals (actual data) 57

4.18 The parameters used in the experiments 58

4.19 Experimental results for Dos attack types using SGA based IDS 59

4.20 Experimental results for Probe attack types using SGA based IDS 59

4.21 Experimental results for U2R attack types using SGA based IDS 59

4.22 Experimental results for R2L attack types using SGA based IDS 60

4.23 Experimental results for Dos attack types using SSGA based IDS 60

X

4.24 Experimental results for Probe attack types using SSGA based IDS 61

4.25 Experimental results for U2R attack types using SSGA based IDS 61

4.26 Experimental results for R2L attack types using SSGA based IDS 61

4.27 Experimental results for Dos, Probe, U2R and R2L categories using SGA

based IDS
62

4.28 Experimental results for Dos, Probe, U2R and R2L categories using

SSGA based IDS
62

4.29 Comparison results of this research with other results 67

XI

List of Figures

2.1 The placement of the NIDS and HIDS in the Network 11

2.2 One-point crossover 16

2.3 Two-point crossover 17

2.4 N-point crossover 18

2.5 Uniform crossover 18

2.6 Simple Genetic Algorithm structure 21

2.7 Steady State Genetic Algorithm structure 22

3.1 The structure of SGA based IDS 33

3.2 The structure of SSGA based IDS 34

4.1 Processing phase major compenents 43

4.2 Analyzing NSL-KDD dataset using Microsoft SQL Server 2008 44

4.3 The network connection features before encoding 46

4.4 The network connection features after encoding 46

4.5 Summary of added rules comparison 64

4.6 Summary of training time comparison 64

4.7 Summary of DR comparison 65

4.8 Summary of FPR comparison 66

XII

List of Abbreviations
AF average of fitness value

BFSS Best Feature Set Selection

BTR Binary Tournament Replacement

DARPA Defense Advanced Research Projects Agency

DoS Denial of Service

DR Detection Rate

FFSA Forward Feature Selection Algorithms

FPR False Positive Rate

GA Genetic Algorithm

GP Genetic Programming

HIDS Host-based Intrusion Detection system

ID Intrusion Detection

IDS Intrusion Detection System

IP Internet Protocol

KDD99 Knowledge Discovery in Databases 1999

LR Logistic Regression

MMIFS Modified Mutual Information Feature Selection

NIDS Network-based Intrusion detection system

OWASP Open Web Application Security Project

R2L Remote to Local Attack

RWS Roulette Wheel Selection

SGA Simple Genetic Algorithm

SGA-IDS Simple genetic algorithm based Intrusion Detection system

SSGA Steady State Genetic Algorithm

SSGA-IDS Steady State genetic algorithm based Intrusion Detection system

SUS Stochastic Universal Sampling

SVM Support Vector Machine

SYN Synchronization

TCP Transmission Control Protocol

TTR Triple Tournament Replacement

U2R User to Root Attack

XIII

Enhanced Solutions for Misuse Network Intrusion

Detection System using SGA and SSGA

By:

Sabah Abdulazeez Jebur

Supervisor:

Dr. Hebah H. O. Nasereddin

Abstract

One of the most widely acknowledged purposes of using the Internet is data

transfer; it is an essential way of communicating personal and sensitive data. Therefore,

the need for protecting such data against hackers and intruders is at most importance.

Many security systems were built for this purpose; Intrusion Detection Systems (IDS)

are one of those systems. The main function of Intrusion Detection System is to monitor

the incoming connections and detect attacks.

The purpose of this thesis is to verify the power of Simple Genetic Algorithm

(SGA) versus Steady State Genetic Algorithm (SSGA) in intrusion detection field. This

is achieved by developing two models of IDS. In the first model, the Simple Genetic

Algorithm was used to build IDS (SGA based IDS), while in the second model; Steady

State Genetic Algorithm was used to build IDS (SSGA based IDS). The evaluations and

the experiments were performed using the NSL-KDD intrusion detection dataset.

XIV

The experimental results demonstrated that performing an IDS using SGA gives

higher performance results than using SSGA according to the value of Detection rate

(DR) where it achieved an average of DR equal to 88.5%, while SSGA based IDS

achieved an average of DR equal to 72.53%. Also the number of the new generated

rules using SGA is more than the number of the new generated rules using SSGA,

despite that, the training time for SGA experiments is shorter than the training time for

SSGA. On other hand, SSGA based IDS produced an average of False Positive Rate

(FPR) equal to 4.66% which is considered relatively better than SGA based IDS that

produced an average of FPR equal to 5.21%.

Key words: Intrusion Detection System, Simple Genetic Algorithm, Steady State

Genetic Algorithm.

XV

	�ام ا
	�ارز��� ��� ���

���م آ�� ا �����
��ل ا�
ا
����� ا
 ���� وا
	�ارز��
#"ةا��

� ا��
����� ا
� ا

 :ا%�اد
" ' ()(*
 , �ح % �ا

 :ا."اف

 ه 3 0�2 �1,"ا
�(0. د

 	5,�ا

� ا�9 اه8 ا��ب ا���ام ا�����5 ه! �23 ا��+���ت���
� ا� 9+: �+!�+�+;��)23 ا��+���ت ا�

�
+� وا��?1ء �������. ا���=+� وا�>��@A�	�+���ت �� ا��ا BCه ���	ن 9E" �F��� ���9 �ه

�ض، . ا�ه	+�F�ا اC&� 8 �)�ءه�H ���	<�ا �	Iا� �� ����� ا����H2و@A��ا J�ه�) IDS(ا�I	� آ

�	Iا�� BCا�9 ه . �# J�+� �)�Iم آ�J ا��A@2 ه� ��ا/�� ا�H=��ت ا�!اردة وا���ا�	&	� ا�

 .ا�&O	�ت

 BCض �� ه�F�ا� ��3ر��)SGA(ا�O+)+� ا���+�A +�ه! �
�>Q3 �� /!ة ا��!ارز� ا��را

Q+3<H 8H ذ�S �� ?1ل .ا���O� �"2@Aل آ�SSGA(J(ا�>��� ا�	��3�ة ا�O+)+� +����!ارز��

 ��!AH2@A��ا J�"� ا�)	!ذج ا�ول 8H ا���ام ا��!ارز�+� ا�O+)+� . �	!ذ�+� �� ا�I	� آ

���ام ا��!ارز�+� ا�O+)+� ا�>��� ا���+�A ��)�ء ��Iم آ�J ا��A@2، �+)	� "� ا�)	!ذج ا�8H ���V ا

2@A��ا J�
+�ت ا��3++8 وا���Oرب �����ام �O	!#� �+���ت . ا�	��3�ة ��)�ء ��Iم آ	# 5��ا�

 W#�H)NSL-KDD.(

XVI

�ام ا���ارز��� ا������ ا������ أن ا�
������ ا��
	�� أ���ت�
�	� � �
 �(�)'� �& %$	م آ"! ا�

��	
�ام �/ ا.-, اداء %�
� ا�
� � آ"! �(�ل ��2�1 و14	 ا���ارز��� ا������ ا�3	�� ا��2
�1ة ا

�; 18: أ9% 7�8�
�ام 18: �8/ 4) ،٪88.5 ��	وي آ"! �(�ل ��
�	� � �
%$	م آ"! ا�

�;ا���ارز��� ا������ ا�3	�� ا��2
�1ة �
� J��د أ�@	. ٪72.53 ��	وي ���ل آ. � ا��1ا.

�ة ��
�ة ا�2���اما���
�	��د �/ أآ�B ه� ا������ ا������ ا���ارز��� . ��ة ا��1ا.��
�ة ا�2�� ا��

�ام�
�	��ر�I وGH �/ ذ�E، ا��CD .-,. ا���ارز��� ا������ ا�3	�� ا��2
�1ة
 ا��2
�Kق ا�

�ر�Iا وGH �/ أ�MHا���ارز��� ا������ ا������ آ	ن �
�	رب
�-��ارز��� ا������ ا�3	�� �

2 �����ام ا��!ارز�+� ا�O+) �� �&^ ا?�ى، �I� Q39م. ا��2
�1ة@A��ا J�+� ا�>��� ا�	��3�ة آ

Oا� _A? ل��� ٪���4.66وي �������2 �����ام وا�Cي �@A��ا J�ا"�I� �� �ً+��� 2dم آ

�A+���ا �+(+O�!ارز�+� ا��ا Oا� _A? ل��� Q39 يC�5.21 ���وي ���وا٪.

+� ا���+�A، ا��!ارز�+� ا�O+)+� ا�>��� ��Iم آ�J ا��A@2، ا��!ارز�+� ا�O+) :ا	���ت ا	�������
 .ا�	��3�ة

1

Chapter One

Introduction

1.1 Preface

 Nowadays, attacks on the computer resources are becoming an increasingly

serious problem. Despite different techniques have been developed and deployed to

protect computer systems against network attacks (anti-virus software, firewall,

message encryption, secured network protocols, password protection), securing data

communication over Internet and any other network is still under threat of intrusions

and misuses (Abdullah, Abd-Alghafar, Salama, and Abd-Alhafez, 2009). Development

of a smart and strong Intrusion Detection System (IDS) that monitors network traffic

and provides a right alarm is a hot research area in Computer Security today.

 According to Ojugo, Eboka, Okonta, Yoro, and Aghware, (2012), “Intrusion is

the set of actions that attempts to compromise integrity, confidentiality or availability of

network resources, while an intruder is any user or group of users who initiates such

intrusive action”.

 An IDS is a device or a software application that constantly monitors network or

system activities for malicious activities or policy violations with the ability to analyze

network traffic and recognize incoming network attack to produce reports to a

management station (Chowdhary, Suri, and Bhutani, 2014).

 The most existent IDSs face a number of challenges such as low detection rates

and high false alarm rates, and therefore prevent authorized users from accessing the

network resources, these problems occur because of the attacks' behavior and their

intended similarities to normal behavior (Shaveta, Bhandari, and Saluja, 2014).

2

 To overcome these problems in IDSs, intrusion detection must be implemented

by using smart methods based on artificial intelligence techniques to detect attacks. One

of the important approaches of artificial intelligence used to detect Intrusion is Genetic

Algorithm (GA) (Shaveta, et al., 2014).

Ojugo, et al., (2012), showed that “GA is an effective heuristic search technique

that finds the best solutions to an optimization task-inspired from biological, evolution

process and natural genetics proposed by Holland in 1975”. They also reported that

Functioning of GA starts with randomly generated population of chromosomes which

are continuously evaluated via a fitness function. A population consists of set of

chromosomes which represent the candidate solutions, where each chromosome has

number of genes. Through various generations these chromosomes evolved and their

quality gets improved. In every generation, three basic operators of genetic algorithm

i.e. selection, crossover and mutation are applied to the population to gradually improve

the quality of each chromosome. The new pool goes through the same process and

continues until a termination condition is reached.

 A number of researchers, as mention in chapter two, have studied the effects of

Simple Genetic Algorithm (SGA) and Steady State Genetic Algorithm (SSGA) in

variety of applications in order to compare their behavior and study their practicability.

Duran and Xhafa, (2006) confirmed that SGA outperforms SSGA for Job Scheduling on

Computational Grids, while Jones and Soule, (2006) showed that SSGA gives better

results than SGA in “two peaks” problem. This thesis will verify the power of SGA

versus SSGA in intrusion detection field.

3

1.2 Problem Statement

 After the emergence of computer networks and especially the Internet, the

communication of data and the exchange of information have become very easy and

fast. The easy access and exchange of information over the network brings the question

of how to ensure the security of the information that is stored or exchanged against

attacks by the intruders.

 Network Intrusion detection system (NIDS) is one of the key security

components in today’s networking environment. NIDS must be more efficient to detect

intrusions with maximizing Detection Rate (DR) and minimizing False Positive Rate

(FPR).

The main questions in this study are identified as follows:

• How to develop and apply Intrusion Detection System using Genetic Algorithm

to protect data communications and computer networks against attacks by the

intruders?

• Can the proposed models identify normal and abnormal behavior on network and

if abnormal is detected, can find which type of attack it is with high DR and low

FPR?

• By comparing between Simple Genetic Algorithm (SGA) and Steady State

Genetic Algorithm (SSGA), what is the best form of Genetic Algorithm in

intrusion detection field?

4

1.3 Contribution

 The contribution of this research is to verify the power of Simple Genetic

Algorithm (SGA) versus Steady State Genetic Algorithm (SSGA) in intrusion detection

field, by calculating:

• Training time

• Number of new generated rules

• Detection Rate (DR)

• False Positive Rate (FPR)

1.4 Objectives

 The main objective of this research is developing and applying an IDS using GA

to detect and classify misuse intrusion according to their types (DOS, R2L, U2R and

Probing) with high DR and low FPR in order to help computer systems to prepare for

attacks and deal with them.

1.5 Limitations

• This research will detect and classify the incoming attacks according to four main

categories of attacks (DOS, R2L, U2R and Probing), not sub types of these

attacks.

• There are two categories of IDS: Network-based IDS and host-based IDS, this

research will perform Network-based IDS.

• There are two approaches of intrusion detection: Misuse and Anomaly Detection;

this research will deal with Misuse Detection.

5

1.6 Thesis Outline

This thesis consists of five chapters organized as follows:

Chapter Two: This chapter discusses in details each of Intrusion Detection system and

its classifications, Genetic Algorithm and its elements and its categories. Also, it views

NSL-KDD intrusion detection dataset which was used in this research and finally

presents literature review and related works in the field of Intrusion Detection and

Genetic Algorithm.

Chapter Three: The methodology of this research and the proposed models structure

will be discussed in this chapter. It also presents the evaluation measurements used in

this study.

Chapter Four: The implementation stages of the proposed models will be provided

step by step in this chapter. Also presenting experimental results and providing a

concise discussion for those results. Finally, those results are compared with other

research results.

Chapter Five: This chapter presents the conclusions of this study and future work

suggestions.

6

Chapter Two

Theoretical Background & Literature Review

2.1 Overview

This chapter discusses the concepts of computer security, Threats and Attacks,

Intruders and Viruses, and Intrusion Detection. It also introduces the knowledge about

Intrusion Detection system and its classifications. On the other side, this chapter

explains the elements and categories of Genetic Algorithm, and its working mechanism.

Also, it discusses the network intrusion detection dataset, NSL-KDD dataset, which was

used in this research. Finally, this chapter introduces some related works in the field of

intrusion detection using Genetic algorithm and other machine learning algorithms.

2.2 Computer Security

 Computer Security is the process of protecting sensitive resources and their

critical characteristics (Confidentiality, Integrity, and Availability) in a computer system

by applying mechanisms access to protected resources (Stallings and Brown, 2008).

• Confidentiality

"Assures that private or confidential information is not made available or disclosed

to unauthorized individuals" (Stallings and Brown, 2008).

• Data Integrity

"Assures that information and programs are changed only in a specified and

authorized manner" (Stallings and Brown, 2008).

7

• Availability

"Assures that systems work promptly and service is not denied to authorized users"

(Stallings and Brown, 2008).

2.2.1 Threats & Attacks

Threat is a potential danger that might exploit a flaw or weakness in a system for

violation of system's security policy and could cause harm, while an attack is a threat

that is carried out by actions (Stallings and Brown, 2008).

2.2.2 Intruders & Viruses

Intruders and viruses are the most popular threats to security. Intruder is an

unauthorized person who uses a computer system and penetrates the system’s access

controls to exploit legitimate users' account, or a person who is authorized for such an

access but misuses his or her privileges (Al-Zokari, 2008).

A virus is a written program that attaches itself to another program which could

cause damage; it is loaded onto a computer (Al-Zokari, 2008).

2.3 Intrusion Detection (ID)

Intrusion Detection (ID) is "a security service that monitors and analyzes system

events for the purpose of finding, and providing real-time or near real-time warning of,

attempts to access system resources in an unauthorized manner" (Stallings and Brown,

2008).

 Firewalls, access controls, and authentication facilities play a major role in

countering intrusions. ID is often used as another line of defense to monitor and analyze

8

incoming connection in order to detect network intrusions by assuming that the

intruder's behavior differs from the authorized user's behavior.

2.4 Intrusion Detection System (IDS)

 An Intrusion Detection System (IDS) is defined by Chowdhary, et al., (2014) “a

device or a software application that monitors network or system activities for malicious

activities or policy violations and produces reports to a management station. Intrusion

detection systems constantly monitor a given computer network for invasion or

abnormal activity”.

The motivations of using IDS for intrusions is detected quickly and ejected from

the system before causing any damage, it is an action to prevent intrusions. IDS also

depends in its work on a collection of information about the behavior of the intruder to

strengthen the intrusion prevention measures (Al-Zokari, 2008).

Aziz, (2014) reported IDS goals as follows:

• To detect a wide variety of intrusions; including intrusion from the inside and the

outside as well as known and unknown attacks.

• Detect intrusions in a timely fashion.

• Present the analysis in a simple, easy - to- understand format.

• Be accurate, that is, achieve as a low false-alarm rate.

2.5 Intrusion Detection Systems Classifications

 Intrusion Detection Systems can be classified into two categories on the basis of

the detection approaches: Misuse-based IDS and Anomaly-based IDS. IDSs also can be

9

divided into two groups depending on the location where they look for intrusive actions:

Host-based IDS (HIDS) and Network-based IDS (NIDS) (Prasad and Borah, 2013).

2.5.1 Misuse-based Detection Technique

 Misuse-based IDS looks for sequences of known events to identify attacks. It

depends on a definite set of rules as attack patterns that can be used to detect the

intrusion. The advantage of this technique lies within its capability to detect known

attacks with detection rate higher than anomaly detection. The main disadvantage, it

lacks the ability to detect the newly invented attacks as well as some variations of

existing attacks. Misuse-based IDS are also called signature-based intrusion detection

(Shiri, Shanmugam, and Idris, 2011).

2.5.2 Anomaly-based Detection Technique

 Anomaly Detection techniques depends on collecting information about the

behavior of authorized users over a period of time by analyzing incoming audit records

to identify deviation from an average behavior. The advantages of this technique, it does

not require a prior knowledge to detect attacks. The main disadvantages, the disability

to identify the attack type and the high false positive rate. Anomaly detection attempts

to quantify the usual or acceptable behavior and flag other irregular behavior as

potentially intrusive (Shiri, et al.,2011).

2.5.3 Host-based Intrusion Detection System (HIDS)

A host-based IDS (HIDS) adds a specialized layer of security software to

vulnerable or sensitive systems such as database servers and administrative systems.

10

The host-based IDS monitors the activity on the system in a variety of ways to detect

suspicious behavior. It can detect both external and internal intrusions, something that is

not possible either with network-based IDSs or firewalls (Stallings and Brown, 2008).

HIDS performs the following:

•Using log files and/or the system's auditing agents as sources of data.

•Looking at the communications traffic in and out of a single computer.

•Checking the integrity of system files, and watching for suspicious

processes, including changes to system files and user privileges.

One drawback for HIDS is that it weakens real-time response and the software

should be installed on each computer on the network to be protected (Prasad and Borah,

2013).

2.5.4 Network-based Intrusion Detection System (NIDS)

A network-based IDS (NIDS) monitors network traffic for particular network

segments or devices. The NIDS analyzes the traffic packets in real time or near to real

time to identify suspicious activity. NIDS monitors packet traffic directed toward

vulnerable computer systems on a network, unlike HIDS which monitors user and

software activity on a host. It is most commonly deployed at a boundary between

networks, such as in proximity to border firewalls or routers (Prasad and Borah, 2013).

Its disadvantage, it needs a more complex configuration and maintenance than

the HIDS. It produces more FPR than the HIDSs, because it reads the network activity

pattern in order to distinguish between normal and abnormal connections (Al-Zokari,

2008). Figure (2.1) depicts the locations of NIDS and HIDS on the network. This study

will deal with Misuse Network IDS.

11

Figure (2.1): The placement of the NIDS and HIDS in the Network

2.6 Network Attacks

The main purpose of IDS is the detection of any potential network attacks.

Different researches classify network attacks into four categories: Denial of Service

(DoS), Probing, Remote to Local (R2L), and User to Root (U2R) (Hoque, Mukit, and

Bikas, 2012), (Mukkamala, Sung, and Abraham, 2004), (Chou, Yen, Luo, 2008).

2.6.1 Denial of Service Attack (DoS)

A denial of service is a form of attack on the availability of some services. It

prevents or impairs normal use of systems by making a computer resource unavailable

to its users, for. For example the land attack; which sends a spoofed TCP SYN packet

with the target host’s IP address as both source and destination. This causes the target

to reply to itself continuously and crash.

2.6.2 Probing

Probing is a class of attacks in which an attacker scans a network of computers

to gather information about the victim host in order to find weaknesses or vulnerabilities

which are running on the target.

12

2.6.3 Remote to Local Attack (R2L)

A remote to local attack is a class of attacks in which an attacker sends packets

to a victim machine over a network and then exposes the machine’s weakness to gain

local access as a user.

2.6.4 User to Root Attack (U2R)

User to root attacks are used to obtain unauthorized access to system

administrator privileges by having a normal user account on the system and trying to

exploit some vulnerability or weakness in order to gain root access to the system.

2.7 Genetic algorithm (GA)

As defined by Guo, Wang, and Han, (2010), “GA is the powerful stochastic

algorithm which is applied in machine learning and optimization problems to solve

complex problems. It is based on the principles of natural selection and natural genetics

inspired by Darwin‘s principles in optimizing the chromosome population of candidate

solutions. GA maintains a population of individuals and probabilistically modifies the

population by some genetic operators such as selection, crossover and mutation, with

the intent of seeking a near optimal solution to the problem”.

GA produces new advanced solutions from current solutions. This is achieved

by selecting solutions that have high fitness value to undergo information exchanges

using genetic operators (Crossover and Mutation) in order to create more advanced

chromosomes that consider advanced solutions (Aziz, 2014).

13

2.8 Working Mechanism of Genetic Algorithm

Adewumi, (2010) explain that GA starts with a population of individuals

randomly sampled over the search space. Using fitness function, each individual is

associated with a fitness value that reflects its quality. GA tries to improve the quality of

the individuals by making the population evolve. This evolution is achieved using

information exchanges between individuals in order to create new ones or modify the

existing ones using genetic operators such selection, crossover and mutation. The

selection operator helps with the exploitation of search space. While Crossover

combines elements of individuals in the current generation to create individuals for the

successive generations, it consists of exchanging genetic material between two selected

single chromosomes. On the other hand, Mutation systematically changes elements of

an individual in the current generation in order to introduce variety into the next

generation. The main components of a GA are:

2.8.1 Population

At the start of a genetic algorithm, array of chromosomes will be randomly

generated to cover the range of possible solutions (the search space), where each

chromosome represents potential solution of the problem to be solved. The nature of the

problem determines the population size (Jebur and Nasereddin, 2015).

2.8.2 Evaluation

The evaluation process is a very important measure to calculate the goodness of

a chromosome. Fitness function is the heart of all Genetic Processes. It evaluates the

performance of all chromosomes in the population, where a chromosome with high

14

fitness value has a high probability to be selected in the selection stage (Dhak and Lade,

2012).

2.8.3 Encoding

 Encoding is one of the main processes in GA to represent the data into some of

the encoding formats. Various encoding methods have been created for particular

problems to provide effective implementation of genetic algorithms. The encoding

methods can be classified as follows (Dhak and Lade, 2012):

• Binary Encoding: This method converts the value of chromosome into binary

value (0, 1).

 e.g., chromosome =

• Integer or Literal Permutation Encoding: This method converts the value of

chromosome into integer numbers.

e.g., chromosome =

• Real Number Encoding: in this method, the structure of genotype space is

identical to that of the phenotype. Therefore, it is easy to form effective genetic.

This method uses actual values of chromosome.

 e.g., chromosome =

2.8.4 Selection

In this process, multiple chromosomes are selected from the current population

based on their fitness to produce successive generations. The better chromosomes have

more chance of being selected and can be selected more than once to reproduce into the

1 0 0 1 1

5 0 100 77 1220

0.5 1.6 100 0.77 5.5

15

next generation (Jebur and Nasereddin, 2015). There are several schemes for the

selection process:

• Roulette Wheel Selection: This selection method is easy to implement and

resemble more to the nature. Usually a proportion of the wheel is assigned to each

of the possible selection based on their fitness value. This could be achieved by

dividing the fitness of a selection by the total fitness of all the selections, thereby

normalizing them to 1. Then a random selection is made similar to how the roulette

wheel is rotated (Sharma, Singh, and Sharma, 2012).

• Elitism Selection: In this method, chromosomes are ordered descending according

to their fitness function. Then each two arranged chromosomes are selected

together. Here, GA will be applied either between strong chromosomes or between

weak chromosomes (Alabsi, 2012).

• Stochastic Universal Sampling (SUS): SUS is introduced by Baker (1987) for

sampling individuals with lower variance. It is efficient requiring only a single pass

over all the members of the population to select the mating population in contrast to

Roulette Wheel Selection which needs passing n times on Roulette Wheel. SUS is

doing by determining n points in the wheel. Then choose chromosomes that

situated in front of determined points (French, 2012).

• Rank Selection: In this scheme, individuals are assigned selection probability

based on their rank ordering in the current population instead of their fitness values.

Where individuals are arranged descending according to their fitness value, then an

individual with the highest fitness value takes the rank=1, the next takes the rank=2

and so on. Finally the Roulette Wheel can be used to choose the chromosomes.

Calculate the new fitness value for each chromosome using the equation (2.1)

(Aziz, 2014):

16

1

1
*min)(maxmax

−

−
−−=

popN

rank
F

Where 1<max<=2 & min = 2-max

• Tournament Selection: For this method, individuals are randomly chosen from the

current population to compete in a tournament for selection. Commonly, binary

tournament selection is used, whereby two individuals are chosen to compete and

the individual with the higher fitness wins and is selected for mating (French,

2012).

2.8.5 Crossover Operator

"The crossover operator decides which genes of the parents should be swapped

to generate the offspring" (Soon, Guan, On, Alfred, and Anthony, 2013). There are

several crossover operators, such as:

• Single-point crossover: In the one-point crossover, a crossover point is randomly

selected and the bit strings after that point are swapped between the two parents.

Figure (2.2) shows the one-point crossover process.

Figure (2.2): One-point crossover

(2.1)

17

• Two-point crossover: two bit positions are randomly selected and the bit strings

between these two points are swapped. Figure (2.3) shows the two-point crossover

operation.

Figure (2.3): Two-point crossover

• N-point crossover: There are three types of N-point crossover point which are the

Odd N-point crossover, the Even N-point crossover and the mixed N-point

crossover. In the Odd N-point crossover, an odd random crossover point is chosen.

The genes will be split based on the odd point and alternating between parents.

Similar operation will be performed in the Even N-point crossover by splitting the

genes based on the randomized even point and swapped between parents. The

Mixed N-point crossover chooses n random crossover points, split along those

points and alternating between parents. Figure (2.4) shows the N-point crossover

process.

18

Figure (2.4): N-point crossover

• Uniform crossover: The uniform crossover uses a fixed mixing ratio between two

parents. All genes have equal probability to be swapped. Thus, the offspring will

have 50% of first parent’s genes and another 50% from the second parent’s genes.

Figure (2.5) shows the Uniform crossover process.

Figure (2.5): Uniform crossover

19

2.8.6 Mutation Operator

 According to Hasan and Mustafa (2011), “Mutation operator is one of the GA

operators that used to produce new chromosomes or modify some features of it

depending on some small probability value. The objective of this operator is to prevent

falling of all solutions in population into a local optimum of solved problem”. There are

several types of mutation methods, such as:

• Flip bit: the value of a gene that was chosen randomly, to be equal to a random

number of specific range.

• Boundary: an item is selected randomly and its value is replaced randomly

either by the upper bound or the lower bound.

• Inversion: items between two randomly chosen points in the individual are

reversed in order.

• Insertion: an item is taken at random and inserted randomly into another

position in the sequence.

• Displacement: A randomly selected section of the individual is moved as a

block to another location in the individual.

• Uniform: Replace the value of a chosen gene with a uniform random value

selected between the user specified upper and lower bounds for that gene.

2.8.7 Replacement

 "It is a process performed on the worst individuals to be replaced by better new

individuals" (Naoum, Aziz, and Alabsi, 2014).There are two types of Replacement

method:

20

• Binary Tournament Replacement (BTR): two individuals are chosen to compete

and the individual with the higher fitness wins and is selected for mating.

• Triple Tournament Replacement (TTR): three individuals are chosen to compete

and the individual with the highest fitness wins and is selected for mating.

2.8.8 Stopping criteria

 This process defines the conditions under which the search process terminates.

Typical stopping criteria include the following (French, 2012), (Kumar, Husian, Upreti,

and Gupta, 2010):

• Maximum number of generations reached.

• Allocating budget (ex: time, money) reached.

• Successive iterations no longer produce better results.

• If there are no additional new solutions will be produced.

• Terminate if the optimal solution has been discovered.

2.9 GA Categories

 Two categories of GA will be discussion in this section: Simple Genetic

Algorithm (SGA) and Steady State Genetic Algorithm (SSGA).

2.9.1 Simple Genetic Algorithm (SGA)

 Simple Genetic algorithm (SGA), also called as generational genetic algorithm,

creates new chromosomes (offspring's) from current chromosomes (parents) using the

genetic operators (Crossover and Mutation). These new chromosomes replaced previous

chromosomes to form new population for the next generation, where all of the

21

population undergoes transformation at each generation (Mehra, et al., 2012). Figure

(2.6) shows the SGA structure.

Figure (2.6): Simple Genetic Algorithm structure

2.9.2 Steady State Genetic Algorithm (SSGA)

 In Steady State Genetic Algorithm (SSGA), the current best chromosomes are

automatically included in the next generation, and only the poorest chromosomes will

be replaced. Therefore, SSGA allows some chromosomes to survive over time due to

the Replacement process, because it allows some part of the current population to be

carried to next generation, based on their fitness value (Mehra, et al., 2012). Figure (2.7)

shows the SSGA structure:

22

Figure (2.7): Steady State Genetic Algorithm structure

2.10 SGA versus SSGA

SGA and SSGA differ significantly in how individuals survive over time, how

chromosomes are replaced, and how often they may reproduce. The replacement

strategy likely to have a significant effect in producing advanced chromosomes due to

the fact that it differs in SGA from SSGA.

There are many studies that were done in order to compare SGA and SSGA in

variety fields. Duran and Xhafa, (2006) studied the effects of SGA and SSGA for Job

Scheduling on Computational Grids in order to compare their behavior and study their

practicability for a real grid application. The results show that SGA outperforms SSGA

for the majority of instances, mainly for inconsistent and partially consistent matrices

(which indicates that SGA performs better when job-machine constraints have to be

managed). Both algorithms perform an accentuated reduction in time rapidly reaching

good values, however SGA maintains more diversity among population thus reducing

its tendency to converge and reaching better results than those of SSGA.

23

On other hand, Jones and Soule, (2006) compared Genetic robustness in SGA

versus SSGA in “two peaks” problem; they concluded that although growth occurs with

both algorithms, SSGA is able to converge on the higher peak without this growth. This

result shows that the role of genetic robustness in the evolutionary process is

significantly different in SGA versus SSGA.

This study will try to compare the power of SGA versus SSGA in intrusion

detection field.

2.11 Network Intrusion Detection Dataset

In 1999, MIT Lincoln labs organized Knowledge Discovery in Databases cup

(KDDcup99) and invited researchers across the world to design new techniques to build

an IDS on training and testing data set which is referred to as the KDD cup 99 data set.

KDD99 dataset has been the most widely used dataset for evaluation of computer

network intrusion detection systems. It is built based on the data captured in DARPA’98

IDS evaluation program. The raw training data was about four gigabytes of compressed

raw binary tcpdump data of seven weeks of network traffic, which can be processed into

about five millions connection records, each with about 100 bytes. The two weeks of

test data have around two millions connection records. Each record in KDD99 dataset

contains 41 features and is labeled as either normal or attack, with exactly one specific

attack type. The simulated attacks fall in one of the following four categories: DOS,

U2R, R2L, and probing attacks (Hoque, et al, 2012) (Goyal and Kumar, 2008).

 In 2009, Tavallaee, Bagheri, Lu, and Ghorbani, statistically analyzed the entire

KDD data set. The analysis showed that there are some inherent problems in the

KDD99 data set which highly affects the performance of evaluated systems. One of the

most important deficiencies in the KDD data set is the huge number of redundant

24

records. Analyzing KDD train and test sets found that about 78% and 75% of the

records are duplicated in the train and test set, respectively. This large amount of

redundant records in the train set will cause learning algorithms to be biased towards the

more frequent records, and thus prevent it from learning infrequent records which are

usually more harmful to networks such as U2R attacks. The existence of these repeated

records in the test set, on the other hand, will cause the evaluation results to be biased

by the methods which have better detection rates on the frequent records.

To solve these issues, Tavallaee, Bagheri, Lu and Ghorbani, (2009) proposed a new

data set, NSL-KDD, which consists of selected records of the complete KDD data set.

This data set has advantages over the original KDD data set that it does not include

redundant records in the training and testing datasets. The numbers of records in the

train and test sets are 125,973 and 22,544 records, respectively. This research will use

NSL-KDD dataset as environment to implement its experiments.

KDD’99 features can be classified into four groups: Basic features, Content features,

Time-based Traffic Features, and Host-based Traffic Features (Kayacık, Zincir-

Heywood, and Heywood. 2005).

1. Basic features: this category contains all the attributes that can be derived from a

TCP/IP connection. Most of these features leading to an implicit delay in detection.

2. Content features: R2L and U2R attacks are embedded in the data portions of the

packets, and normally involve only a single connection. To detect these kinds of

attacks, we need some features to be able to look for suspicious behavior in the data

portion, e.g., number of failed login attempts. These features are called content

features.

25

3. Time-based Traffic Features: These features are designed to capture properties

that mature over a 2 second temporal window. One example of such a feature

would be the number of connections to the same host over the 2 second interval.

4. Host-based Traffic Features: Utilize a historical window estimated over the

number of connections - in this case 100 - instead of time. Host based features are

therefore designed to assess attacks, which span intervals longer than 2 seconds.

The label of the features and their corresponding network data features along with

the categories are shown in Table (2.1). Each row represents a feature. The first column

is the category of feature. Other columns show the feature name, feature description and

type.

Table (2.1): List of KDD99 Dataset features with their descriptions and data types

(Amiri, Yousefi, Lucas, Shakery, and Yazdani, 2011)
Category Feature name Description Type

Category 1 1. duration Length (number of seconds) of the

connection

Continuous

2. protocol type Type of the protocol, e.g., tcp, udp, etc. Discrete

3. service Network service on the destination, e.g.,

http, telnet, etc.

Discrete

4. flag Normal or error status of the connection Discrete

5. source bytes Number of data bytes from source to

destination

Continuous

6. destination bytes Number of data bytes from destination to

source

Continuous

7. land 1 If connection is from/to the same host/

port; 0 otherwise

Discrete

8. wrong-fragment Number of ‘‘wrong’’ fragments Continuous

9. urgent Number of urgent packets Continuous

Category 2 10. hot Number of ‘‘hot’’ indicators (hot: number

of directory accesses, create and execute

program)

Continuous

11. Num-failed-

logins

Number of failed login attempts Continuous

12. logged-in 1 If successfully logged-in; 0 otherwise Discrete

13. Num-

compromised

Number of ‘‘compromised’’ conditions

(compromised condition: number of

file/path not found errors and jumping

commands)

Continuous

14. root shell 1 if root shell is obtained; 0 otherwise Discrete

15. su-attempted 1 if "su root'' command attempted; 0

otherwise

Discrete

26

16. Num-root Number of ‘‘root’’ accesses Continuous

17. Num-file-

creations

Number of file creation operations Continuous

18. Num-shells Number of shell prompts Continuous

19. Num-access-files Number of operations on access control

files

Continuous

20. Num-outbound-

cmds

Number of outbound commands in an ftp

session

Continuous

21. Is-host-login 1 If the login belongs to the ‘‘hot’’ list; 0

otherwise

Discrete

22. Is-guest-login 1 If the login is a ‘‘guest’’login; 0

otherwise

Discrete

Category 3 23. Count Number of connections to the same host as

the current connection in the past 2 seconds

Continuous

24. Srv-count Number of connections to the same service

as the current connection in the past

2seconds (same-host connections)

Continuous

25. Serror-rate % Of connections that have ‘‘SYN’’ errors

(same-host connections)

Continuous

26. Srv-serror-rate % Of connections that have ‘‘SYN’’ errors

(same-service connections)

Continuous

27. Rerror-rate % Of connections that have ‘‘REJ’’ errors

(same-host connections)

Continuous

28. Srv-rerror-rate % Of connections that have ‘‘REJ’’ errors

(same-service connections)

Continuous

29. Same-srv-rate % Of connections to the same service

(same-host connections)

Continuous

30. Diff-srv-rate % Of connections to different services

(same-host connections)

Continuous

31. Srv-diff-host-rate % Of connections to different hosts (same-

service connections)

Continuous

Category 4 32. Dst-host-count Count for destination host Continuous

33. Dst-host-srv-

count

Srv_count for destination host Continuous

34. Dst-host-same-

srv-rate

Same_srv_rate for destination host Continuous

35. Dst-host-diff-srv-

rate

Diff_srv_rate for destination host Continuous

36. Dst-host-same-

src-port-rate

Same_src_port_rate for destination host Continuous

37. Dst-host-srv-diff-

host-rate

Diff_host_rate for destination host Continuous

38. Dst-host-serror-

rate

Serror_rate for destination host Continuous

39. Dst-host-srv-

serror-rate

Srv_serror_rate for destination host Continuous

40. Dst-host-rerror-

rate

Rerror_rate for destination host Continuous

41. Dst-host-srv-

rerror-rate

Srv_serror_rate for destination host Continuous

27

2.12 Literature Review

This section discusses some of the techniques used for intrusion detection. The

early effort in using GAs for IDS dates back to 1995, when Crosbie and Spafford

implemented an IDS using multiple autonomous agents and Genetic Programming (GP)

to detect network anomalies. Autonomous Agents are multiple functional entities that

can work independently of each other and the system, each agent observes only one

small aspect of the overall system. Genetic Programming is used as a learning paradigm

to train those autonomous agents to detect potentially intrusive behaviors. This

technique has the advantage of using many small autonomous agents, but the

communication among them is still a problem and its training was time consuming if

the agents are not appropriately initialized (Ojugo et al, 2012).

Zhao, Zhao and Li, (2005) used clustering genetic algorithms to build intelligent

intrusion detection system. This system combines two stages into the process including

clustering stage and genetic optimizing stage. In first stage, it used clustering analysis to

build the initialized clustering sets by similarity rule. While in second stage, it used the

genetic algorithm to optimize the clustering sets to distinguish the normal action and the

intruded action. The empirical results showed that clustering genetic algorithm was

successfully able to detect malicious intrusions in computer systems. This system got an

overall accuracy level of 95%.

Zhou, Meng and Zhang, (2007) proposed an intrusion detection method based

on GA and Support Vector Machine (SVM). They used GA to select and optimize

features, then applied SVM model to classify and detect intrusions. The experimental

results showed that SVM can achieve good classification accuracy, and the accuracy

can be improved after feature selection and optimization. Therefore, it is efficient to

28

apply SVM and GA to intrusion detection. KDD99 dataset is used to train and test this

approach.

Al-Sharafat and Naoum, (2009) incorporated different techniques into a

classifier system to detect and classify intrusion from normal network connection. They

used SSGA as a discovery mechanism and Zeroth Level Classifier System as detector

by matching incoming connection with classifiers to determine whether the current

connection is normal or intrusion, while Fuzzy Logic is used to optimize crossover and

mutation probability. KDD99 dataset is used to perform the experiments and

evaluations of the proposed method.

Shirazi and Kalaji, (2010) implemented information theory measures in order to

select the most significant features by ranking the network connection features

according to their importance in detecting attacks. This ranking allows reducing the

computing complexity and decreasing the detection speed without affecting the

detection rates by selecting the most significant features for each attack class. Then, the

authors designed the network traffic linear classifiers based on genetic algorithms by

using the top five features according to their importance in detecting attack.

Hoque, Mukit and Bikas (2012) presented and implemented a misuse based

NIDS using SGA to efficiently detect various types of network intrusions. This

approach used evolution theory to information evolution in order to filter the traffic data

and thus reduce the complexity and also used the standard KDD99 benchmark dataset to

implement and measure the performance of their system. The authors used only the

numerical features, both continuous and discrete, also used the standard deviation

equation with distance to measure the fitness of a chromosome. They got the following

Detection Rate results (Probe: 71.1%, DoS: 99.4%, U2R: 18.9% and R2L: 5.4%).

29

Goyal, Aggarwal and Jain, (2012) showed effect of change in rate of genetic

algorithm operators on fitness value in production of rules for misuse ID. In this

approach, six features were taken to compose a classification rules, they were source IP,

destination IP, destination port, protocol, sender data amount, and responder data

amount. The support and confidence framework is used as fitness function. A crossover

rates applied in this study are 0%, 30%, and 80%. This study concluded that if crossover

rate is not sufficient, there is no sufficient exchange of genes. If crossover rate is too

much, good parts of individuals get split up a lot. This allows some individuals with

high fitness values to be copied directly to the next population. Also a lot of mutation

would break up good genes and stop them from being passed on.

 Alabsi, (2012) proposed new fitness function, Reward Penality Fitness Function,

to be used in the evaluation process. He also compared selection and crossover methods

to choose the best one to implement it in a system; and found that Uniform Crossover is

the best one among Crossover types and it is better to be combined with Stochastic

Universal Sampling Selection (SUS) or Elitist Selection methods. This study used SUS

Selection and Uniform Crossover as parameters in SSGA to be implemented in misuse

NIDS. The proposed system got an average of DR equal to 95% and an average of FPR

equal to 0.297%.

 Jongsuebsuk, Wattanapongsakorn, and Charnsripinyo (2013) developed a real-

time detection approach for detecting anomaly attacks. They used packet sniffer to sniff

network packets in every 2 seconds and preprocessed it into 12 features and used Fuzzy

Genetic algorithm to classify the network data. The fuzzy rule is a supervised learning

technique and genetic algorithm make fuzzy rule able to learn new attacks by itself.

The output can be categorized into DoS and Probe. They used network dataset for

training and testing is collected in the actual network environment in their research

30

laboratory. The result shows that this algorithm has over 97% of DR, less than 1% of

FPR and less than 3 seconds (for data preprocessing and detection) to issue the alert

message after an attack arrival.

 Torkaman, Javadzadeh, and Bahrololum, (2013) designed a hybrid approach for

modeling HIDS combines anomaly and misuse detection, based on two-layer fuzzy

Genetic algorithm and neural network which uses simple data mining techniques to

process the web application traffics, Two-layer fuzzy Genetic algorithm and neural

network are applied respectively as anomaly and misuse detection. One of the

advantages of this algorithm is that it can support multiple attack classification

according to Open Web Application Security Project (OWASP). This research used the

HTTP dataset CSIC 2010 which is generated automatically and contains 36,000 normal

requests and more than 25,000 anomalous requests. The proposed model is able to

detect critical vulnerabilities based on OWASP standard.

 Aziz, (2014) enhanced SSGA based IDS for detecting misuse attacks by

comparing Replacement method. He declared that Triple Tournament Replacement

(TTR) produces more accurate results than Binary Tournament Replacement (BTR)

according to the value of DR and the number of new rules. Also, he found that TTR

enhanced the convergence to the solution and improved the efficiency of SSGA for

producing new rules. This research got an average of DR that is equal to 88.25%, and

an average of FPR that is equal to 1.48%. The experiments and evaluations are

performed by using 10% of the KDD99 dataset. But this study will enhance IDS by

comparing SGA and SSGA in intrusion detection field.

Pal and Parashar, (2014) proposed IDS using modified GA , they applied

attribute subset reduction on the basis of Information gain in order to reduce the

complexity and training time. Then, Normalize and Fuzzify each selected attribute and

31

divide into fuzzy classes is done by using the triangular function. This research

concluded that Fuzzy-genetic Intrusion detection system combined with feature

selection enable the system to produce optimal subset of attribute in the midst of huge

network information. Also, embedding a soft computing approach in rule generation

makes the rule more efficient than hard computing. This approach was verified using

KDD’99 intrusion detection data set. Experimental result showed that the proposed

method achieved high DR and low FPR.

Ghosh and Mitra, (2015) proposed an efficient IDS by applying the concept of

GA with Best Feature Set Selection (BFSS) method for feature selection and Logistic

Regression (LR) for classification to detect network intrusions. The authors used GA to

select a number of feature sets, where each chromosome represents a particular set of

features, then their proposed BFSS method is applied to select the best set of those

feature sets obtained from GA results. After selecting the most relevant features from

NSL-KDD data set, they built a classifier using LR with Gradient Descent as an

optimization algorithm to detect both anomaly and misuse attacks.

32

Chapter Three

Methodology & Proposed Models

3.1 Methodology

 This research aims at verifying the power of Simple Genetic Algorithm (SGA)

against Steady State Genetic Algorithm (SSGA) for Intrusion Detection System (IDS)

by measuring the performance of each model in detection both abnormal and normal

behavior and if abnormal is detected, find which type of attack it is.

 The NSL-KDD dataset will be used as an environment to train and test the

proposed models, on which the system will use the entire training dataset and the entire

testing dataset from the NSL-KDD dataset.

This research has two proposed models. In the first proposed model, the

researcher will use SGA to develop IDS. In the second proposed model, the researcher

will use SSGA instead of SGA to develop IDS.

The proposed design for both models, SGA based IDS and SSGA based IDS,

consists of three phases: Processing phase, Genetic Algorithm phase, and Testing phase,

as shown in figure (3.1) and figure (3.2). The following sections discuss those phases in

details.

33

Figure (3.1): The structure of SGA based IDS

Testing Phase

Testing process
(By matching rules with the testing dataset)

Processing phase

Importing NSL-KDD Dataset
(KDD Train + KDD Test)

Encoding of Features
(Using Real Number Encoding)

Features Selection

Rules Filtering
(By eliminating redundant rules)

Yes

No

Evaluation
(Using Support Confidence Framework)

Selection
(Using SUS selection)

Crossover
(Using Uniform crossover operator)

Mutation
(Using Flip Bit mutation operator)

Required

Criteria met?

Genetic Algorithm phase

34

Figure (3.2): The structure of SSGA based IDS

Testing Phase

Testing process
(By matching rules with the testing dataset)

Processing phase

Importing NSL-KDD Dataset
(KDD Train + KDD Test)

Encoding of Features
(Using Real Number Encoding)

Features Selection

Rules Filtering
(By eliminating redundant rules)

Yes

No

Evaluation
(Using Support Confidence Framework)

Selection
(Using SUS selection)

Crossover
(Using Uniform crossover operator)

Mutation
(Using Flip Bit mutation operator)

Required

Criteria met?

Genetic Algorithm phase

Evaluation
(Using Support Confidence Framework)

Replacement
(Using Triple Tournament Replacement)

35

3.2 Processing Phase

This phase starts with importing the dataset and the encoding of features,

selecting the dataset with the reduced features for each attack, then filtering the

duplicated rules by eliminating redundant ones.

3.2.1 NSL-KDD dataset

 The NSL-KDD dataset will be used as an environment to train and test the

proposed models. It consists of two datasets: training dataset and testing dataset.

 The training dataset will be used to build the rules that are used to detect attack

connections. This research will use the entire NSL-KDD training dataset, which consists

of 125,973 records.

 The testing dataset will be used to evaluate the proposed models efficiency by

measuring DR and FPR for each model. This research will use the entire NSL-KDD

testing dataset, which consists of 22,544 records.

3.2.2 Encoding of Features

 Every network connection in NSL-KDD dataset contains 41 features, three of

which carry string data, 15 features carry float type values in the range 0.00-1.00, while

the remaining 23 features carry integer values. In this research, real number encoding

will be used to represent rules because the structure of genotype in real number

encoding is identical to that of the phenotype as well as real number encoding already

consists of float numbers and integer numbers. Therefore, only features with string data

are needed to be represented in real number form.

36

3.2.3 Features Selection

 Features selection is a key identification feature method for building efficient

and effective IDS by filtering out noise and removing redundant and irrelevant features.

Each record in NSL-KDD dataset is described by 41 features, using all these features to

generate rules is a time consuming process. So, the most significant features should be

selected to represent each attack category.

There are several studies that have proposed different features sets to represent

different type of attacks. Table (3.1) shows four of those researches and the selected

features for each attack type.

Table (3.1): The most suitable features for each attack

Research DoS Probe U2R R2L

Mukkamala, et

al.,(2004)

7, 8, 12, 13,

23

3, 12, 27, 31,

35

14, 17, 25, 36,

38

6, 11, 12, 19,

22

Chou, et al., (2008) 1, 2, 3, 4, 5, 6,

12, 23, 24,

31, 32, 37

1, 2, 3, 4, 12,

16, 25, 27, 28,

29, 30, 40

1, 2, 3, 10, 16 1, 2, 3, 4, 5,

10, 22

Amiri, et al., (2011)

Using FFSA

5, 38, 3 40, 5, 41, 11,

2, 22, 9, 27,

37, 28, 14, 19,

31, 18, 1, 17,

16, 13, 25, 39,

26, 6, 30, 32

5, 1, 19, 18,

39, 2, 22, 9,

29, 7, 8, 15,

30, 16, 20, 21,

6, 3, 26, 31,

33, 14, 4, 17,

32, 12, 25

3, 6, 4, 11, 9,

33, 37, 38, 22,

25

Amiri, et al., (2011)

Using MMIFS

5, 23, 6, 2, 24,

41, 36, 3

40, 5, 33, 23,

28, 3, 41, 35,

27, 32, 12, 24

5, 1, 3, 24, 23,

2, 33, 6, 32, 4,

14, 21

3, 13, 22, 23,

10, 5, 35, 24,

6, 33, 37, 32,

1, 39

37

In order to select the most significant features, the researcher performed the

testing process over the testing dataset using the features sets shown in table (3.1), and

selected the best group among these features. More details will be discussed further in

chapter four.

3.2.4 Rules Filtering

After selecting the training dataset with the reduced features for each attack,

duplicated rules might appear. These duplicated rules are unnecessary and keeping them

could slow the work down. So, training records will be filtered by eliminating the

redundant rules.

After analyzing the training dataset, each rule will be represented in: if condition

then action. The condition part refers to the features of the network connection, the

result might be TRUE if the incoming connection matched the rules in dataset, or it

could be FALSE if there was some mismatching. While the action part refers to the

attack name and will be specified only if condition is true. For example, a rule can be

defined as:

If (protocol type =" tcp") and (Number of data bytes from source to destination = 0) and

(Percentage of connections to the current host and specified service that have an RST

error = 0.99) then (Current connection = "Neptune attack")

3.3 Genetic Algorithm Phase

 The main difference between the two models proposed in this study is Genetic

Algorithm phase, especially in Replacement process. In this phase, SGA based IDS

model will perform Evaluation, Selection, Crossover and Mutation processes. While

38

SSGA based IDS model will perform Evaluation, Selection, Crossover, Mutation, as

well as Replacement processes.

 In this phase, GA processes will be applied on the filtered dataset in order to

generate new rules which will be used to identify attacks from the testing dataset.

3.3.1 Evaluation

Support Confidence Framework will be adopted as the fitness function in this

research in order to evaluate each individual in the training dataset. This fitness function

was developed by Wong and Leung (2000). Positive results were obtained when the

Support Confidence Framework was used by many researches such as Lu and Traore

(2004), Selvakani and Rajesh (2007), and Ojugo, et al., (2012).

To explain the work of Support Confidence fitness function, suppose that a rule

is represented as (if condition then action), where a condition part represents the

features values while an action part represents the attack name. if the condition and

action of the selected record equal to the condition and action of the compared record in

training dataset, then this will increase the value of (A and B) of the selected record by

one. Else, if the condition part of the selected record is equal to the condition part of the

compared record but the actions of both records don't meet each other, then the value of

(A) of the selected record will increase by one. To calculate a fitness value for each rule

in the training dataset using Support Confidence fitness function, must:

1. Calculate the Support value by computing the rate of the (A and B) value to the

number of records in training dataset (N). Support value is calculated by using

equation (3.1):

Support = |A and B| / N (3.1)

39

Where:

|A and B| = Number of records matching the condition part and action part.

N = Number of connections in training dataset.

2. Calculate the Confidence value by computing the rate of the (A and B) value to the

(A) value. Confidence value is calculated by using equation (3.2):

 Confidence = |A and B| / |A| (3.2)

Where:

 |A| = Number of records matching the condition part only.

3. Calculate the fitness value by computing Support Confidence fitness function, it is

calculated by using equation (3.3):

Fitness = w1 � Support + w2 � Confidence (3.3)

Where:

w1, w2 = Weights to balance the two terms.

3.3.2 Selection

 Stochastic Universal Sampling (SUS) will be used as the selection method. SUS

was developed by Baker and it became one of the most widely used selection methods

because it has zero bias (Pencheva, Atanassov, and Shannon, 2009).

40

3.3.3 Crossover

 Uniform crossover operator will be used in the research; the uniform crossover

operator is considered the most powerful crossover because all genes have equal

probability to be swapped in order to gain a high diversity in population (Hu and Di

Paolo, 2009).

3.3.4 Mutation

Flip Bit mutation will also be used in this research. In Flip Bit mutation a gene is

randomly selected and its value is inverted to be equal to a random number of a specific

range.

3.3.5 Replacement

This step will be used only with SSGA based IDS model, the Triple Tournament

Replacement (TTR) will be adopted in this study because it produces more accurate

results than the double replacement (Aziz, 2014). In this method, three individuals are

chosen to compete and the individual with the highest fitness will win.

3.3.6 Stopping Criteria

GA is iterative process and will be stopped when the stopping criteria is

achieved. The stopping criteria used in this research is if there are no additional new

rules to be produced, then GA will be stopped.

41

3.4 Testing Phase

After applying Genetic Algorithm process over the training dataset and generating

new rules. These generated rules will be used to detect attacks from the testing dataset.

By calculating DR and FPR for each proposed model, the best model will be identified.

3.5 Proposed Models Evaluation

An effective IDS must be able to detect various types of intrusions with high DR

and low FPR. Testing proposed methods can provide a good indicator on whether these

methods can give high performance compared with others or not. Evaluate IDS can be

expressed as how far it can correctly detect intrusions and avoid false alarm.

The two models proposed in this study will be evaluated by calculating

Detection Rate (DR) and False Positive Rate (FPR). Hoque, et al, (2012) defined DR

and FPR as following:

Detection Rate (DR) is “the ratio between the number of correctly detected intrusions

and the total number of intrusions”. The DR is calculated by using equation (3.4).

DR =
Attacks Total of No.

Attacks Detected of No.

False Positive Rate (FPR) is “the ratio between the numbers of normal connections

that are incorrectly classifies as intrusions and the total number of normal connections”.

The FPR is computed by using equation (3.5).

FPR =
Records Normal of No.

Alarms False of No.

(3.4)

(3.5)

42

Chapter Four

Systems Structure & Experimental Results

4.1 Overview

 This chapter presents the implementation stages of the proposed models, starting

with analyzing the dataset, selecting rules with reduced features for each attack type and

then eliminating duplicated rules. This chapter also presents the applying of SGA and

SSGA on the training dataset in order to generate new rules which help to detect attacks

in testing dataset. Finally, presenting experimental results and providing a concise

discussion for those results.

The researcher used Microsoft Visual Basic 2010 Express as the front end to

write the coding part, and also used Microsoft SQL Server 2008 as the back end to the

system, in order to store and analyze the dataset. For this implementation, the researcher

used Windows based HP computer that has an i5 core (1.7 GHz) processor, 500 GB

hard disk space and 4 GB RAM.

 As mention early in chapter three, this study proposed two models: SGA based

IDS and SSGA based IDS. Each model consists of three phases: Processing phase,

Genetic Algorithm phase, and Testing phase. Section (4.2), (4.3), and (4.4) will present

the implementation stages of those phases step by step.

43

4.2 Processing Phase

 In this phase, the dataset is imported and encoded using Real Number Encoding,

each attack rules is selected with reduced features and the duplicated rules are filtered

by eliminating redundant rules. Figure (4.1) shows the processes of this phase.

Figure (4.1): processing phase major compenents

4.2.1 NSL-KDD Dataset

 NSL-KDD dataset is a benchmark used to evaluate the system efficiency by

measuring its performance; it is publicly available on (http://nsl.cs.unb.ca/NSL-KDD/).

It consists of training dataset and testing dataset. The training dataset contains 125,973

records, while the testing dataset contains 22,544 records. Figure (4.2) shows the

analysis of NSL-KDD dataset and its results of training and testing datasets, on table

(4.1) and table (4.2), respectively.

Importing NSL-KDD Dataset
(KDD Train + KDD Test)

Encoding of Features
(Using Real Number Encoding)

Features Selection

Rules Filtering
(By eliminating redundant rules)

44

Figure (4.2): analyzing NSL-KDD dataset using Microsoft SQL Server 2008

Table (4.1): details information about training dataset
Attack name Sub attack name No. of records

Normal Normal 67,343

Dos Back , Land , Neptune , Pod , Smurf , Teardrop 45,927

Probe Ipsweep , Nmap , Portsweep , Satan 11,656

U2R buffer_overflow , Loadmodule , Perl , Rootkit 52

R2L

ftp_write , guess_passwd , Imap , Multihop ,

Phf , Spy ,Warezmaster , Warezclient

995

Total 125,973

a: analyzing DoS attack types

b: analyzing Probe attack types

45

Table (4.2): details information about testing dataset
Attack name Sub attack name No. of records

Normal Normal 9711

Dos
Back , Land , Neptune , Pod , Smurf , Teardrop,

apache2 , Udpstorm , Mailbomb , Processtable

7458

Probe

Ipsweep , Nmap , Portsweep , Satan , Saint ,

Mscan

2421

U2R

buffer_overflow , Loadmodule , Perl , Rootkit ,

Ps , Xterm , Sqlattack

67

R2L

ftp_write , guess_passwd , Imap , Multihop ,

Phf , Warezmaster , Named , Sendmail , Xlock ,

Xsnoop , Snmpgetattack , Httptunnel , Worm ,

Snmpguess

2887

Total 22,544

As shown in the above tables, Warezclient and Spy attacks are existent only in

training dataset. However, on the contrary there are some attacks that exist only in

testing dataset, such as apache2, udpstorm, mailbomb, processtable…etc. thus; such

attacks were not used in this research.

4.2.2 Encoding of Features

In NSL-KD dataset each rule contains 41 features, three of which are of String

values that would be encoded using Real Number Encoding, those features are Protocol

Type, Flag and Service. Table (4.3) represents those features as follows:

46

• Protocol type feature has three different values; TCP, ICMP and UDP. So,

TCP is encoded by number 1, ICMP is encoded by number 2 and UDP is

encoded by number 3.

• Flag feature has 11 different values; each value was represented by a positive

number in range of [1-11]. "REJ" value which was represented by number 1,

"OTH" by number 2, "S1" by number 3, "RSTR" by number 4, "S2" by number

5, "S3" by number 6, "S0" by number 7, "SF" by number 8, "SH" by number 9,

"RSTO" by number 10, and finally "RSTOS0" was represented by number 11.

• Service feature has 70 different values. The researcher used positive numbers

to represent these values in range of [1-70], such as "BGP" value which was

represented by number 1, "SQL_NET" by number 2 … etc.

Figures (4.3) and (4.4) present the network connection features in NSL-KDD dataset

before and after encoding, respectively.

Figure (4.3): the network connection features before encoding

Figure (4.3): the network connection features after encoding

1, tcp, smtp, SF, 1710, 375, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,

1, 0, 0, 184, 128, 0.35, 0.39, 0.01, 0.02, 0, 0, 0.32, 0

1, 1, 60, 8, 1710, 375, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0,

184, 128, 0.35, 0.39, 0.01, 0.02, 0, 0, 0.32, 0

47

Table (4.3): the encoding of the string features of NSL-KDD dataset

Protocol type Feature

String value Encoding

Tcp 1

Icmp 2

Udp 3

Flag Feature
String value Encoding

REJ 1

OTH 2

S1 3

RSTR 4

S2 5

S3 6

S0 7

SF 8

SH 9

RSTO 10

RSTOS0 11

Service Feature

String value Encoding String value Encoding String value Encoding

Bgp 1 Systat 25 Domain 49

sql_net 2 Time 26 Kshell 50

Nnsp 3 Gopher 27 http_443 51

Mtp 4 telnet 28 Auth 52

remote_job 5 Netstat 29 Echo 53

ecr_i 6 Whois 30 Name 54

Finger 7 http_8001 31 urp_i 55

Uucp 8 Efs 32 tftp_u 56

X11 9 Aol 33 netbios_ssn 57

Link 10 Ssh 34 eco_i 58

Z39_50 11 Supdup 35 iso_tsap 59

ntp_u 12 Vmnet 36 Smtp 60

Hostnames 13 http 37 Harvest 61

netbios_dgm 14 urh_i 38 domain_u 62

IRC 15 Daytime 39 Other 63

Rje 16 pop_2 40 Discard 64

tim_i 17 Exec 41 nntp 65

red_i 18 imap4 42 Ldap 66

pm_dump 19 Printer 43 ftp 67

Klogin 20 Private 44 Ctf 68

Login 21 csnet_ns 45 Sunrpc 69

http_2784 22 pop_3 46 Courier 70

Shell 23 uucp_path 47

ftp_data 24 netbios_ns 48

48

4.2.3 Features Selection

In order to select the most significant features, the researcher used the features

sets shown in table (3.1) to test the testing dataset. The features sets that achieve high

DR and low FPR than other sets will be selected to use them in this research.

Table (4.4) shows the results of testing the selected features by Mukkamala, at

al., (2004) to identify attacks from testing dataset.

Table (4.4): results of DR and FPR for each attack using the selected features by

 (Mukkamala, at al., 2004)
 Dos Probe U2R R2L

The selected

features

7, 8, 12, 13, 23 3, 12, 27, 31,

35

14, 17, 25, 36,

38

6, 11, 12, 19,

22

DR 93.68% 44.65% 19.40% 15.66%

FPR 67.97% 7.24% 38.56% 7.68%

Table (4.5) shows the results of testing the selected features by Chou, et al.,

(2008) to identify attacks from testing dataset.

Table (4.5): results of DR and FPR for each attack using the selected features by
 (Chou, et al., 2008)

 Dos Probe U2R R2L

The selected

features

1, 2, 3, 4, 5, 6,

12, 23, 24, 31,

32, 37

1, 2, 3, 4, 12,

16, 25, 27, 28,

29, 30, 40

1, 2, 3, 10, 16 1, 2, 3, 4, 5, 10,

22

DR 30.77% 30.24% 10.45% 0.10%

FPR 0.35% 10.98% 3.45% 0.00%

49

 Amiri, et al., (2011) proposed two features sets using Modified Mutual

Information Feature Selection algorithm (MMIFS) and Forward Feature Selection

Algorithm (FFSA), as shown in table (3.1) in chapter three. The researcher used these

two feature sets to identify attacks from testing dataset and got the results shown in

table (4.6) and (4.7).

Table (4.6): results of DR and FPR for each attack according to (Amiri, et al.,

2011) using the selected features by FFSA

 Dos Probe U2R R2L

The Selected

features

5, 38, 3 40, 5, 41, 11, 2,

22, 9, 27, 37, 28,

14, 19, 31, 18, 1,

17, 16, 13, 25, 39,

26, 6, 30, 32

5, 1, 19, 18, 39,

2, 22, 9, 29, 7, 8,

15, 30, 16, 20,

21, 6, 3, 26, 31,

33, 14, 4, 17, 32,

12, 25

3, 6, 4, 11, 9,

33, 37, 38,

22, 25

DR 73.38% 27.67% 0.00% 13.61%

FPR 1.82% 0.71% 0.00% 1.02%

Table (4.7): results of DR and FPR for each attack according to (Amiri, et al.,

2011) using the selected features by MMIFS

 Dos Probe U2R R2L

 The Selected

features

5, 23, 6, 2, 24,

41, 36, 3

40, 5, 33, 23,

28, 3, 41, 35,

27, 32, 12, 24,

5, 1, 3, 24, 23,

2, 33, 6, 32, 4,

14, 21

3, 13, 22, 23,

10, 5, 35, 24, 6,

33, 32, 1, 37,

39

DR 28.87% 6.65% 0.00% 0.00%

FPR 0.35% 0.01% 0.00% 0.00%

50

According to the results shown in the previous tables and taking into account the

ratios of DR and FPR, where the good feature set must to achieve high DR and low

FPR. The researcher selected the features sets shown in table (4.8) to use them in his

research.

Table (4.8): the selected features sets for this research
Attack name Features sets

Dos F3, F5, F38

Probe F3, F12, F27, F31, F35

U2R F1, F2, F3, F10, F16

R2l F3, F4, F6, F9,F11, F22, F25, F33, F37, F38

4.2.4 Rules Filtering

After selecting each sub attack rules with reduced features, many duplicated

rules have appeared, those rules were filtered by eliminating the redundant ones. Table

(4.9) and table (4.10) show the number of rules before and after filtering in DoS attacks

category and Probe attacks category, respectively. While table (4.11) and table (4.12)

show the number of rules before and after filtering for U2R and R2L attacks,

respectively.

51

Table (4.9): number of rules before and after filtering for DoS attacks category
Sub attack name No. of rules before filtering No. of rules after filtering

Back 956 50

Land 18 5

Pod 201 15

Smurf 2646 43

Teardrop 892 5

Neptune 41214 226

Table (4.10): number of rules before and after filtering for Probe attacks category

Sub attack name No. of rules before filtering No. of rules after filtering

Ipsweep 3599 40

Nmap 1493 97

Portsweep 2931 547

Satan 3633 671

Table (4.11): number of rules before and after filtering for U2R attacks category

Sub attack name No. of rules before filtering No. of rules after filtering

buffer_overflow 30 24

Loadmodule 9 8

Perl 3 3

Rootkit 10 7

52

Table (4.12): number of rules before and after filtering for R2L attacks category

Sub attack name No. of rules before filtering No. of rules after filtering

ftp_write 8 8

guess_passwd 53 53

Imap 11 11

Multihop 7 7

Phf 4 4

Warezmaster 20 20

4.3 Genetic Algorithm Phase

This phase aims at generating new rules to be used for detecting attacks in

testing dataset. In this phase, SGA based IDS applied Evaluation, Selection, Crossover

and Mutation processes, while SSGA Based IDS performed Evaluation, Selection,

Crossover, Mutation as well as Replacement processes.

4.3.1 Evaluation

The fitness function adopted in the research is called Support Confidence

Framework. To demonstrate the way it operates, consider the following example:

 Suppose that table (4.13) represents all records of the training dataset, to calculate the

fitness value of record1, must to compute values of N, |A|, and |A and B|. Where:

N = Number of connections in training dataset.

|A| = Number of records matching the condition part only.

 |A and B| = Number of records matching the condition part and action part.

53

Therefore:

 N= 10

|A| = 4 (record 1, record 3, record 6 and record 9).

|A and B| = 2 (record1, record 3).

Depending on the equations (3.1), (3.2) and (3.3) in chapter three, the fitness value for

record1 is:

Support = |A and B| / N =2/10 = 0.2

Confidence = |A and B| / |A| = 2/4 = 0.5

Fitness value = w1 � Support + w2 � Confidence = (0.2 �0.2) + (0.8 � 0.5) = 0.44

Table (4.13): working of Support Confidence Framework

ID F1 F2 F3 F10 F16 Attack name

1 25 1 28 0 2 Perl

2 60 1 28 0 0 Rootkit

3 25 1 28 0 2 Perl

4 7 1 67 4 0 Loadmodule

5 290 1 28 3 4 Buffer_overflow

6 25 1 28 0 2 Rootkit

7 98 1 28 1 14 Rootkit

8 0 1 24 1 0 Loadmodule

9 25 1 28 0 2 Buffer_overflow

10 7 1 67 4 0 Perl

Table (4.14) shows the actual data of fitness values for Rootkit attack rules using

Support Confidence Framework, where the values used for w1 and w2 in this research

were 0.2 and 0.8, respectively. For example, the fitness value of first record in table

(4.14) is calculated as:

N= 125,973, |A| = 1, |A and B| = 1, w1 = 0.2, w2 = 0.8

Support = |A and B| / N =1/125,973 = 0.0000079

54

Confidence = |A and B| / |A| = 1/1 = 1

Fitness value = w1 � Support + w2 � Confidence

 = (0.2 � 0.0000079) + (0.8 � 1) = 0.8000016

Table (4.14): Rootkit attack rules with reduced features and fitness values (actual

data)
ID F1 F2 F3 F10 F16 Fitness value

1 708 1 28 0 7 0.8000016

2 98 1 28 1 14 0.8000016

3 0 3 63 0 0 0.002373963

4 60 1 28 0 0 0.3200032

5 60 1 28 0 0 0.3200032

6 0 3 63 0 0 0.002373963

7 21 1 67 1 0 0.8000016

8 61 1 28 0 4 0.8000016

9 0 3 63 0 0 0.002373963

10 0 1 24 0 2 0.08889048

4.3.2 Selection

 This study used Stochastic Universal Sampling (SUS) as selection method. It is

implemented by obtaining N equally spaces pointers by generating single random

number between [0, AF] as pointer1, and then adding (AF) to generate next pointers,

and so on. Where N is the number of required selections, and AF is the average of

fitness value in the population. The individual who has a fitness value that spans the

positions of the pointers is selected. Table (4.15) shows the selected rules after applying

SUS selection on the rules shown in table (4.14).

55

Table (4.15): the selected rules from Rootkit attack using SUS selection
(Actual data)

Selected individual F1 F2 F3 F10 F16 Fitness value

1 708 1 28 0 7 0.8000016

1 708 1 28 0 7 0.8000016

2 98 1 28 1 14 0.8000016

2 98 1 28 1 14 0.8000016

5 60 1 28 0 0 0.3200032

7 21 1 67 1 0 0.8000016

7 21 1 67 1 0 0.8000016

8 61 1 28 0 4 0.8000016

8 61 1 28 0 4 0.8000016

10 0 1 24 0 2 0.08889048

4.3.3 Crossover

Uniform crossover operator is used as a crossover method in this research. It is

implemented by randomly exchange genes between two parents where the offspring

will have 50% of the first parent’s genes and another 50% from the second parent’s

genes. For example:

Parent1:

Parent2:

The result after applying Uniform crossover is:

 Offspring1:

 Offspring2:

60 1 28 0 0

21 1 67 1 0

21 1 67 0 0

60 1 28 1 0

56

Table (4.16) shows the results of applying Uniform crossover over Rootkit

attack rules which shown in table (4.15).

Table (4.16): results of applying Uniform crossover over Rootkit attack dataset
(actual data)

ID F1 F2 F3 F10 F16

1 708 1 28 0 7

2 708 1 28 0 7

3 98 1 28 1 14

4 98 1 28 1 14

5 21 1 67 0 0

6 60 1 28 1 0

7 21 1 67 1 0

8 61 1 28 0 4

9 0 1 28 0 4

10 61 1 24 0 2

4.3.4 Mutation

Flip bit mutation operator is used as a mutation method; it is performed by

randomly selecting gene and makes its value equal to a random number of specific

range. The probability of mutation rate used in the experiments is 10%, one individual

among every 10 will undergo a mutation process. For example, the form of the

individual number 1 in table (4.16) was:

After applying Flip bit mutation, it became:

708 1 28 0 7

708 1 24 0 7

57

4.3.5 Replacement

Replacement process is used only in SSGA based IDS model. Triple

Tournament Replacement (TTR), used in this research, is implemented by comparing

three generations among each other, while the rules with highest fitness values will be

selected and stored in the rules pool. Table (4.17) shows the results of applying TTR on

Neptune attack rules, which has a population size of 10 as a sample size.

Table (4.17): results of applying TTR over Neptune attack individuals (real data)

ID Generation1 Generation2 Generation3

The Selected

individual

1 0.80050645 0.79869176 0.81950756 0.81950756

2 0.80050645 0.79737413 0.79840875 0.80050645

3 0.80008414 0.79593263 0.79840875 0.80008414

4 0.39512542 0.79593263 0.80070015 0.80070015

5 0.80050804 0.76335016 0.79940858 0.80050804

6 0.80052233 0.80052233 0.47503584 0.80052233

7 0.75096292 0.55843970 0.78173195 0.78173195

8 0.79886731 0.79864659 0.79910390 0.79910390

9 0.76049135 0.74352953 0.81950756 0.81950756

10 0.75439049 0.79910390 0.80107165 0.80107165

58

4.4 Testing Phase and Experimental Results

In this study, the researcher conducted two types of experiments; on the first

type, SGA was used for obtaining rules in 20 sub attack types. Then, he tested these

rules with testing dataset. On the second type, the researcher applied the same method

as in the first experiment but used SSGA instead of SGA. The parameters used in the

experiments are presented in the table (4.18).

Table (4.18): The parameters used in the experiments
Population size 250

Features encoding Real number encoding

Fitness function Support Confidence Framework

Selection method Stochastic Universal Sampling (SUS)

Crossover operator Uniform crossover (crossover rate =50%)

Mutation operator Flip bit mutation (mutation rate = 10%)

Replacement method* Triple Tournament Replacement (TTR)

Stopping condition When there are no new rules to be generated

* TTR used only with SSGA experiments

4.4.1 Experimental Results for SGA based IDS

 Tables (4.19), (4.20), (4.21) and (4.22), show experimental results from SGA

based IDS, which present the number of new generated rules, the training time for each

experiment, the DR and FPR for each sub attack type when being tested with the testing

dataset. Table (4.19) and table (4.20) illustrate the experimental results for DoS attack

types and Probe attack types, respectively. While table (4.21) and able (4.22) show

results of U2R attack types and R2L attack types, respectively.

59

Table (4.19): Experimental results for DoS attack types using SGA based IDS
Attack name No. of new generated rules Training time DR FPR

Back 89 00:01:44 100% 0%

Land 0 00:00:02 57% 0%

Pod 20 00:00:13 97.5% 0.16%

Smurf 41 00:00:23 56.8% 0%

Teardrop 2 00:00:05 100% 0.37%

Neptune 3885 02:18:13 96.09% 1.38%

Table (4.20): Experimental results for Probe attack types using SGA based IDS

Attack name No. of new generated rules Training time DR FPR

Ipsweep 3187 00:17:54 98.58% 6.41%

Nmap 3977 00:21:11 100.00% 5.75%

Portsweep 64890 04:29:05 90.45% 2.26%

Satan 55873 02:43:10 91.02% 9.49%

Table (4.21): Experimental results for U2R attack types using SGA based IDS

Attack name No. of new generated rules Training time DR FPR

Buffer_overflow 7502 00:30:55 100% 3.27%

Loadmodule 34 00:00:24 100% 3.23%

Perl 0 00:00:02 0% 0%

Rootkit 126 00:01:12 15.38% 0.64%

60

Table (4.22): experimental results for R2L attack types using SGA based IDS
Attack name No. of new generated rules Training time DR FPR

ftp_write 10 00:00:09 0.00% 0.23%

Guess_passwd 55490 10:30:40 89.03% 0.01%

Imap 7902 00:36:56 100.00% 0.00%

Multihop 67 00:00:50 11.11% 1.52%

Phf 1 00:00:03 0.00% 0.00%

Warezmaster 36613 09:25:50 87.82% 2.63%

4.4.2 Experimental Results for SSGA based IDS

As mentioned earlier in section (4.4) on the second type of experiments, SSGA

is applied on training dataset for generating new rule in order to detect attacks from

testing dataset. Tables (4.23), (4.24), (4.25), and (4.26) present results of SSGA based

IDS for each attack type. Table (4.23) and table (4.24) illustrate the experimental results

for DoS attack types and Probe attack types, respectively. Whereas table (4.25) and

table (4.26) show results of U2R attack types and R2L attack types, respectively.

Table (4.23): experimental results for DoS attack types using SSGA based IDS

Attack name No. of new generated rules Training time DR FPR

Back 28 00:24:28 98.33% 0.00%

Land 0 00:00:03 57.14% 0.00%

Pod 14 00:02:56 97.56% 0.16%

Smurf 22 00:54:43 56.84% 0.00%

Teardrop 2 00:06:00 100.00% 0.37%

Neptune 1276 21:55:10 95.71% 1.38%

61

Table (4.24): experimental results for Probe attack types using SSGA based IDS

Attack name No. of new generated rules Training time DR FPR

Ipsweep 2074 03:30:22 98.58% 3.65%

Nmap 402 03:40:11 86.30% 4.98%

Portsweep 27203 10:01:55 86.62% 3.62%

Satan 31406 11:57:36 73.74% 6.06%

Table (4.25): experimental results for U2R attack types using SSGA based IDS

Attack name No. of new generated rules Training time DR FPR

Buffer_overflow 402 00:42:01 35.00% 3.22%

Loadmodule 34 00:00:58 100.00% 3.23%

Perl 0 00:00:01 0.00% 0.00%

Rootkit 88 00:03:00 0.00% 0.32%

Table (4.26): experimental results for R2L attack types using SSGA based IDS

Attack name No. of new generated rules Training time DR FPR

ftp_write 10 00:00:16 0.00% 0.23%

Guess_passwd 19982 14:11:22 75.39% 0.01%

Imap 244 00:14:31 0.00% 0.00%

Multihop 4 00:00:05 5.56% 1.52%

Phf 0 00:00:03 0.00% 0.00%

Warezmaster 19390 18:34:35 79.56% 2.76%

62

After combining the attacks rules of the same category together, and testing each

category with the testing dataset, we got the results as shown in table (4.27) and table

(4.28).

Table (4.27): experimental results for Dos, Probe, U2R and R2L categories using

SGA based IDS
Attack name DR FPR

Dos 91.78% 1.92%

Probe 93.58% 12.14%

U2R 81.08% 3.92%

R2l 87.54% 2.86%

Table (4.28): experimental results for Dos, Probe, U2R and R2L categories using

SSGA based IDS
Attack name DR FPR

Dos 91.36% 1.92%

Probe 81.83% 10.19%

U2R 40.54% 3.53%

R2L 76.40% 3.00%

4.5 Results Discussion and Analysis

After performing the experiments using both SGA based IDS and SSGA based

IDS, and getting the results shown in previous tables. The researcher concluded the

following:

1. The generated rules during Genetic Algorithm phase have two cases. In the first

case, these rules were already existent in the training dataset and there was no need

to store them. In the second case, the generated rules were the new rules and they

63

were not existent in the training dataset. According to Support Confidence

Framework, the fitness value for these new rules is equal to zero because the value

of (A and B) is equal to zero.

2. The new rules have fitness value equal to zero, as mentioned above. Therefore, the

Replacement process is unhelpful process because it compares either between

already existent rule and new rule (therefore the already existent rule wins because

it has a fitness value more than zero) or it compares between new rules, and as in

this case where coincidence does play its role in the selection of rules which is

stored in the rules pool.

3. The number of added rules using SGA are more than the added rules using SSGA,

as shown in figure (4.5), because the new generated rules using SGA will be

directly stored in the rules pool at first time, unlike the new generated rules using

SSGA that couldn't be stored in the rules pool at first time and could be generated

more than once or might not be even stored because of the Replacement process.

For the same reason, the training time for SSGA takes longer than the training time

for SGA, as shown in figure (4.6).

64

Figure (4.6): summary of training time comparison

Figure (4.5): summary of added rules comparison

DosProbeU2RR2L

SGA 40371279277662100083

SSGA 13425926852439630

0

20000

40000

60000

80000

100000

120000

140000

DosProbeU2RR2L

SGA 02:20:4007:51:2000:32:334:34:20

SSGA 23:23:2004:42:0400:46:0009:00:52

00:00:00

04:48:00

09:36:00

14:24:00

19:12:00

00:00:00

04:48:00

09:36:00

14:24:00

65

4. The experimental results demonstrated that SGA based IDS produced more

accurate results than SSGA based IDS according to the value of DR, as mentioned

in figure (4.7). This is another proof that indicates Replacement process is

unhelpful process in intrusion detection field.

5. According to the results of FPR, SGA based IDS achieved higher result than SSGA

based IDS in R2L attacks, but it got lower results than SSGA based IDS in Probe

and U2R attacks, both achieved equal result in DoS attacks, as shown in figure

(4.8).

DosProbeU2RR2L

SGA 91.78%93.58%81.08%87.54%

SSGA 91.36%81.83%40.54%76.40%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Figure (4.7): summary of DR comparison

66

4.6 Comparing the Proposed Study Results with Other Studies

 SGA based IDS was compared with other Intrusion Detection System that used

Genetic algorithm, the criteria used for comparison are the average of the DR and the

Average of the FPR.

Hoque, et al, (2012) presented and implemented IDS by applying SGA. The

authors used standard KDD99 benchmark dataset and obtained the average of DR

which is equal to 95%, and the average of FPR that is equal to 30.46%.

Aziz, (2014) proposed IDS using SSGA. She also used KDD99 dataset as an

environment to train and test the system, and got the average of DR which is equal to

88.25%, and the average of FPR that is equal to 1.48%.

DosProbeU2RR2L

SGA 1.92%12.14%3.92%2.86%

SSGA 1.92%10.19%3.53%3.00%

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

Figure (4.8): summary of FPR comparison

67

As shown in table (4.29), the average of DR of this research achieved lower

results than (Hoque, et al, 2012) and higher results than (Aziz, 2014). On the other

hand, the average of FPR of this research achieved higher results than (Hoque, et al,

2012), but lower than (Aziz, 2014).

Table (4.29): comparison results of this research with other results
 Average of DR Average of FPR

This research 88.5% 5.21%

Hoque, et al, (2012) 95% 30.46%

Aziz, (2014) 88.25% 1.48%

68

Chapter Five

Conclusion & Future Work

5.1 Conclusion

 This study proposed two models of Intrusion Detection Systems to detect

network intrusions. In the first model, an Intrusion Detection System is built using

Simple Genetic Algorithm (SGA based IDS). While the second model, an Intrusion

Detection System is built using Steady State Genetic Algorithm (SSGA based IDS).

These models were implemented and evaluated using NSL-KDD intrusion detection

dataset.

 In order to determine which feature set is the most suitable one for each attack

category, the author compared published studies regarding this topic and modeled a

hybrid feature set containing the best available feature sets.

 The training process showed that the training time for SSGA was much more

than the time required for SGA, despite that, the numbers of new generated rules using

SGA are more than those using SSGA.

 SGA based IDS achieved an average of DR equal to 88.5%, while SSGA based

IDS achieved an average of DR equal to 72.53%. On other hand, SGA based IDS

produced an average of FPR equal to 5.21%, while SSGA based IDS produced an

average of FPR equal to 4.66%.

 From the experimental results, the researcher concluded that performing an IDS

using SGA gives higher performance results than using SSGA according to the value of

69

DR and the number of new generated rules, also the training time for SGA experiments

is shorter than the training time for SSGA. On other hand, SSGA based IDS achieved an

FPR average that was relatively better than SGA based IDS.

The results of DR and FPR were compared with results of other researches, and

showed that the results of this research was convincing.

5.2 Future Work

1. More comprehensive researches are needed to determine key features for every

attack category in order to build an efficient and an effective IDS.

2. Additional studies are needed to compare Genetic Algorithm with other

evolutionary algorithms in Intrusion Detection field.

3. Comparing SGA and SSGA using anomaly based IDS.

4. Combining Genetic Algorithm and fuzzy logic to improve the accuracy of IDS.

5. Developing an Intrusion Detection System that is able to detect Misuse and

Anomaly attacks with high DR and low FPR.

70

References

• Abdullah, B., Abd-Alghafar, I., Salama, G. I., and Abd-Alhafez, A. (2009).

Performance evaluation of a genetic algorithm based approach to network intrusion

detection system”, 13th international conference on aerospace sciences and

aviation technology, May 26 – 28, Military Technical College, Kobry Elkobbah,

Cairo, Egypt.

• Adewumi, A.O. (2010). Some improved genetic-algorithms based heuristics for

global optimization with innivative applications, (Master thesis). University of

the witwatersrand. Johannesburg. South Africa.

• Alabsi, F. (2012). An Enhanced Steady State Genetic Algorithm Model for

Misuse Network Intrusion Detection System, (master thesis). Middle East

University, Amman, Jordan.

• Al-Sharafat, W. S., and Naoum, R. (2009). Development of Genetic-based Machine

Learning for Network Intrusion Detection. World Academy of Science,

Engineering and Technology, Vol. 3.

• Al-Zokari, Y. I. (2008). Computer intrusion detection system via pattern

recognition technique, (unpublished master thesis). The University of Jordan,

Amman, Jordan.

• Amiri, F., Yousefi, M., Lucas, C., Shakery, A., and Yazdani, N. (2011). Mutual

information-based feature selection for intrusion detection systems. Journal of

Network and Computer Applications, Vol. 34, Issue 4, pp 1184-1199.

• Aziz, S. (2014), An Enhancement of the Replacement Steady State Genetic

Algorithm for Intrusion Detection, (master thesis). Middle East University,

Amman, Jordan.

71

• Chou, T. S., Yen, K. K., Luo, J. (2008). Network Intrusion Detection Design Using

Feature Selection of Soft Computing Paradigms. International journal of

computational intelligence, Vol.2, No.11, pp. 196-208.

• Chowdhary, M., Suri, S., and Bhutani, M. (2014). Comparative Study of Intrusion

Detection System. International Journal of Computer Science and Engineering,

Vol.2, Issue 4, ISSN: 2347-2693.

• Crosbie, M., and Spafford, G. (1995). Applying genetic programming to intrusion

detection. In Working Notes for the AAAI Symposium on Genetic Programming (pp.

1-8). MIT, Cambridge, MA, USA: AAAI.

• Dhak, B. S., and Lade, S. (2012). An evolutionary approach to intrusion detection

system using genetic algorithm. International Journal of Emerging Technology

and Advanced Engineering, Vol. 2, Issue 12, ISSN: 2250-2459.

• Duran, B., Xhafa, F. (2006). The effects of two replacement strategies on a genetic

algorithm for scheduling jobs on computational grids. In Proceedings of the 2006

ACM symposium on Applied computing, (pp. 960-961). ACM.

• French, T. R. (2012). Evolutionary optimisation of network flow plans for

emergency movement in the built environment.

• Ghosh, P., and Mitra, R. (2015). Proposed GA-BFSS and logistic regression based

intrusion detection system. In Computer, Communication, Control and Information

Technology (C3IT), 2015 Third International Conference on (pp. 1-6). IEEE.

• Goyal, A., and Kumar, C. (2008). GA-NIDS: a genetic algorithm based network

intrusion detection system. Northwestern university.

72

• Goyal, M. K., Aggarwal, A., and Jain, N. (2012). Effect of Change in Rate of

Genetic Algorithm Operator on Composition of Signatures for MisuseIntrusion

Detection System. In Parallel Distributed and Grid Computing (PDGC), 2012 2nd

IEEE International Conference on (pp. 669-672). IEEE.

• Guo, P., Wang, X., and Han, Y. (2010). The enhanced genetic algorithms for the

optimization design. 3rd International Conference on Biomedical Engineering and

Informatics (BMEI), Vol. 7, pp. 2990-2994. IEEE.

• Hasan, B. H., and Mustafa, M. S. (2011, January). Comparative Study of Mutation

Operators on the Behavior of Genetic Algorithms Applied to Non-deterministic

Polynomial (NP) Problems. Second International Conference on Intelligent

Systems, Modelling and Simulation, (pp. 7-12). IEEE.

• Hoque M. S., Mukit A. and Bikas A. (2012). An Implementation of Intrusion

Detection System Using Genetic Algorithm, International Journal of Network

Security and its applications, Vol.4, NO.2, 109-120.

• Hu, X. B., and Di Paolo, E. (2009). An efficient genetic algorithm with uniform

crossover for air traffic control. Computers & Operations Research, 36(1), 245-

259.

• Jongsuebsuk, P., Wattanapongsakorn, N., and Charnsripinyo, C. (2013). Network

intrusion detection with Fuzzy Genetic Algorithm for unknown

attacks. International Conference on Information Networking (ICOIN), (pp. 1-5).

IEEE.

• Jones, J., Soule, T. (2006). Comparing genetic robustness in generational vs. steady

state evolutionary algorithms. In Proceedings of the 8th annual conference on

genetic and evolutionary computation (pp. 143-150). ACM.

73

• Kayacik, H. G., Zincir-Heywood, A. N., & Heywood, M. I. (2005). Selecting

features for intrusion detection: A feature relevance analysis on KDD 99 intrusion

detection datasets. In Proceedings of the third annual conference on privacy,

security and trust.

• Kumar, M., Husian, M., Upreti, Nand Gupta, D. (2010). Genetic algorithm: review

and application. International Journal of Information Technology and

Knowledge Management, Vol.2, No.2. PP. 451-454.

• Lu, W., and Traore, I. (2004). Detecting new forms of network intrusion using

genetic programming. Computational Intelligence, 20(3), 475-494.

• Mehra, M., Jayalal, M. L., Arul, A. J., Rajeswari, S., Kuriakose, K., and Murty, S.

S. (2012). Design and Development of Genetic Algorithm for Test Interval

Optimization of Safety Critical System for a Nuclear Power Plant. In Online

Proceedings on Trends in Innovative Computing, Intelligent Systems Design and

Applications Conference, Kochi, India.

• Mukkamala, S., Sung, A., Abrham, A., (2004), Modeling Intrusion Detection

System using Linear Genetic Programming Approach, Proceeding IEA/AIE 17th

International Conference on Innovations in Applied Artificial Intelligence, PP 633-

642, ISBN: 3-540-22007-0.

• Naoum, R., Aziz, S., and Alabsi, F., (2014). An Enhancement of the Replacement

Steady State Genetic Algorithm for Intrusion Detection. International Journal of

Advanced Computer Research, Vol.4, No.2, Issue 15, ISSN: 2249-7277.

• NSL-KDD dataset. Available on: http://nsl.cs.unb.ca/NSL-KDD/

• Ojugo, A. A., Eboka, A. O., Okonta, O. E., Yoro, R. E., and Aghware, F. O. (2012).

Genetic algorithm rule-based intrusion detection system (GAIDS). Journal of

Emerging Trends in Computing and Information Sciences, Vol.3, No.8, ISSN:

2079-8407, pp. 1182-1194.

74

• Pal, D., and Parashar, A. (2014). Improved genetic algorithm for intrusion detection

system. In Computational Intelligence and Communication Networks (CICN), 2014

International Conference on (pp. 835-839). IEEE.

• Pencheva, T., Atanassov, K. and Shannon, A. (2009). Modelling of a stochastic

universal sampling selection operator in genetic algorithms using generalized nets.

In Proceedings of the Tenth International Workshop on Generalized Nets,

Sofia (pp. 1-7).

• Prasad, K. K., Borah, S. (2013). Use of Genetic Algorithms in Intrusion Detection

Systems: An Analysis. International Journal of Applied Research and Studies

(iJARS), Vol.2, Issue 8, ISSN: 2278-9480.

• Jebur, S. A., & Nasereddin, H. O. (2015). Enhanced Solutions for Misuse Network

Intrusion Detection System using SGA and SSGA. IJCSNS International Journal

of Computer Science and Network Security, Vol.15, No.5, ISSN: 1738-7906.

• Selvakani, S., and Rajesh, R. S. (2007). Genetic Algorithm for framing rules for

Intrusion Detection. IJCSNS International Journal of Computer Science and

Network Security, 7(11), 285-290.

• Sharma, D., Singh, V., & Sharma, C. (2012). GA Based Scheduling of FMS Using

Roulette Wheel Selection Process. In Proceedings of the International

Conference on Soft Computing for Problem Solving (SocProS 2011), Springer

India, pp. 931-940.

• Shaveta, E., Bhandari, A., and Saluja, K. K. (2014). Applying Genetic Algorithm in

Intrusion Detection System: A Comprehensive Review. Association of Computer

Electronics and Electrical Engineers.

• Shirazi, H. M., Kalaji, Y., (2010). An intelligent intrusion detection system using

genetic algorithms and features selection. Majlesi Journal of Electrical

Engineering, Vol. 4, No. 1.

75

• Shiri, F. I., Shanmugam, B., and Idris, N. B. (201). A parallel technique for

improving the performance of signature-based network intrusion detection system.

In Communication Software and Networks (ICCSN), 2011 IEEE 3rd International

Conference on (pp. 692-696). IEEE.

• Soon, G. K., Guan, T. T., On, C. K., Alfred, R., and Anthony, P. (2013). A

comparison on the performance of crossover techniques in video game. IEEE

International Conference on Control System, Computing and Engineering, 29

Nov. -1 Dec. 2013, Penang, Malaysia. IEEE.

• Stallings, W. and Brown, L. (2008). Computer security: principles and practice,

(second edition), Upper Saddle River, NJ: Prentice Hall.

• Tavallaee, M., Bagheri, E., Lu W. and Ghorbani, A. (2009). A detailed analysis of

the KDD CUP 99 data set. Proceedings of the 2009 IEEE symposium on

computational intelligence in security and defense applications (CISDA 2009).

• Torkaman, A., Javadzadeh, G., and Bahrololum, M. (2013). A hybrid intelligent

HIDS model using two-layer genetic algorithm and neural network. 5th Conference

on Information and Knowledge Technology (IKT), (pp. 92-96). IEEE.

• Wong, M. L., and Leung, K. S. (2000). Data mining using grammar based genetic

programming and applications. Netherlands, Kluwer Academic Publishers.

• Zhao, J. L., Zhao, J. F., and Li, J. J. (2005). Intrusion detection based on clustering

genetic algorithm. In Machine Learning and Cybernetics. Proceedings of

International Conference on (Vol. 6, pp. 3911-3914). IEEE.

• Zhou, H., Meng, X., and Zhang, L. (2007). Application of support vector machine

and genetic algorithm to network intrusion detection. In Wireless Communications,

Networking and Mobile Computing, WiCom 2007. International Conference on

IEEE. (pp. 2267-2269).

