

CFD_Mine: Discovery of Conditional

Functional Dependencies in Relational

Databases.

A Thesis

Submitted in Partial Fulfillment of the

Requirements for the Master Degree

In

Computer Science

By

Mohammed Raghep Mohammed Hakawati

Supervisor

Prof. Musbah Mah’d Aqel

Computer Science Department

Faculty of Information Technology

Middle East University for Graduate Studies

Amman-Jordan

July, 2009

II

III

IV

Dedication

This thesis is dedicated to my beloved mother and father, who

brought me up from childhood, educated me, and gave me the

courage to confront the challenges of life.

To my brother and my right wing, Ahmed.

To the two special girls in my life, leka’a and Ranem, and to all my

friends and colleagues.

V

Acknowledgment

Prior to acknowledgments, I must glorify Allah the Almighty who

gave me courage and patience to carry out this work successfully.

I would be restating the obvious when I say Dr. Musbah Aqel is a

great advisor. I consider myself truly fortunate to have him as my

advisor and would like to thank him sincerely for the opportunity

to work under his guidance and support. I am deeply grateful to

him for showing immense patience during the long and frustrating

phase of research problem identification. I am also thankful to

his constructive criticism during one-on-one meetings as well as

discussions at the weekly group meetings. I wish to thank him for

giving me the opportunity to work on this topic and for preserving

with me throughout the time it took me to complete this research.

Finally, I would like to express my great thanks to my parents,

brothers, and sisters for their immense patience, emotional

support and engorgement during my entire graduate study.

VI

Table of Contents

List of Tables ……………………………………………………………. VIII

List of Figures …………………………………………………………… IX

Abstraction in English…………………………………………………... X

Abstraction in Arabic…………………………………………………… X

CHAPTER 1: INTRODUCTION …………………………………….. 1

 1.0 Overview…………………………………………………………. 1

 1.1 Motivation ………………………………………………………. 3

 1.2 Contributions of the Thesis ……………………………………. 4

 1.3 Outline of the Thesis ……………………………………………. 5

CHAPTER 2: LITERATURE REVIEW ……………………………. 6

 2.0 Background ……………………………………………………… 6

 2.1 Functional Dependencies ……………………………………….. 7

 2.1.1 Functional Dependencies and Data Cleaning …………….. 7

 2.1.2 Levelwise Search Technique………………………………... 8

 2.2 Conditional Functional Dependencies………………………….. 10

 2.2.1 Conditional Functional Dependencies Discovery ………... 14

 2.3 Related Work……………………………………………………. 15

 2.3.1 Related Work on Functional Dependencies ……………… 15

 2.3.2 Related Work on Conditional Functional Dependencies... 17

CHAPTER 3: CFD_MINE ALGORITHM…………..……………….. 18

 3.0 Overview…………………………………………………………. 18

 3.1 CFD_Mine Algorithm…………………………………………… 19

 3.1.1 Generate Next Level Candidates …………………………. 23

 3.1.2 Computing Partitions……………………………………….. 24

 3.1.3 Searching for Rules…………………………………………. 28

 3.1.4 Pruning of Discovered CFDs ………………………………. 32

 3.1.4.1 Stripped Partition……………………………………….. 32

 3.1.4.2 Merge Similar CFDs……………………………………. 32

 3.1.4.3 Minimal Cover for CFDs………………………………. 33

VII

CHAPTER 4: EXPERIMENTAL EVALUATION………………….. 39

 4.0 Overview…………………………………………………………. 39

 4.1 The Utility of CFD_Mine Approach ………………………….. 39

 4.2 Accuracy of Discovered Rules…………………………………. 40

 4.3 Scalability Experiments………………………………………… 43

 4.3.1 Parameters…………………………………………………. 43

 4.3.2 Scalability on The Number of Tuples ……………………. 43

 4.3.3 Scalability on The Number of Attributes ………………… 45

CHAPTER 5: CONCLUSIONS AND FUTURE WORK…………… 47

 5.1 Conclusion……………………………………………………….. 47

 5.2 Future Work…………………………………………………….. 48

REFERENCES …………………………………………………………. 49

VIII

List of Tables

Table No. Table Name

Page No.

Table 2.1 Library Relation Instance………………………..

11

Table 2.2 CFDs Hold in library Relation…………………...

12

Table 3.1 Balloon Relation Instance………………………..

20

Table 3.2 The Candidates in C1…………………………….

23

Table 3.3 The Candidates in C2……………………………

24

Table 3.4 The Partitions of the Candidates in C1…………

26

Table 3.5 The Partitions of the Candidates in C2………….

27

IX

List of Figures

Figure No. Figure Name

Page No.

Figure 2.1

Lattice for 4 Attributes ……………………………

9

Figure 3.1

CFD_Mine Levelwise semi-lattice…………………

21

Figure 3.2

CFD_Mine Pseudo Code …………………………

22

Figure 3.3

AprioriGen Algorithm…………………………….

23

Figure 3.4

SingletonCalculatePartition Algorithm…………

25

Figure 3.5

CalculatePartition…………………………………

26

Figure 3.6

ObtainCFDs Algorithm…………………………….

30

Figure 3.7

IntersectPartitions Algorithm…………………….

30

Figure 3.8

CreateCFD Algorithm……………………………..

31

Figure 3.9

Inference Rules for CFDs………………..………...

34

Figure 3.10

PartitionMinimalCover Algorithm……………….

38

Figure 3.11

Choose implies CFD……………………………….

38

Figure 4.1

Scalability per Tuples (Adult)……………………..

43

Figure 4.2

Scalability per Tuples (agaricus-lepiota)………….

44

Figure 4.3

Scalability per Attributes (Adult)………………….

45

Figure 4.4

Scalability per Attributes (agaricus-lepiota)……...

46

X

Abstract

Dirty data (i.e. containing inconsistences, conflict and errors) is a serious

problem for many organizations leading to incorrect decision making, inefficient

daily operations, and ultimately wasting both time and money. Dirty data in a

database often emerge as violation of integrity constraints, meant to preserve data

consistency and accuracy.

Conditional Functional Dependencies (CFDs) have recently been introduced

for data cleaning. CFDs extends Functional Dependencies (FDs) by enforcing

patterns of semantically related values , and have proved more effective in catching

data inconsistencies than FDs , which were currently the basis of many data-

Cleaning tools

Discovery of CFDs existing in an instance of a relation is an expensive

process that involves intensive manual effort. In this thesis, the researcher develops

an effective algorithm, called CFD_Mine for discovering CFDs in a relation

instance. CFD_Mine is a Levelwise algorithm that extends TANE, a well-known

algorithm for discovering FDs. it searches for minimal CFDs among the data

values and prunes redundant candidates.

An experimental study is presented for showing the scalability of our

algorithm .Finally the results show that CFD_Mine works well when a given

sample relation is large and scales well will the arity of the relation.

XI

 الملخص

البٌانات المحتوٌة على أخطاء هً مشكلة حقٌقٌة فً معظم المنظمات و الشركات ,

طأ فً أتخاذ القرارت , و عدم فعالٌة العملٌات الٌومٌة , تؤدي هذة الأخطاء الى الخ

وضٌاع فً الوقت و المال. فً العادة تصنف البٌانات على أنها تحتوي أخطاء أذا

 كانت تخالف حالات التقٌد السلٌمة.

تنظٌف البٌانات من هذه الأخطاء , لدمت موخراً العلاقات الوظٌفٌة المشروطة ق

لاقات الوظٌفٌة التقلٌدٌة مدعومة بقٌم ذات معنى من نفس وهً عبارة عن أمتداد للع

جداول البٌانات , و قد أثبتت كفاءتها فً أكتشاف الأخطاء أكثر من العلاقات

ظٌف البٌانات . تنالوظٌفٌة التقلٌدٌة التً كانت لمدة من الزمن تستخدم فً

دة فً الجداول هً عملٌة مكلفة أذا ما أكتشاف العلاقات الوظٌفٌة المشروطة الموجو

لأكتشاف (CFD_Mine)فً هذه الرسالة طورنا خوارزمٌة قمنا بها ٌدوٌاً ,

النوع المتسلسل فً المستوى أثناء البحث و تقلم منهذه العلاقات , هذه الخوارزمٌة

 التكرار فً هذه العلاقات.

النمو فً الخوارزمٌة , و نتائجنا قدمنا أٌضا فً بحثنا هذا دراسة تجرٌبٌة تظهر

أثبتت أن هذه الخوارزمٌة تعمل بشكل صحٌح عند أزدٌاد حجم قاعدة البٌانات

 المعطاة.

1

CHAPTER ONE

 INTRODUCTION

1.0 Overview

The prevalent use of information systems has made data one of the most

valuable assets in most organizations. Nevertheless, the value of data highly

depends on its quality.

Dirty data (i.e. containing inconsistencies and errors) is a serious problem

for businesses; leading to incorrect decision making, inefficient daily operations,

and ultimately wasting both time and money.

The presence of errors and inconsistencies in data dramatically reduce the

value of data, making it worthless, or even harmful. Recent statistics reveals that

dirty data costs US businesses 600 billion dollar annually [English, 2000]. It is

also estimated that data cleaning, a labor-intensive and complex process, accounts

for 30 to 80% of the development time and budget in most data warehouse

projects [Shilakes and Tylman, 1998] .A study conducted by Gartner in 2005

forecasts that more than 50 percent of data warehouse projects will have limited

success, or will be outright failures, as a result of the lack of attention to data

quality issues [Gartner, 2005]. In light of these, there has been increasing demand

for data cleaning /quality tools to automatically detect and effectively remove

inconsistencies and errors from the data.

Dirty data often arises due to changes in use and perception of the data, and

violation of integrity constraints (or lake of such constraints). Integrity constraint -

meant to preserve data consistency and accuracy - are defined according to domain

specific business rules, these rules define relationships among a restricted set of

attribute values that are expected to be true under a given context. For example, an

organization may have rules such as: all new customers will receive a 15%

discount on their first purchase and preferred customers receive a 25 % discount

on all purchases [Chiang and Miller, 2008].

2

Inconsistencies and errors in a database often emerge as violations of

integrity constraints [Arenas et al., 2003], [Rahm and Do, 2000]. Integrity

constraints (a.k.a. data dependencies) are been widely used for improving the

quality of schema. Recently constraints have enjoyed a revival for improving the

quality of data.

Constraint-based data cleaning has mostly focused on two topics,

introduced in [Arenas et al., 2003], repairing: is to find another database that is

consistent and minimally differs from the Original database, and consistent query

answering: is to find an answer to a given query in every repair of the original

database, without editing the data,

There has been a host of work on data cleaning (e.g., [Lopatenko and

Bravo, 2007] [Arenas and Bertossi, 1999] [Bohannon et al., 2005] [Chomicki and

Marcinkowski, 2005] [Jef, 2003]). However, to develop practical data-cleaning

tools there is much more to be done. First, the previous work often models the

consistency of data using traditional dependencies, e.g., Functional Dependencies

(FDs). Traditional FDs were developed mainly for schema design, but are often

inadequate for data cleaning. These call for the use of constraints particularly

developed for data cleaning that are able to catch more inconsistencies than

traditional dependencies [Rahm and Do, 2000]. Second, few algorithms have been

developed for automatically finding repairs, and even less incremental methods

are in place. Third, none of the previous automated methods provides performance

guarantee for the accuracy of the repairs found.

These limitations in Traditional Dependencies lead the authors in Data

Cleaning to revive action by considering extensions of FDs and INDs (Inclusion

Dependencies), referred to as Conditional Functional Dependencies CFDs and

Conditional Inclusion Dependencies CINDs (Conditional Inclusion

Dependencies) , respectively, by additionally specifying patterns of semantically

related values; these patterns impose conditions on what part of the relation(s) the

dependencies are to hold and which combinations of values should occur

together [Wenfei et al., 2008 (2)].

3

1.1 Motivation

Research on data quality has been mostly focusing on (a) error correction,

(a.k.a. data imputation), (b) object identification, (a.k.a. record linkage, merge-

purge, data deduplication and record matching), and (c) profiling, to discover

meta-data from sample data. There is also an intimate connection between data

quality and data integration, data standardization, data acquisition, cost estimation,

schema evolution, and even schema matching.

Cleaning the data manually is unrealistic when the dataset is large. Indeed,

manually cleaning a set of census data could easily take months by dozens of

clerks [Winkler, 2004]. This highlights the need for automated data cleaning tools

to detect and effectively remove inconsistencies and errors in the data. The need

for discovering the constraint that the relation based on is important and easily

helps to detect the tuples that violate this constraint, and prevent the end-user to

add a new errornuce tuples, so, contribute to increase the consistency of the

relational database in business and other domains.

There has been increasing demand for data quality tools, to add accuracy

and value to business processes. A variety of approaches have been put forward:

probabilistic, empirical, rule-based, and logic-based methods. There have been a

number of commercial tools for improving data quality, most notably ETL tools

(Extraction, Transformation, Loading), as well as research prototype systems, e.g.,

Ajax, Potter‟s Wheel, Artkos and Telcordia. [Maletic and Marcus, 1999][Rahm

and Do, 2000].

Most data quality tools, however, are developed for a specific domain (e.g.,

address data, customer records). Worse still, these tools often heavily rely on

manual effort and low-level programs that are difficult to write and maintain.

Our approach presents recent advances in constraint-based data cleaning ,

CFDs Rules repair the relation dataset based on two main phases ,

(a) Discovering Rules, to find the Rules that the relation depends on, and

(b) Repairing Inconsistencies, to identify tuples that have some error in some of

its fields (violate the discovered Rules).

4

The demand of finding an approach for automatically discovering the rules

form relational dataset presents the initial step for data cleaning phases, by

getting the most correct values from the relation , and prepare them to the next

step of cleaning the data which is a new approach based on repairing the relation

data on the discovered rules .

1.2 Contributions of the Thesis

The thesis contributions are the following:

1. Proposing a method for discovering both a minimum set of

Conditional Functional dependencies CFD and a Functional Dependencies FD.

Even though, the underlying ideas are not new, this is the first algorithm

concentrates on discovering both Rules from database.

2. Implementing two new optimizations for finding correct and more

accrue CFD, the first one is merging the similar CFD for finding a few and more

accrued Rules, while as the second one is finding the minimum set of CFD rules

based on the intersect Partitions (Common Partitions) between the Candidates

(Element on the lattice).

3. Developing an application for finding the CFDs and FDs from any

relation located anywhere, and with any extension , this application generates the

partitions for the attribute set and then generates the Rules , you can change the

accuracy of the discovered CFD rules , and you can filter the discovered rules

after generate them.

5

1.3 Outline of the Thesis.

In Chapter Two we give some background and survey the literature about

integrity constraints and their discovery.

In Chapter Three we present our general architecture for Rules discovery,

and give instance case for each method in our approach.

In Chapter Four we describe the testing of our algorithm on both real life

and study how input parameters and data characteristics influence the performance

of our application.

Finally, we conclude in Chapter Five.

6

CHAPTER TWO

LITERATURE REVIEW

2.0 Background

A few works are done on the area of CFD Mining (Discovery), because this

area of research is fresh, nevertheless, this area depends mainly on Mining FD

rules which present the backbone to CFD.

Therefore, we cover the mining rules briefly in this chapter, and investigate

the relation between the FD and Data Cleaning, and between FD and CFD.

Definition (Basic relational database concepts).

A relation schema R is a finite set of attributes. The domain of an attribute

A, denoted by Dom (A) is the set of all possible values of A.

A tuple t over a relation schema R = {A1……. Am} is a member of the

Cartesian product Dom (A1) ×…. × Dom (Am).

A relation r over R is a finite set of tuples over R. The cardinality of a set X

of tuples is denoted by |X|.

If X ⊆ R is an attribute set, and t a tuple over R, we denote by t[X] the

restriction of t to X. The projection of a relation r over R onto X is defined by

πx (r) = {t[x] | t ∈ x}. A database schema R is a finite set of relation schemas Ri ,

A database d over R is a set of relations ri over each Ri ∈ R.

7

2.1 Functional Dependency (FD)

Functional dependencies are relationships between attributes of a relation: a

Functional Dependency states that the value of an attribute is uniquely determined

by the values of some other attributes.

Let r (U) be a relation and X, Y ⊆ U. A Functional Dependency (FD) is a

constraint, denoted X → Y. The FD X → Y is satisfied by r(U) if every two tuples

ti, tj ∈ r(U) that have ti(X) = tj(X) also have ti (Y) = tj (Y).

In an FD X→Y, we refer to X as the antecedent and Y as the consequent.

2.1.1 Functional Dependencies and Data Cleaning

Functional Dependency (FD) is an important feature for referencing to the

relationship between attributes and Candidate keys in tuples. It also shows the

relationship between entities in a data model [Calvanese et al., 2001]. In research

areas of data cleaning [Arenas and Bertossi, 1999] [Bohannon et al., 2005], the FD

is used for improving the data quality. In a data mining research, an FD discovery

technique has been studied [Huhtala et al., 1998] [Flach and Savnik, 1993].

However, an FD discovery could find too many FDs and, if used directly in a

cleaning process, could cause it to NP time [Bohannon et al., 2005]. Many

techniques developed as cleaning engine by combining an FD discovery technique

with Data Cleaning technique.

Maletic and Marcus [Maletic and Marcus, 1999] introduced an automated

data cleaning framework. Their work is divided into 2 parts: identifying error and

cleaning data. The underlying theoretical aspects of the data quality of their

research is a combination of existing problem-solving methods in software testing,

data mining, knowledge based systems, and machine learning to address the

framework. According to their research, to design automated data cleaning, one

has to identify errors and then clean such dirty data. Several approaches use the

FD discovery algorithm for identifying errors and cleaning algorithm together to

produce FD cleaning tool. Several researchers in this field have mentioned

that too many FDs have been generated [Arenas and Bertossi, 1999]

[Ilyas et al., 2004].

8

The authors in [Huhtala et al., 1998] showed a pruning technique for

generating a Candidate set and computing each Candidate member to determine

FDs. The ranking technique has been proposed in [Ilyas et al., 2004] and

[Andritsos et al., 2004].

Applied a selectivity value for ranking FDs from generated FDs (called

“SoftFD”) [Ilyas et al., 2004]. Their work proposed that if p1 and p2 are

predicates on respective columns C1 and C2, then the selectivity of the

conjunctive predicate p1 ∧ p2 is estimated by simply multiplying together the

individual selectivity of |C1||C2| / |C1, C2|. The Authors in [Andritsos et al., 2004]

proposed that the FD ranking should be concerned on the first merge of the

attribute that has the most amount of duplicate attribute value. These 2 ranking

techniques give us the idea of ranking by looking at the data distribution.

However, the merging technique will take more time than the selectivity

value because it generates the clustered matrix but the selectivity value which can

be found by counting attribute value directly. Therefore, this work will choose the

selectivity value technique for ranking the generated FDs. There are 2 parts for

cleaning algorithms: FD repairing technique and Duplicate Elimination. FD

repairing which has been proposed by [Bohannon et al., 2005]. Their research

used a cost based technique which used a low cost data to repair a high cost data.

[Hernandez and Stolfo 1995] Proposed Sorted Neighborhood methods for Data

Duplicate elimination by finding keys to determine duplicate tuples, then sorting

the duplicate tuples and finally, matching tuples in the window to identify its

duplication.

 2.1.2 Levelwise Search Technique

Mannila and Toivonen [Mannila and Toivonen. 1997] , study thoroughly a

breadth first or levelwise algorithm, also called generic data mining algorithm for

finding all potentially interesting sentences. Their paper includes a complexity

analysis, as well as some applications including functional and inclusion

dependency discovery. The levelwise algorithm has been used among other

applications for discovering association rules [Agrawal and Srikant, 1994]

[Mannila et al., 1994], for discovering functional dependencies [Huhtala et al.,

1998] [St´ephane et al., 2000] [Novelli and Cicchetti, 2001], and for discovering

inclusion dependencies [Fabien et al., 2002].

9

The idea in the levelwise algorithm is to start from the most general

attributes and try to generate and evaluate more and more specific attribute set.

The semi-lattice illustrated in Figure 2.1, shows the search space of an exhaustive

algorithm for finding Rules for four attributes. Figure 2.1 shows all possible nonempty

combinations of the four attributes (A, B, C, and D).

 For these attributes, there are 2
n
 = 2

4
 = 16 possible subsets of attributes, of

which the 2
n
 - 2 = 14 nonempty, proper subsets are the Candidates. The levels of the

semi-lattice are numbered from the top to the bottom. The set U at level 4 are not a

Candidates, because for any CFD or FD with the form U → vi, we have vi = U

- U = ø. There are n
2
 (n-1) edges in a full lattice for n attributes. Since the semi-lattice

of the total search space of Rules starts from level 1, rather than the empty set,

there are n2
n - 1

– n edges in the semi-lattice of the complete search space for

Rules ,the size of the search space is exponential to the number of variables in U.

Figure 2.1: Lattice for 4 attributes.

10

2.2 Conditional Functional Dependencies

Constraints adopted for detecting inconsistencies are mostly traditional

dependencies such as functional dependencies FDs and inclusion dependencies

INDs, These constraints are required to hold on entire relation(s), and often fail to

capture errors commonly found in real-life data.

These limitations lead the researchers to considering an extensions of FDs

and INDs, referred to as Conditional Functional Dependencies CFDs and

Conditional Inclusion Dependencies CINDs, respectively, by additionally

specifying patterns of semantically related values; these patterns impose

conditions on what part of the relation(s) the dependencies are to hold and which

combinations of values should occur together.

CFDs extend FDs by incorporating a pattern tuple of semantically related

data values. For each attribute A in a schema R, we denote its associated domain as

Dom (A), which is either infinite (e.g., string; real) or infinite (e.g., Boolean; date).

A CFD φ on R is a pair (R: X → Y, Tp), where,

(1) X and Y are sets of attributes in attr(R),

(2) X → Y is a standard FD, referred to as the FD embedded in φ,

(3) Tp is a tableau with attributes in X and Y , referred to as the pattern

tableau of φ, where for each A in X ∪ Y and each tuple t ∈ Tp, t[A] is either a

constant „a‟ in dom(A), or an unnamed variable „_‟ that draws values from

Dom(A)[Wenfei et al., 2008 (1)].

Medina and Nourine [Medina and Nourine, 2008] , present the idea of

decomposition the relation into a small relations (X-complete horizontal

decomposition) denote by RX(r) the set of all X-complete fragment relations of r.

More formally: RX(r) = {r′ ⊆ r | r is X-complete}.

When stating that FD holds on the entire of relation, the CFD is a FD hold

on a sub relation of R, but to find a hybrid idea between them, let‟s consider the

decomposition of the relation R into small sub relation based on CFD, which

means that these CFDs holds on a specific sub relation and maybe interleaved

with another sub relation.

11

Table 2.1 shows a sample records from library instance which contains

records about items available in the library and its Name, Type, Country, Price and

Tax, and this relation holds on this Functional Dependency:

FD: [Name, Type, Country] → [Price, Tax].

Table 2.1: Library Relation Instance.

Intuitively, we can recognize the following inconsistencies:

1. In tuple t9; the entire Harry Potter books sell in France don't have any
tax rate, but in t9 we notice that this tuple has 0.05 tax rates, which violate the
semantic constraint.
2. In tuple t7; there are two different prices to the same item in same
country, which means that one of these tuples violates the semantic constraint.

As we noticed in the previous two cases, these tuples which violate the

semantic constraints but don't violate the FD constraint, i.e. this functional

dependency does not help us to find the tuples that violate the sales rules in the

library.

Tax Price Country Type Name

0 10 France Book Harry Potter t1

0.08 40 USA DVD Terminator t2

0 10 France Book Harry Potter t3

0.05 500 UK Clothing Armani Suit t4

0 250 UK Clothing Armani Slacks t5

0 25 UK DVD Star Wars t6

0.08 25 USA DVD Terminator t7

0.05 500 France Clothing Prada Shoes t8

0.05 10 France Book Harry Potter t9

0 10 France Book Harry Potter t10

0.05 200 France Clothing Prada Shoes t11

12

Let‟s define a new type of rules to help us avoid these violations:

 φ1 :([Name, Type="Book", Country="France"]→ [Price, Tax=0]).

 φ2 :([Name, Type, Country="USA"]→ [Price, Tax]).

This type of constraint is called Conditional Functional Dependency, which

is FD but has some constant values to help users in data cleaning phases.

The first CFD (φ1) prevents the user in the library system from violating

this rule: if the book sells in France, then no tax rate is added. While as the second

CFD (φ2) means that in USA country, the name and the type of items define the

price and the tax for them, which prevent the same item to have two different

prices. These rules do not violate the FD that the relation holds in, but added some

consistency and accuracy to the relation.

Example 2.1:

 The library relation in Table 2.1 satisfies φ1 and φ2, However, tuple t9

violates the pattern tuple tp = (-, Book, France -, 0) in tableau T1 of φ1: t1

[Name, Type, Country] = t2 [Name, Type, Country] ≍ tp (-, Book, France), but t1

[Price, Tax] ≠ t2 [Price, Tax]

φ1 :([Name, Type="Book", Country="France"]→ [Price, Tax=0]).

φ2 :([Name, Type, Country="USA"]→ [Price, Tax]).

Table 2.2: CFDs hold in Library Dataset.

Name Type Country Price Tax

- Book France - 0

Name Type Country Price Tax

- - USA - -

13

For a pattern tuple tp in Tp (Tableau) shown in Table 2.2, we define an

instantiation ρ to be a mapping from tp to a data tuple with no variables, such that

for each attribute A in X ∪ Y, if tp [A] is „-‟, ρ maps tp [A] to a constant in dom

(A), and if tp [A] is a constant „a‟, ρ maps tp [A] to the same value „a‟.

 For example, for tp [A, B] = (a,-), one can define an instantiation ρ such

that ρ (tp [A, B]) = (a, b), which maps tp [A] to itself and tp [B] to a value „b‟ in

Dom (B). Obviously, for an attribute A occurring in both X and Y, we require that

ρ (tp [AL]) = ρ (tp [AR]). Note that an instantiation ρ may map different

occurrences of „-‟ in tp to different constants; e.g., if tp [A, B] = (-, -), then ρ (tp

[A, B]) = (a, b) is well-defined if a ∈ Dom (A) and b ∈ Dom (B).

A data tuple t is said to match a pattern tuple tp, denoted by t ≍ tp, if there

is an instantiation ρ such that ρ (tp) = t. For example, t [A, B] = (a, b) ≍ tp [A, B]

= (a, -). An instance I of R satisfies the CFD ϕ, denoted by I |= ϕ, if for each pair

of tuples t1, t2 in the instance I, and for each tuple tp in the pattern tableau Tp of

ϕ, if t1[X] = t2[X] ≍ tp[X], then t1[Y] = t2[Y] ≍ tp[Y]. That is, if t1[X] and t2[X]

are equal and in addition, they both match the pattern tp[X], then t1[Y] and t2[Y]

must also be equal to each other and both match the pattern tp[Y].

Intuitively, each tuple tp in the pattern tableau Tp of ϕ is a constraint

defined on the set I (φ, tp) = {t | t ∈ I, t[X] ≍ tp[X]} such that for any t1, t2 ∈ I (φ,

tp), if t1[X] = t2[X], then (a) t1[Y] = t2[Y], and (b) t1[Y] ≍ tp[Y].

Here (a) enforces the semantics of the embedded FD, and (b) assures the

binding between constants in tp[Y] and constants in t1[Y]. Note that this

constraint is defined on the subset I (φ, tp) of I identified by tp[X], rather than on

the entire instance I. If ∑ is a set of CFDs, we write I |= φ if I |= φ for each CFD φ

∈ ∑. If a relation I |= ∑, then we say that I is clean with respect to ∑. [Wenfei et

al., 2008 (1)].

14

2.2.1 Conditional Functional Dependency Discovery

As the discovering of Functional dependencies take a lot of work from the

researchers of the database and data cleaning system, the approaches for

discovering the FD are varied and have different options and pruning phases.

As tight relation exists between FDs and CFDs, we can think that FDs

discovery approaches can apply to discover CFDs too. The authors in [Wenfei et

al., 2009], divide the discovering of CFD into three methods .The first, referred to

as CFDMiner, is based on techniques for mining closed item sets, and is used to

discover constant CFDs, namely, CFDs with constant patterns only. The other two

algorithms are developed for discovering general CFDs.

The first algorithm, referred to as CTANE, is a levelwise algorithm that

extends TANE, a well-known algorithm for mining FDs. The other, referred to as

FastCFD, is based on the depthfirst approach used in FastFD, a method for

discovering FDs.

It leverages closed-item set mining to reduce search space. The authors

demonstrate the following. (a) CFDMiner can be multiple orders of magnitude

faster than CTANE and FastCFD for constant CFD discovery. (b) CTANE works

well when a given sample relation is large, but it does not scale well with the arity

of the relation. (c) FastCFD is far more efficient than CTANE when the arity of

the relation is large.

15

2.3 Related Work

When talking about the CFDs which present a special case of FD, we have

to give some related works about FDs before discussing CFDs.

2.3.1 Related Work on Functional Dependencies

The size of the search space is exponential to the number of variables in R.

One main issue in the discovery of functional dependencies is to prune the search

space as much as possible. Existing algorithms can be classified into three

categories: the Candidate generate-and-test approach [Flach and Savnik, 1999]

[Hernandez and Stolfo 1995] [Savnik and Flach, 1993], the minimal cover

approach [Shilakes and Tylman, 1998] [Mannila and Toivonen. 1997] [St´ephane

et al., 2000].

The Candidate generate-and-test approach uses level wise search to explore

the search space. It reduces the search space by eliminating Candidates using

pruning rules. TANE [Huhtala et al., 1998] and FUN [Novelli and Cicchetti, 2001]

[Savnik and Flach, 1993] both are level wise methods. They begin by testing FDs

with small left-hand sides and prune the search space as soon as possible. More

specifically, both methods are based on partitioning the set of tuples with respect

to their attribute values.

Using partitions, TANE and FUN can test the validity of FDs efficiently

even for large number of tuples. They search the set containment lattice in a level

wise manner. By computing closure of Candidates in level k, the FDs in this level

are discovered, and results from level k are used to generate Candidates in level

k +1. The difference among the algorithms TANE and FUN is that they use

different pruning rules to eliminate Candidates. The minimal cover approach

discovers the minimal cover of the set of FDs given a database.

 FDEP [Flach and Savnik, 1999] consists of three algorithms: bottom-up

algorithm, bi-directional algorithm and top-down algorithm. The experiment

showed the bottom-up method is more efficient. For bottom-up method, it first

16

gave two hypotheses: positive cover (the dataset that FD holds) and negative cover

(the dataset that FD does not hold). In second step, it computed the maximum

negative cover (all possible dataset that FD does not hold); next this approach

iterates negative cover again and only considers the dataset that the least general

violated FD to get the minimum cover. Finally, by repeating specialize negative

dependencies, the positive cover would be constructed, and then the FDs can be

obtained from this cover.

FastFDs [Wyss et al., 2001] and Dep-Miner [St´ephane et al., 2000]

discover FDs by considering couples of tuples, i.e. agree sets. First, a stripped

partition database is extracted from the initial relation. Then, using such partitions,

agree sets are computed and maximal sets are generated. Thus, a minimum FD

cover according maximal sets is found. FastFDs differs from Dep-Miner only in

that Dep-Miner employs a levelwise search, whereas FastFDs use a first-depth

search strategy. Formal concept analysis approach discovers functional

dependencies from the view of formal concept analysis. By considering the

relationship between relational database theory and formal concept analysis

[Demetrovics et al., 1992], the functional dependencies hold in a database can be

extracted by using pre-defined formal concept analysis closure operator.

In [Lopes et al., 2002], Lopes et al. conclude that the qualitative

comparison between DepMiner (or FastFDs) and TANE (or FUN) is more

difficult because the approaches widely differ. The drawback of the former is the

time-consuming computation of agree sets since it is quadratic with respect to the

number of tuples in the relation. The drawback of the latter is their heavy

manipulations of attribute sets and the numerous tests which have to be performed.

FD_ Mine approach [Yao et al., 2002] belongs to generate-and-test

approach. FD_Mine differs from TANE or FUN in that more effective pruning

rules are identified such that a faster and more efficient algorithm is designed for

mining FDs from data.

17

2.3.2 Related Work on Conditional Functional Dependencies

A few works are done on CFDs, but this problem is still open to the data

cleaning and database researchers, in Maher [Arenas and Bertossi, 1999]

constraint functional dependencies presented, which is the backbone of CFDs, and

the same author gave a modified form to Armstrong axioms for conditional

functional dependencies in [Bohannon et al., 2005], these axioms present a

minimal set of inference rules for CFDs.

W.Fan, et.al [Wenfei et al., 2008 (1)], propose a class of integrity

constraints for relational databases, referred to as conditional functional

dependencies (CFDs), and study their applications in data cleaning.

To be able to find which tuples in a relation violate the semantic of relation,

you first need to discover the CDFs rules and then compare it with violated

relation; a few works are presented to discover CFD. In [Medina and Nourine,

2008] the authors propose an algorithm for discovering CFDs based on levelwise

search on the lattice to find all possible constraints on the relation; another

approach is presented by Chiang and Miller [Chiang and Miller, 2008] which is

again a levelwise search algorithm but has additional pruning rules to filters the

Candidates CFDs and reduce its numbers. Finally in [Golab et al., 2008] the

authors present an approach for generating the Tableau and give some criteria for

classification the good Tableau.

W.Fan, et .al [Wenfei et al., 2008 (3)] present SEMANDEQ, which is a

prototype system for improving the quality of relational data, based on conditional

functional dependencies, W.FAN, et al [Wenfei et al., 2008 (1)], proposed a frame

work for improving data quality concern on consistency and accuracy, by

modifying the relation D that is inconsistence to D' which is satisfied the

constraint and minimally differs from D and ensure that is accurate.

18

CHAPTER THREE

 CFD_MINE ALGORITHM

3.0 Overview

Having defined the necessary basics of CFDs in Chapter 2 earlier, this

chapter describes the algorithmic details for mining the minimum set of CFDs

from a relational database.

Our approach, CFD_Mine is a levelwise search algorithm for mining the

CFD Rules, which means that each Candidate (element on the lattice) at level k is

used to discover the results at level k+1. Our approach has multi pruning phases,

which filter the discovered Rules, to finds a set of minimum CFDs and equivalent

to another set of CFDs discovered by another approach.

To find all Conditional Functional Dependencies according to the definition

above, we search through the space of non-trivial dependencies, and CFD_Mine

faces two costs:

1) The cost of searching the rule space

2) The cost of visiting the relational dataset to calculate the required partitions

for the rules.

The dominant factor is the combinatory complexity of searching a space

related to the power set lattice of the set of attributes. An example of such a lattice

for a dataset with five attributes shown in next Figure 3.1.

19

3.1 CFD_Mine Algorithm

CFD_Mine approach follows a breadth first search strategy, and performs

a level-wise search in the lattice for finding the partitions to the Candidates and for

generating the CFDs between adjacent levels, top-down search in the lattice starts

from singleton sets and proceeds upwards level-wise in the lattice, searching

bigger sets.

At level one , CFD_Mine starts from Singleton Candidates (i.e. form the

single attributes set available in the relation) and stores them in a variable C1,

at level two each element at set C1 used to generate the Candidates of the form

(x1x2) where ,{ x1,x2 ∈ C1} and { x1 ≠ x2 }, and stores them again in another

variable C2 .

After finding all the Candidates in both levels (one and two) , and

storing them in C1 and C2 , respectively, all the FDs available between these two

levels are discovered and stored in variable called F, and all the CFDs of the

following form are discovered and stored in a variable CF .

 φ: [q = xi, p = ø] →[vi].

Where xi is a single value from C1, and vi is a single value from C1 added to

xi to represent a Candidate in C2.

For instance, if there is a relationship between (B, AB), then the form of

CFD is:

 φ: [q = B, p = ø]→ [A].

At level three, the Candidate set available in C2 uses to generate the third

level Candidates, which store in C3, After that, all FDs available between level two

and level three are discovered and added to the previous FDs stored in variable F,

and all CFDs of the following form is generated and added again to the previous

CFDs stored in CF.

 φ: [q = xi, p] → [vi] .

20

For instance, to find a relation between the elements on the edge (AB,

ABC), the forms of CFDs are one of the following:

 φ: [q = A, p = B] →[C] , or

 φ: [q = B, p = A] →[C] , or

 φ: [[q = B, A], p = ø] →[C].

Table 3.1: Balloon Database.

Inflated Age Act Size Color

T ADULT STRETCH SMALL YELLOW t1

T CHILD STRETCH SMALL YELLOW t2

T ADULT DIP SMALL YELLOW t3

F CHILD DIP SMALL YELLOW t4

F CHILD DIP SMALL YELLOW t5

T ADULT STRETCH LARGE YELLOW t6

T CHILD STRETCH LARGE YELLOW t7

T ADULT DIP LARGE YELLOW t8

F CHILD DIP LARGE YELLOW t9

F CHILD DIP LARGE YELLOW t10

T ADULT STRETCH SMALL PURPLE t11

T CHILD STRETCH SMALL PURPLE t12

T ADULT DIP SMALL PURPLE t13

F CHILD DIP SMALL PURPLE t14

F CHILD DIP SMALL PURPLE t15

T ADULT STRETCH LARGE PURPLE t16

T CHILD STRETCH LARGE PURPLE t17

T ADULT DIP LARGE PURPLE t18

F CHILD DIP LARGE PURPLE t19

F CHILD DIP LARGE PURPLE t20

21

Before exploring the pseudo code of CFD_Mine algorithm, we will give

some information about the dataset used to explain our approach; we used a

database called Balloon Dataset as shown in Table 3.1, which is located in UCI

(Machine Learning Repository) [UCI, 2008], and present a set of trousers with

different characteristics, and has five attributes and twenty tuples.

The semi-lattice in Figure 4.1, illustrates the search space of an exhaustive

algorithm for finding the Rules for five attributes. It shows all possible nonempty

combinations of the five attributes (Color, Size, Act, Age and Inflated).

Figure 3.1: CFD_Mine levelwise semi-lattice.

22

CFD_Mine algorithm as Figure 3.2 shows is an Object Oriented algorithm

(OO), which means that the Main algorithm calls different procedures, each one

has its own Functionality, and the result of each one of the procedures comes

back to the main algorithm, and uses in the next procedure.

CFD_MINE Algorithm (r (U))

Input: A relation r (U) over U = {v1...vm}

Output: A set of FDs and CFDs over r (U).

{

Initialize variables step:

1. CF = ø;

2. C1 = U;

3. SingletonCalculatePartition (C1, r (U));

Iteration step:

4. while |Ck| > 0 do

5. {

6. k = k + 1;

7. AprioriGen (Ck-1);

8. CalculatePartition (Ck, r (U));

9. CF ∪ ObtainCFDs (Ck-1, Ck);

10. MinimalCover (CF);

11. }

12. return (CF);

}

Figure 3.2: CFD_Mine pseudo code.

Where,

CF : variable to store all CFDs discovered during the algorithm progress.

C1 : variable to store singleton Candidates attribute in relation.

Ck : variable to store all results comes from calling the sub algorithms.

k = 1 : variable present the level; where the algorithm works on.

The procedures called by the CFD_Mine algorithm are

SingletonCalculatePartition, CalculatePartition, AprioriGen, ObtainCFDs, and

PartitionMinimalCover.

23

3.1.1 Generate Next Level Candidates.

The AprioriGen algorithm in Figure 3.3 generates all possible Candidates

at level k from the Candidates at level k-1. For example in Table 1 given

C1 = {Name, Type, Country, Price, and Tax}, by applying AprioriGen procedure,

the results at second level which stores in C2 is = {(Name, Type), (Name,

Country), (Name, Price)…etc}.

AprioriGen (Ck-1)
{
1. Ck = ø;
2. for each {y, z} ⊆ Ck-1, y ≠ z do
3. x = y ∪ z;
4. if for each A ∈ x, x\ {A} ∈ CK-1 then
5. Ck = Ck ∪ {x};
6. return Ck;
}

Figure 3.3: AprioriGen Algorithm.

Where,

z, y : Attribute set at level k.

x : The new value at level k+1.

Example 3.1:

First of all, the AprioriGen algorithm takes the singleton elements

(Candidates), which are the attributes names in the relation and stores them in C1,

as shown in Table 3.2.

Table 3.2: The Candidates in C1.

Level Candidates

C1=U {Color, Size, Act, Age, Inflated}.

24

At level two the AprioriGen uses the Candidates available in C1 to finds the

Candidates in C2, as in Table 3.3.

Table 3.3: The Candidates in C2.

3.1.2 Computing Partitions

Definition (Partitions):

Two tuples t and u are equivalent with respect to a given set X of

attributes , if t [A] = u [A] for all A in X . Any attribute set X partitions the

tuples of the relation into equivalence classes. We denote the equivalence class of

a tuple t ∈ r with respect to a given set X ⊆ R by [t] X, i.e. [t] X = {u ∈ r | t [A] =

u [A] for all A ∈ X}. The set ПX = {[t] X | t ∈ r} of equivalence classes is a

partition of r under X.

ПX is a collection of disjoint sets (equivalence classes) of tuples, and each

set has a unique value for the attribute set X and the union of sets equals to the

relation r. The rank |П| (cardinality) of a partition П is the number of equivalence

classes in П.

Example 3.2:

 From data available in Table 2.1 , suppose X1 = Name , then Π Name =

{{1, 3, 9, 10},{2, 7},{4}, {5}, {6}, {8,11}}, for X2 = Country, Π Country =

{{1,3,8,9,10,11}, {2,7}, {4,5,6}}, and for X3 = (Name, Country) , Π Name, Country =

{{1,3,9,10}, {2,7}, {4}, {5}, {6} , {8,11}}. The cardinality to each attribute set

presents the number of equivalence classes in their partitions. For example,

|Π Name | = 6, and |Π Name, Country | = 6. We will use the idea of cardinality for the

equivalences in each group.

Level Candidates

C2 =
{ (Color, Size) , (Color, Act) , (Color, Age) , (Color, Inflated) , (Size, Act) ,

(Size, Age) , (Size, Inflated) , (Act, Age) , (Act, Inflated) , (Age, Inflated) }.

25

Definition (Stripped Partition):

Stripped Partition is a partition with equivalent classes of one element size

is removed, for instance, the Stripped Partition of the Name Attribute set is

Π Name = {{1, 3, 9, 10}, {2, 7}, {8, 11}}, we will not mention it because we will

use it as a default partitions, The benefit of using stripped partition is to reduce the

comparison space in finding CFDs.

The algorithm below shown in Figure 3.4 presents

SingletonCalculatePartition, which finds all same tuples in the attribute set that

have the same value in the domain for the single attribute set only.

SingletonCalculatePartition (C1, r (U))
{
1. i , j = ø;
2. for each t[i] ∈ dom(attr[A]) do
3. for j=0 to Table. length
4. If (value [i] = value [j])
5. t[j]=t[j] ∪ i ;
6. break;
7. return t[j];

}

Figure 3.4: SingletonCalculatePartition Algorithm

Where,

t[i] : The index number of the tuples.

attr[a]: The attribute set in the level.

value : Value domain available in the tuple of attribute, Dom (attr [A]).

t[j] : Array of lists to store the partitions.

Example 4.3:

At level one , the SingletonCalculatePartition finds all equivalence classes

to the singleton attributes stored in C1= {Color, Size, Act, Age, inflated}, updates

the values of these Candidates with their partitions , and finally finds the

cardinality to each attribute by counting the number of equivalent classes, as

Table 3.4 shows.

26

Table 3.4: Partitions of the Candidates in C1

The partitions are not computed from scratch (Lattice) for each attribute set.

Instead, when CalculatePartition works its way through the lattice, it computes

a partition as a product of two previously computed partitions (in the previous

level), the product of two partitions П' and П'', denoted by П‟. П'' is the least

partitions that refines both П' and П''.

We compute the partitions ПX, for each X ∈ R, directly from the database

if the value of X =1. Where the Partitions ПX for X ≥ 2, are computed as a product

of partitions with respect to the two subsets of X. Any two different subsets of size

|X|− 1 will do, which is convenient for the levelwise algorithm since only the

partitions from the previous level are needed.

CalculatePartition (Ck, r (U))
{
1. n, m = ø;
2. for each (t[y] , t[z]) ⊆ Ck , t[y] ≠ t[z] do
3. for each part[n] ∈ t[y]
4. for each part[m] ∈ t[z]
5. t[x] = (part [n] - part [m]) ∪ (part [m] - part [n]);
6. break;
7. return t[x];
}

Figure 3.5: CalculatePartition Algorithm

Where,

n, m : Numeric values present the index to the partitions to each Candidate.

part : Array of tuples, present the partitions.

Attr

Name

Partitions Cardinality

Π Color = {{1,2,3,4,5,6,7,8,9,10},{11,12,13,14,15,16,17,18,19.20}}. |Π Color| =2

Π Size = {{1,2,3,4,5,11,12,13,14,15},{6,7,8,9,10,16,17,18,19.20}}. |Π Size| = 2

Π Act = {{1,2,6,7,11,12,16,17},{3,4,5,8,9,10,13,14,15,18,19.20}}. |Π Act | = 2

Π Age = {{1,3,6,8,11,13,16,18},{2,4,5,7,9,10,12,14,15,17,19,20}}. |Π Age | = 2

Π Inflated = {{1,2,3,6,7,8,11,12,13,16,17,18},{4,5,9,10,14,15,19,20}}. |Π Inflated |=2

27

Example 4.4:

At level two, the CalculatePartition finds all equivalence classes for the

Candidates attribute set stored in C2, update the values of these Candidates in C2,

and finally finds the cardinality to each attribute by counting the number of

equivalences classes, as shown in Table 3.5.

Table 3.5: Partitions of the Candidates in C2.

Attr Name Partitions Cardinality

Π Color,Size = {{1,2,3,4,5},{6,7,8,9,10},{11,12,13,14,15},

{16,17,18,19.20}}.

|Π Color,Size | = 4

Π Color,Act = {{1,2,6,7},{3,4,5,8,9,10},{11,12,16,17},

{13,14,15,18,19.20}}.

|Π Color,Act | =4

Π Color,Age = {{1,3,6,8},{2,4,5,7,9,10},{11,13,16,18},

{12,14,15,17,19,20}}.

|Π Color,Age| =4

ΠColor,Inflated = {{1,2,3,6,7,8},{5,9,10},{11,12,13,16,17,18},

{14,15,19,20}}.

|Π

Color,Inflated|=4

Π Size, Act = {{1,2,11,12},{3,4,5,13,14,15},{6,7,16,17},

{8,9,10,18,19,20}}.

|Π Size, Act | =4

Π Size, Age = {{1,3,11,13},{2,4,5,12,14,15},{6,8,16,18},

{7,9,10,17,19,20}}.

|Π Size , Age | =4

Π Size, Inflated = {{1,2,3,11,12,13},{4,5,14,15},{6,7,8,16,17,18},

{9,10,19,20}}.

|Π Size,

Inflated|=4

Π Act, Age = {{1,6,11,16},{2,7,12,17},{3,8,13,18},

{4,5,9,10,14,15,19,20}}.

|Π Act, Age | = 4

Π Act, Inflated = {{1,2,6,7,11,12,16,17},{3,8,13,18},

{4,5,9,10,14,15,19,20}}.

|Π Act, Inflated|= 3

Π Age, Inflated

=

{{1,3,6,8,11,13,16,18},{2,7,12,17},

{4,5,9,10,14,15,19,20}}.

|Π Age, Inflated |=3

28

3.1.3 Searching for Rules

Now, we use the partitions found for each attribute set in each level stored

in Ck to find the CFDs Rules.

The following steps illustrate how the procedure ObtainCFDs generates the

CFDs, and how its sub procedures work.

First Step : ObtainCFDs algorithm receives two complete levels and

compares each element at level Ck-1 with each related element in level Ck , only if

the Candidate element at level Ck-1 is a portion of the Candidate element in Ck ,

(i.e. Ck-1 ⊆ Ck) .

Example 3.5:

If there is an element in the first level such as (Age), and there are elements

in the second level such as (Size, Age), (Color, Inflated), then the algorithm

compare the element (Age) only with (Size, Age), because the (Age) Candidate in

the first level is a portion of the (Size, Age) Candidate in second level.

Second Step: If the partitions of these elements are exactly equal (identical)

then there is a Functional Dependency FD between them, so the algorithm forms a

nontrivial Functional Dependency between them.

Example 3.6:

If there is an element in second level such as (Act, Age) and its Partitions

are ΠAct,Age = {{1,6,11,16},{2,7,12,17},{3,8,13,18},{4,5,9,10,14,15,19,20}} ,

and one of its related elements in the third level is (Act, Age, Inflated), and its

Partitions are ΠAct,Age,Inflated = {{1,6,11,16} ,{2,7,12,17}, {3,8,13,18},

{4,5,9,10,14,15,19,20}}. These two groups of partitions are identical so there is a

FD between them, and the discovered FD is:

 FD = [Act, Age → Inflated].

29

Third Step: If the partitions of these elements are not exactly equal (i.e.

there is at least one partition shared) then maybe there is a Conditional Functional

Dependency available, so go next to IntersectPartitions procedure which finds the

same equivalence classes (Intersect Partitions) that are equal in both elements.

Example 3.7:

If there is an element in first level such as (Age) and its Partitions are

ΠAge = {{1,3,6,8,11,13,16,18},{2,4,5,7,9,10,12,14,15,17,19,20}}. and one of its

related element in the second level is (Age, Inflated) and its partitions are

ΠAge,Inflated = {{1,3,6,8,11,13,16,18} ,{2,7,12,17} ,{4,5,9,10,14,15,19,20}}.

Therefore, there is a common partition between these two Candidates

{1, 3, 6, 8, 11, 13, 16, 18}, the IntersectPartitions procedure in Figure 3.7 finds

this common partition and then CreateCFD procedure takes this common partition

and forms a CFD between these two Candidates.

Fourth Step: CreateCFD algorithm receives two Candidates and the

shared partitions between them to produces CFD Rule in this manner, and try to

find an element in the LHS Candidate that contains the same Shared partition

found by IntersectPartitions algorithm, if it is found, then it‟s a Condition

Partition or Constant, if not then the element is variable, and its values are from

the domain of its attribute.

And this operation is repeated for the RHS. This idea reduces the number of

CFDs discovered and gives you direct CFD and merges a lot of CFDs Rules.

Example 3.8:

If we have two Candidates (Act, Inflated) and (Act, Age, Inflated) and

there is a Shared partition (Ωx) between them Ωx = {{3,8,13,18},

{4,5,9,10,14,15,19,20}}, The CreateCFD algorithm in Figure 3.8 checks the

element in the LHS (Act) and (Inflated) to see which one of them has the same

partition in its partitions , in this case (Act) has the same common partition but

(Inflated) doesn‟t , then the (Act) is the Condition portion and the (Inflated) is

the Variable portion, and we repeat this operation on the RHS but we check only

30

the element that is not in the LHS (i.e. Age) and we find that it doesn‟t have the

same partition so it‟s a Variable portion.

 φ: [Act = DIP, Inflated] → [Age].

ObtainCFDs (Ck, Ck-1)
{
1. F= ø;
2. for each x in Ck -1
3. for each vi ϵ U – x+
4. if (|Πx| = |Πxvi|)
5. F =F ∪ (FD : [x → vi])
6. else
7. Ωx = IntersectPartitions (x, xvi);
8. if (Ωx = ø)
9. break;
10. else
11. CreateCFD (Ωx, x, vi);
12. return Ωx;
}

Figure 3.6: ObtainCFDs Algorithm.

Where,

x+ : The closure of the element x, i.e. the element that x contains it.

Ωx : Variable to store the share partition between two elements in two levels.

IntersectPartitions (x, xvi)
{
1. n, m = ø;
2. for each part[n] ∈ x
3. for each part[m] ∈ xvi
4. if((part[n] = part[m])&&(part_size ≥r))
5. Ωx = Ωx ∪ part[m] ;
6. break;
7. return Ωx.
}

Figure 3.7: IntersectPartitions Algorithm.

31

Where,

n, m : Numeric values present the index to the partitions in each Candidate.

part : Array of tuples, which represent the partitions.

part_size : Number of tuples in each group.

r : Threshold value.

CreateCFD (Ωx, x, vi)
{
1. for each h ∈ x do
2. if Ωx ⊆ h then
3. q = q ∪ h;
4. else
5. p = p ∪ h;
6. if Ωx ⊆ vi then
7. CF=CF ∪ ⱷ= [q = value of dom (x), p] → [vi = value of dom (vi)];
8. else
9. CF=CF ∪ ⱷ= [q = value of dom (x), p] → [vi];
10. return CF;
}

Figure 3.8: CreateCFD Algorithm.

Where,

q : variable to store the Conditional Attributes.

p : variable to store the Variable Attributes.

32

3.1.4 Pruning the Discovered CFDs

Our algorithm contains many pruning phases; these phases reduce the

number of CFDs to be checked and have an effect on the performance of the

algorithm as we will see later.

3.1.4.1 Stripped Partitions

As we mentioned early, the partition with one element size is removed from

the search space for the following reasons:

1. Reduce the search space for finding the CFDs,

2. Prevent CFD comes from single tuple to appear in the final rules and this

means that there is no CFD Rule that has constant values in all of its attributes of

the Rules, which means that the static rules are pruned.

Example 3.9:

Let‟s suppose we want to find the CFDs between a Candidate at fourth

level such as (Color, Size, Act, Inflated) and a Candidate at fifth level like

(Color, Size, Act, Age, Inflated).

we have all of these equivalence classes shared between them

{{3},{4,5},{8},{9,10},{13},{14,15},{18},{19,20}}, but we care only for

partitions that have more than or equal two tuples (stripped partitions)

{{4,5},{9,10},{14, 15},{19, 20}}.

3.1.4.2 Merge Similar CFDs

In our approach we added the idea of merge CFDs Rules based on the

similarity between their attributes, and this idea is presented in the third inference

rules in [Wenfei et al., 2008 (1)].

33

Example 3.10:

Between (Color, Inflated) and (Color, Act, Inflated), we have two

equivalence classes {4, 5, 9, 10} and {14, 15, 19, 20}, and each one of these

classes gives a distinct CFD.

 Ωx = {4, 5, 9, 10} produces:

φ1: [Act = "STRETCH", Color = "YALLOW"] → [Inflated = "T"].

 Ωx = {14, 15, 19, 20} produces:

φ2: [Act = "STRETCH", Color = "PRUPLE"] → [Inflated = "T"].

If you applied our Dataset on another approach for discovering Conditional

Functional Dependencies you will see these two CFDs rules, but in our approach

you will not see it because we merge it into a single CFD.

 φ: [Act = STRETCH, Color] → [Inflated=T].

The idea of merging rules based on finding the attributes which have the

same value and make it Condition such as Act = STRETCH and Inflated = T, are

equal between φ1 and φ2 ,but Color has different values between φ1 and φ2 so we

make it as Variable in the CFD rule.

3.1.4.3 Minimal Cover for CFDs

Before exploring the Modified algorithm for finding the minimum CFD,

we will study the inference Axioms for CFD and their relations with CFD_Mine.

34

Figure 3.9: Inference Rules for CFDs [Wenfei et al., 2009].

FD1: Extends Armstrong‟s Axioms of Reflexivity, because CFD_Mine

algorithm finds the CFD between two adjacent levels and because it discovers the

nontrivial CFD, then this inference rule doesn‟t have any effect in our algorithm.

Example 3.11:

In our case there is no Trivial CFD between the Candidates for the reason

shown above, as follows.

 φ: [Act = "STRETCH”] → [Inflated="T”].

 φ: [Age = "ADULT”] → [Inflated="T"].

 φ: [Inflated="F”] → [Act = "DIP”].

 φ: [Inflated="F”] → [Age = "CHILD”].

FD2 Extends Armstrong‟s Axioms of Transitivity, and to cope with pattern

tuples which are not found in FDs, it employs an order relation , is defined as

follows: For a pair (η1, η2) of constants or „- ‟, we say that η1 η2 if either

η1 = η2 = a where a is a constant, or η2 =„-‟.

35

The relation naturally extends to pattern tuples. For instance,

(a, b) (- , b). Intuitively, the use of in FD2 assures that (t1 [A1] . . . tk [AK]) is

in the “scope” of tp [A1… AK], (i.e.), the pattern tp [A1. . .A] is applicable.

Example 3.12:

Transitive CFDs between the Candidates

 φ = [Act=STRETCH] → [Inflated=T].

 φ = [Inflated=F] → [Act=DIP].

FD3 Tells us that for a CFD ϕ = (R: [B, X] → A, tp), if tp [B] = „-‟ and tp

[A] is a constant „a‟, then ϕ can be simplified by dropping the B attribute from the

LHS of the embedded FD. To see this, consider an instance I of R such that I |= ϕ,

and any tuple t in I. Note that since tp [B] = „-‟, if t[X] ≍ tp[X] then t [B, X] ≍ tp

[B, X] and t [A] has to be „a‟ regardless of what value t [B] has. Thus ϕ entails (R:

X → A, tp), and I |= (R: X → A, tp).

Example 3.13:

 Suppose you have this CFD, which have Variable attributes and Condition

or constant attributes,

 φ = [Age=ADULT, Color] → [Inflated=T].

If we remove the variable attribute from the previous CFD it will produce:

 φ = [Age=ADULT] → [Inflated=T].

FD4 deals with attributes of finite domains, which are not an issue for

standard FDs since FDs have no pattern tuples. They are given w.r.t. a set Ʃ of

CFDs. More specifically, to use this rule one needs to determine, given Ʃ on a

relation schema R, an attribute B in attr(R) with a finite domain and a constant

b ∈ dom (B), whether or not there exists an instance I of R such that I |= Ʃ

and moreover, there is a tuple t in I such that t [B] = b. We say that (Ʃ, B = b) is

consistent if and only if such an instance I exists. That is, since the values of B

36

have finitely many choices, we need to find out for which b ∈ Dom (B), Ʃ and

B = b make sense when put together.

Already this inference rule implied in our merge algorithm, but we add

some modification on this rule, as the definition on the CFD suppose, there is no

CFD available without having at least one attribute constant,

Example 3.14:

Suppose you have these CFDs, which have Variable attributes in both sides

LHS and RHS,

 φ = [Color = PURPLE, Inflated = F, Size = LARGE] → [Act = DIP]

 φ = [Color = PURPLE, Inflated = F, Size = LARGE] → [Age = CHILD]

Merging these two CFDs produce:

 φ = [Color = PURPLE, Inflated = F, Size = LARGE]→[Age]

Now, as an application of consistency and implication analyses of CFDs,

we present a modified algorithm for computing a minimal cover MCF of a set CF

of CFDs based on the Intersect Partitions between the Candidates which produce

the Rules that can be reduced and eliminated from the CF set.

The cover MCF is equivalent to CF but does not contain redundancies, and

thus is often smaller than ∑. Since the costs of checking and repairing CFDs are

dominated by the size of the CFDs to be checked along with the size of the

relational data, a non-redundant and smaller MCF typically leads to less validating

and repairing costs. Thus finding a minimal cover of input CFDs serves as an

optimization strategy for data cleaning.

A minimal cover MCF of a set Σ of CFDs is a set of CFDs such that:

1. Each CFD in MCF is of the form (R : X → A, tp) as mentioned earlier,

2. MCF ≡ CF.

3. No proper subset of MCF implies MCF, and

4. For each ϕ = (R: X → A, tp) in MCF, There exists no φ = (R: X → A, tp

[X∪A]) in MCF such that X ⊂ X. Intuitively, MCF contains no redundant CFDs,

attributes or patterns.

37

Now, if we applied the inference Axioms for finding the minimum cover

set of CFDs , we will see that the FD1 , doesn‟t have any effect on CFD_Mine ,

because already the finds the nontrivial CFDs between adjacent levels.

About the second Axiom FD2, maybe there is an equivalence set of

attributes between the discovered CFDs, and as proposed in [Yao et al., 2002] the

equivalence Rules are removed, for instance,

 [Act=STRETCH] → [Inflated=T].

 [Inflated=T] → [Act=STRETCH].

Then the second one will be removed from the set of the discovered CFD

Rules.

While as the third Axiom FD3, will remove any variable value from the

LHS of the CFD Rules; this will make the discovered Rules have only constant

attributes on the RHS.

And finally the fourth Axiom FD4 will cause merging similar CFDs that

have the same RHS and LHS and the idea of the merge illustrated above.

After applying these Axioms on a set of CFDs, and applying the Minimum

Cover algorithm proposed by the authors in [Wenfei et al., 2008 (1)], we will have

a minimum set of CFDs.

 We have a mixed up all the above Axioms and Minimum Cover

algorithm, because our approach mainly depends on the intersect partitions

between the Candidates; we will use the idea of this partitions for finding the

minimum set MCF of CFDs.

38

PartitionMinimalCover algorithm works as follow, the algorithm chooses

all the CFDs that have the same intersect partitions , and then chooses between

them the CFDs that have the same RHS and have some intersect LHS attributes

between them, after that the algorithm applies the inference Axioms which will

produce the Minimum set of CFDs.

PartitionMinimalCover (CF)
{
1. for each i=1 to CF_size
2. for each j=2 to CF_size
3. If ((Ωx CFD[i]= Ωx CFD[j])&&
4. (RHS CFD[i]= RHS CFD[j])&&
5. (LHS CFD[j] ⊆ LHS CFD[i]))
6.
7. MCF= MCF ∪ IR (CFD);
8. return MCF;
}

Figure 3.10: PartitionMinimalCover algorithm.

Example 3.15:

In Figure 3.15, If we choose all the discovered CFDs which have the same

intersect partition equal Ωx = {4,5,9,10,14,15,19,20} , and choose between them

the Rules that have the same LHS (all of them) and some RHS (Inflated,

available between all of them again) and applying the inference Axioms (FD3).

Then the algorithm will produce single CFD as a minimum between them.

 φ = [Inflated=F] → [Age=CHILD].

 φ = [Inflated=F, Size] → [Age=CHILD].

 φ = [Color, Inflated=F] → [Age=CHILD].

 φ = [Color, Inflated=F, Size] → [Age=CHILD].

After applying PartitionMinimalCover algorithm, the algorithm will produce:

 φ = [Inflated=F] → [Age=CHILD].

Figure 3.11: Choose implies CFD.

39

CHAPTER FOUR

EXPERIMENTAL EVALUATION

4.0 Overview

In this section, we present an experimental study of CFD_Mine algorithm

and implementation software. We investigate the Utility, Correctness and

Accuracy, Scalability for our program to find out the most correct CFD and FD in

a suitable time.

4.1 The Utility of the Approach

We mentioned earlier that the FD used mainly for schema design purpose

and CFD founded for cleaning the data relations from erroneous entering , but we

can‟t ignore the important role that the FD approaches have been playing in data

cleaning too, so as our approach discovers both minimum set of Conditional

Functional Dependencies which may differ from another set of CFD discovered

by another approach but they are equivalent , and set of Functional Dependences ,

we can – in future - design a complete system for cleaning the relation based on

both FD and CFD .

Almost all of the relations located on the UCI have inconsistencies; this

leads the other approaches for discovering the FD to use what we called

Approximate Functional dependency (AFD) which is Functional dependency that

almost holds. Our approach sometimes can‟t find any Functional Dependences in

the relation, because the relation has some errors.

Let us think differently. If we apply the discovering of CFD Rules, and

then modify the data relation according to these Rules, the relation will not have

any inconsistencies; this manner will produce a set of real Functional

Dependences FD, not Approximate Functional Dependencies (AFD).

40

So, CFD_Mine function for cleaning data will be finding the most rules

agreed on the relation and then modify the spurious tuples which disagree with the

discovered rules and help the data entries to insert correct entities which agree

with the rules later on.

4.2 Accuracy of Discovered Rules

 [Golab et al., 2008] present a definition to the problem of optimal pattern

tableau generation (CFD) based on natural criteria, it might seem that a good

tableau should choose patterns to maximize the number of tuples, they think that a

good tableau should apply to at least some minimal subset of the data and should

allow some of the tuples to cause violation. They present two main variables

called support (tuples should match) and confidence (tuples should violate).

Because our approach discovers all possible CFDs, this may seem conflict

to what the authors in [Golab et al., 2008] come in, but we deal with this criterion

in a different manner; we put a variable called threshold r, which presents the

percentage of the tuples that the Discovered CFD Rules covered, this value has

two main benefits:

1. It lets the algorithm produce only the Rules that have this value and above,

2. It reduces the search time for finding the Rules.

If the user identifies threshold r, then the approach will filter the discovered

rules according to this threshold, all the rules above the value of threshold are

support and all the rules under the value of threshold are confidence.

Because our algorithm for finding the CFDs based on finding the intersect

partitions between the Candidates, and each partition has its own cardinality (the

number of tuples in that partition), and because we need to increase the speed of

the search for finding CFDs, we identify an equation to connect the percentage of

the discovered CFDs with the cardinality of the partitions.

For instance, if we have a relation with 400 tuples, and we need to find

only the CFDs that agree only on 20% and above of the relation dataset, so we set

the value of the threshold on this equation:

41

g = (the ratio r * number of tuples in relation t) / 100.

g = (20 * 400)/100= 80 (tuple/partition).

Now , the value of g means that only partitions that have the cardinality

equal 80 and above are added to the create Rules phase , while the other partitions

are removed , so they will not be included in the search space.

Example 4.1:

In Table 3.1, suppose that we want to find only the CFDs that covered 40

% of the relation,

The value of the threshold r = 40.

The number of the tuples in the relation t = 20.

g = (r * t) / 100 = (40 * 20)/100 = 8

So, only the partitions that have 8 and above number of tuples in the

partition are included in the phase of producing CFDs; if there are Rules covering

this percentage.

Act = {1,2,6,7,11,12,16,17},{3,4,5,8,9,10,13,14,15,18,19.20}.

Act, Inflated = {1,2,6,7,11,12,16,17},{3,8,13,18},{4,5,9,10,14,15,19,20}.

Intersect Partition Ωx = {1,2,6,7,11,12,16,17} .

Cardinality of Ωx = | Ωx | = 8.

The discovered CFD is: φ: [Act = “STRETCH”] → [Inflated=” T”]

Now, if you set the value of r = 0, then the algorithm will discover all

possible CFDs, this means that if there is intersect partition with cardinality =1,

the algorithm will discover CFD to it.

42

Example 4.2:

Between these two Candidates we have two intersect partitions and each

one produces its own CFD, but each one has different percentage.

Age, Inflated ={1,3,6,8,11,13,16,18},{2,7,12,17},{4,5,9,10,14,15,19,20}.

Act, Age, Inflated ={1,6,11,16},{2,7,12,17},{3,8,13,18},{4,5,9,10,14,15,19,20}.

Intersect Partition = Ωx = {2,7,12,17},{4,5,9,10,14,15,19,20}.

 {2, 7, 12, 17}: produces :

 φ = [Age=CHILD, Inflated=T] → [Act=STRETCH]

With 20% of the tuples in the relation.

{4, 5, 9, 10, 14, 15, 19, 20}: produces:

 φ = [Age=CHILD, Inflated=F] → [Act=DIP]

With 40% of the tuples in the relation.

Now any other tuples between the Candidates (Age, Inflated) and (Act,

Age, Inflated) don‟t agree on one of these Rules are Confidence, while as any

tuples agree on these Rules are Support.

If you need to discover the Functional Dependencies FD that the dataset set

holds in, you have to set the value of the threshold r=0, to prevent the algorithm

delete any partition with any size, because the mechanism of finding FD as TANE

propose is to compare to partition set to two Candidate, if its identical then there is

a functional dependency between them.

43

4.3 Scalability Experiments

4.3.1 Parameters

CFD_MINE was applied on a datasets obtained from the UCI Machine

Learning Repository [UCI, 2008]. Our experiments were run using a Dual T2350

INTEL Processor 1.86 GHz (1.86 GHz) with 3GB of memory; we used the Adult

dataset and agaricus-lepiota dataset, and varied the parameter of interest to test its

effect on the discovery running time.

4.3.2 Scalability on the Number of Tuples

For the purpose of study the behavior of our algorithm when increasing the

number of tuples was examined by fixing the number of attribute a = 8 , and

giving three different values to the threshold r , the values are r = 1 ,2 , and 3 ,

and starting the number of tuples from t =1k to t = 8k .

Figure 4.1: Scalability per Tuples (Adult).

44

When increasing the number of tuples , as we saw in Figure 4.1 and Figure

4.2, the algorithm behave semi Linearly, To expound this phenomenon , we

talked that our algorithm mainly divided into two main complexity issues .the first

one is finding the partition of the Candidates, and because we didn‟t change the

number of Candidates in all of the cases (2
9
 = 512 Candidates) , then there is no

added time to find it , but the little increase of time is because finding more

number of partition to each Candidate, which mean more time for find the

intersect partitions and more time to generate the CFDs Rules .

But we have other variable effects on the scalability, it is the attribute size,

for example the size of the attribute for Adult dataset is much larger than the

attribute size of the agaricus-lepiota dataset.

Because the attribute size of the Adult dataset is larger than the attribute

size of the agaricus-lepiota, and because we deal with the data as String data type,

then when the size of String increased the time for merging and separation and

other operations on the string done, the time is also increased. So the time for the

same number of tuples and attribute for Adult data set as shown in Figure 4.1 is

larger than the time for agaricus-lepiota as shown in the Figure 4.2, but the

algorithm still behaves linearly.

Figure 4.2: Scalability per Tuples (agaricus-lepiota).

45

4.3.3 Scalability on the Number of Attributes

For the purpose of study the behavior of our algorithm when increasing the

number of attributes, was examined by fixing the number of tuples t = 1k, and

giving three different values to the threshold r, the values are r = 1, 2, and 3, and

starting the number of attributes from a =5 to a = 15.

Figure 4.3: Scalability per Attributes (Adult).

When increasing the number of attributes as we saw in Figure 4.3 and

Figure 4.4, the algorithm behaves Exponentially, to expound this phenomenon,

we explain that the time that the algorithm need it to find the partition for dataset

with 3 attribute (2
3
 = 8 Candidates) is much less than the time needed to calculate

the partitions for dataset with 15 attributes (2
15

 = 32768 Candidates).

These results are identical to what the TANE comes in, because the idea of

calculating the partition presented in TANE, and TANE is one of the most

efficient approaches for finding the Traditional Functional Dependence.

46

If we assume that we deal directly with existing partitions and we want to

only discover the Rules the time that will be taken is very small, but the time for

finding the partitions is large, so when increasing the number of attributes the

number of Candidates increases too.

Figure 4.4 confirms the effect of the attribute size on the time of

discovering the CFD Rules.

Figure 4.4: Scalability per Attributes (agaricus-lepiota).

47

CHAPTER FIVE

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

We present a new approach to the discovery of both Functional and

Conditional Functional Dependencies. The major innovations is a novel way of

discovering all possible Rules and determining minimal set on these Rules and use

the Modified inference Axioms for CFD, The idea is to maintain information

about which rows agree on a set of attributes. Formally, the approach can be

described using equivalence classes and partitions. A major advantage of the use

of partitions is that it allows efficient discovery of Conditional dependencies and

traditional dependencies.

The algorithm is based on the levelwise search algorithm that has been used

in many data mining applications. It starts from dependencies with a small left-

hand side, i.e., from the ones that are not very likely to hold. The algorithm then

works towards larger and larger dependencies, until the minimal dependencies that

hold are found.

The worst case time complexity of the algorithm with respect to the number

of attributes is exponential, but this is inevitable since the number of minimal

dependencies can be exponential in the number of attributes. However, if the

number of rows increases, the set of dependencies stays the same, the time

increases only linearly in the number of rows.

The linearity makes the algorithm especially suitable for relations with

large number of rows. Experimental results show that the algorithmic effective in

practice, and that it makes the discovery of Functional and Conditional Functional

Dependencies feasible for relations with even hundreds of thousands of rows.

48

5.2 Future Work

For future work a lot of work still needs to be done in Data Cleaning and

Data Mining to make it integrated and solid. About my area I think there are a lot

of modifications that need to be done too.

 First of all our contribution on discovering the Rules needs a second phase

of finding the violated tuples, which violate the discovered Rules.

 The other idea is making a complete system for cleaning the relation

dataset based on both CFDs and FDs, and modifying the error tuples step by step

after discovering the CFD rule.

49

REFERENCES

Agrawal, R. AND Srikant, R. (1994), Fast algorithms for mining association rules. In

Proceedings of the 20th International Conference on Very Large Data Bases, J.

Bocca, M. Jarke, and C. Zaniolo, Eds. Morgan Kaufmann, pp 487–499.

Andritsos .P, Tsaparas .P, R. Miller. J. (2004). Information-Theoretic Tools for

Mining Database Structure from Large Data Sets. Proceedings of the 2004 ACM

SIGMOD international conference on Management of data. Paris, France, pp. 731-

742.

Arenas, M., Bertossi, L. E., and Chomicki, J. (2003). Consistent query answers in

inconsistent Databases. Theory and Practice of Logic Programming 3, 4-5, pp 393–

424.

Arenas. M, Bertossi. L, (1999) .Consistent Query Answers in Inconsistent Databases.

Proceedings of the 18th, ACM SIGACT-SIGMOD-SIGART Symposium on

Principles of Database Systems. Philadelphia, USA, pp. 68-79.

Bohannon, P., Fan, W., Flaster, M., Rastogi, R. (2005). A Cost-Based Model and

Effective Heuristic for Repairing Constraints by Value Modification. Proceedings of

the 2005 ACM SIGMOD international conference on Management of data.

Maryland, USA, pp. 143-154.

Calvanese. D, Giacomo .De.G, and Lenzerini .M. (2001). Identification Constraints

and Functional Dependencies in Description Logics. Proceedings of the 17th

International Joint Conference on Artificial Intelligence. Washington, USA, pp. 155-

160.

50

Carlo Batini, Monica Scannapieco, (2006) Data Quality: Concepts, Methodologies

and Techniques (Data-Centric Systems and Applications), Springer-Verlag New

York, Inc., Secaucus, NJ.

Chiang .F and Miller .R. (2008). Discovering data quality rules. Proceedings of the

VLDB Endowment, In International Conference on Very Large Data Bases. pp

1166-1177

Chomicki .J and Marcinkowski. J, (2005). Minimal-change integrity maintenance

using tuple deletions. Inf. Comput.197: pp 90–121.

Demetrovics, J., Libkin, L., and Muchnik, I. B. (1992). Functional dependencies in

Relational databases: A lattice point of view. Discrete Applied Mathematics, 40: pp

155- 185.

English, L (2000). Plain English on Data Quality: Information Quality Management:

The Next Frontier // DM Review Magazine. Prieiga per internet :

<http://www.dmreview.com/article_sub.cfm?articleId=2073>

Fabien De Marchi, Stephane Lopes, and Jean.Marc Petit, (2002). Efficient algorithm

for mining inclusion dependencies, In 3th International Conference on Extending

Database Technology (EDBT2002) volume 287 of Lecture Notes in Computer

Science, pp 464-476 , Springer.

Flach, P.A. and Savnik, A. (1999). Database dependency discovery: a machine

learning approach. AI Communications, 12(3): pp 139-160.

51

Golab .L, H. Karloff, F. Korn, Srivastava.D, and Yu. B. (2008). On generating near--

optimal tableaux for conditional functional dependencies. PVLDB, 1(1): pp 376--

390.

Heikki Mannila and Hannu Toivonen. (1997). Levelwise search and borders of

theories in knowledge discovery, Data Mining and Knowledge Discovery, 1(3), pp

241-258.

Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo. Efficient algorithms for

discovering association rules, In AAAI Workshop on Knowledge Discovery in

Databases KDD, Seattle Washington , pp 181-192

Hernandez, M. A. and Stolfo, S. J. (1995). The Merge/Purge Problem for Large

Databases. Proceedings of the ACM SIGMOD international conference on

Management of data. San Jose, California, USA, pp. 127-138.

Ilyas I. F., Markl. V, Haas. P, Brown .P, and Aboulnaga. A, (2004). CORDS:

Automatic Discovery of Correlations and Soft Functional Dependencies. Proceedings

of the ACM SIGMOD international conference on Management of data. Paris,

France, pp. 647-658.

Jef Wijsen. (2003). Condensed representation of database repairs for consistent

query answering. In ICDT, pp 375–390.

Lopatenko, A. Bravo, L. (2007).Efficient approximation algorithms for repairing

inconsistent databases. , ICDE 2007. IEEE 23rd International Conference on Data

Engineering, pp 216-225

52

Lopes, S., Petit J.M., Lakhal L., (2002). Functional and approximate dependency

mining: database and FCA points of view. Special issue of Journal of Experimental

and Theoretical Artificial Intelligence (JETAI) on Concept Lattices for KDD, 14(2-

3): pp 93-.114.

Maletic, J. I. and Marcus, A. (1999). Progress Report on Automated Data Cleansing.

Technical Report CS-99-02. pp 1 - 13

Medina Raoul, Nourine Lhouari (2008). Conditional Functional Dependencies

Discovery. Research Report LIMOS/RR-08-13

Novelli Noel and Cicchetti Rosine. . (2001), FUN: An efficient algorithm for mining

functional and embedded dependencies. In ICDT ‟01: Proceedings of the 8th

International Conference on Database Theory, pp 189–203, London, UK, 2001.

Springer-Verlag. pp 189-203 springer.

Press release, Gartner, Inc., (2005). Quoting Bill Hostmann, Research Director,

presenting at Gartner Business Intelligence Summit in London, UK.

http://www.gartner.co m/press releases /asset 119071 11.html.

Rahm, E., Do, H.H. (2000). Data cleaning: Problems and current approaches. IEEE

Data Eng. Bull. 23(4), pp 3–13.

Savnik and P. Flach. (1993). Bottom-up induction of functional dependencies from

relations.In G. Piatetsky-Shapiro, editor, Knowledge Discovery in Databases, papers

from the 1993 AAAI Workshop (KDD'93), pp 174-185. AAAI.

53

Shilakes, C. C. and Tylman, J. (1998). Enterprise information portals. Tech. rep.,

Merrill Lynch, Inc., New York, NY.

St´ephane Lopes, Jean-Marc Petit, and Lotfi Lakhal. (2000). Efficient discovery of

functional Dependencies and Armstrong relations. In EDBT ‟00: Proceedings of the

7th International Conference on Extending Database Technology, London, UK,

Springer-Verlag, pp 350–364.

UCI, (10, 11, 2008), Machine Learning Repository, www.uci.edu.

W. Fan, F. Geerts, and X. Jia. (2008) SEMANDAQ: A data quality system based on

conditional functional dependencies. In Proc. VLDB, demo.

W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. (2008) Conditional functional

dependencies for capturing data inconsistencies. ACM Trans. Database Syst., 33(2),

W. Fan, X. Jia, and F. Geerts, (2008). A Revival of Integrity Constraints for Data

Cleaning, Proceedings of the VLDB Endowment, Volume 1, pp 1522-1523.

Wenfei Fan, Floris Geerts, Laks V. S. Lakshmanan, Ming Xiong,(2009) Discovering

Conditional Functional Dependencies. ICDE,pp 1231-1234

54

Winkler, W. E. (2004). Methods for evaluating and creating data quality.

Information Systems 29, 7, pp 531–550.

Wyss, C., Giannella, C., and Robertson, E.L. (2001). FastFDs, A heuristic-driven,

depth-first algorithm for mining functional dependencies from relation instances. In

Proceedings of the Third International Conference on Data Warehousing and

Knowledge Discovery (DaWaK 2001), pp. 101-110.

Yao, H., Hamilton, H.J., and Butz, C.J. (2002). FD Mine: Discovering functional

Dependencies in a database using equivalences. In Proceedings of the 2nd IEEE

International Conference on Data Mining, Maebashi City, Japan, pp. 729-732.

Yka Huhtala, Juha Kinen, Pasi Porkka, and Hannu Toivonen. (1998) Efficient

discovery of Functional and approximate dependencies using partitions. In ICDE, pp

392–401.

