

I

Performance Evaluation of Blocking Methods

for Duplicate Record Detection

By

 Raed Mahmmod Al Dummor

A Thesis

Submitted in Partial Fulfillment of the Requirements for the

Master Degree in Computer Information Systems

Supervisor

 Prof. Musbah M. Aqel

Department of Computer Information Systems

Faculty of Information Technology

Middle East University

Amman, Jordan

July, 2010

II

III

IV

V

DEDICATION

This thesis is dedicated to my parents, my wife and partner for life, Rula, and our daughter

Yara, for their understanding and support during the time of this research.

VI

ACKNOWLEDGEMENTS

I am highly indebted to my supervisor Prof. Musbah M. Aqel, Faculty of Information

Technology, Middle East University, for his eminent guidance, constant supervision, and

whelming encouragement throughout my thesis work.

I am grateful to a number of friends for their moral support, encouragement, and technical

discussions.

Finally, I would like to take a moment to thank my family members for their immense

patience, emotional support and encouragement during my entire graduate career.

VII

ABSTRACT

Performance Evaluation of Blocking Methods for Duplicate Record

Detection

By

 Raed Mahmmod Al Dummor

Duplicate record detection process is the process of identifying pairs of records in one or

more datasets that refer to the same real world entity (e.g. patient or customer), where these

individual entities might be erroneous and incomplete. In addition, there exists no unique

identifying key for these entities that would allow to directly identifying them as duplicates.

A main challenge when detecting duplicate records is the complexity of the detection

process: potentially each record in a dataset has to be compared to all records in the same

dataset or another dataset, the number of record pair comparisons grows quadratically with

the number of records to be compared. A large variety of methods, collectively known as

blocking methods, have been developed to deal with this quadratic complexity problem.

Blocking Methods reduce the number potential record pair comparisons by partitioning the

datasets into a set of mutually exclusive blocks or clusters using a blocking key (i.e. a

single record attribute or a combination of attributes). All records sharing the same

blocking key value will be placed in the same block and only records within a block will be

compared.

In this thesis, we experimentally compare and evaluate two recently developed, blocking

methods, the sorted blocks and standard suffix array and its improvements, with two older

methods, the standard blocking and sorted neighborhood blocking within a common

framework with regard to the quality of the candidate record pairs generated by them.

The experiments results on synthetic dataset show that sorted neighborhood blocking

method outperforms the standard blocking and that sorted blocks slightly outperforms it in

terms of accuracy. Also our experiments results show that the accuracy of the improved

suffix array method is much higher than the standard suffix array and that standard

blocking can be dramatically improved using standard suffix array and its improvements.

VIII

 ������

 ��	
 ���������
����� �
 �� ����������� � �������

 ��� �� 	��!� 	���

 �������	
�� � ������ �� ���	��� ���� ���� �������� ���� ���� � ��	
�� !� " ��

�#��!� ��$��	� %�& ���� ���� ��'����� ()' !������ �*�*��� +��,��).��,�� �� /����� .#� (

1 2�� %�� � �3���� !��� �4�� 5�� ��	
�6���� ��7� �89���'���� .�4 ��� :��)� �	�� �

;3�� ���� ��	
� ��������.

 !� �'$ �
�8��� ������������ �� ��	
�� ������ ��6�$ ��*,� �������1 =�� �'��*� >	�

 �� �$��	��� ()' � ��	
�� �4�� ?� ��'����� ��$��	� � .	
 .�����$��	� @����.

 ��$!A ���������� ��'��*�� ���� ��	
�� ��$?� �'��*���� �,���� .��� ��'� ��	
�� "���

�'��*� !�� �B�.� ��B� +� ���� �$��	� ?3�� >���
C� !� �$�'�� +
A� � �$ %���">���
�

�8�	��� " 1 �	��,� ��B��6����� 5�� ��,������ �*,��� .

 ��B�>���
� .�6*� %�� �8�	��� ��$��	� �8�	� .�� !� ��	
�� "���� �'��*� ���6�$

 ��'������6� :��)� +����
A� ��������� .���� !� �$��	� %�� �8�)��
 !� !��� .	
 ���� ��

�$��	� !� ���
�� (=�� 1+�� ?3� � �� ��	
�� :��)��� ()' � 2����� ����� ()' �6����

+��� �'��*� ��	
�� 9* .��� �� 5���6�� .

� 5�� �
����� +�*' ��6�,�� ���	��� .�� !�� �+��*� �'��*�� !�'#� ���� >���
�� 5�� !��,3�

�#��� �����,��� E���6�� � �)F�� ������� .���� ��� �8�	�6� >���
A��B��'�
��� !���6
� ?�

�� �����,��� .���� ��� !����4 2��� ������� ���	���� .��� ��9& !�3+�$E6,�� ��� ��	�

"������	
�� +�� �����B	��'�.

���� !� �$��	� %6$ �����	� +� %��� >��	��� G8��' ��H� ��'�������� E���6�� � �)F� !�

 E6,�� ��� ��)9 .��� ������� .���� E�)�� !�� � �����,��� .���� %6$������ E�)�� �����,���

�4���� . !� ��#�� %6$� �� �'
���� E���6�� � �)F� >�6
� �4� !� �'���	� G8��' ��H� ���

�� �����,��� .���� !� ��� �����,��� E���6�� � �)F� E���6�� � �)F� +����
A� �B'�
�� !�

 �B��'�
��� �����,���.

IX

LIST OF TABLES

TABLE PAGE

Table 2.1 Available attribute comparison functions………………………….. 28

Table 2.2 Examples of similarity values obtained using edit distance

algorithm……………………………………………………………..

31

Table 2.3 Examples of Jaro’s similarities for names …………………………. 33

Table 2.4 Examples of Soundex coding ………………………………………. 39

Table 4.1 Sample duplicate records from the FEBRL data set ..………………. 60

Table 4.2 Sorted neighborhood method with window size =10 and varying

threshold……………………………………………………………...

65

Table 4.3 Sorted neighborhood method compared with Sorted blocks method

where overlapping portion is equal block size -1 …………………

68

Table 4.4 Total number of identified duplicates Vs the Maximum block size

72

X

LIST OF FIGURES

FIGURE PAGE

Figure 1.1 Phases of a record linkage project …………………………….. 5

Figure 2.1 Standard blocking method ………………………………………… 14

Figure 2.2 Sorted neighborhood method …………………………………… 16

Figure 2.3 Sorted blocks method…………………………………………….. 18

Figure 2.4 Levenshtein edit distance algorithm………………………………. 30

Figure 2.5 Algorithm for calculating Q-grams similarity metric………….. 35

Figure 2.6 Simplified rule in English to illustrate the equational theory ……. 45

Figure 2.7 Processing view architecture in FEBRL ………………………… 47

Figure 2.8 FRIL architecture ………………………………………………… 48

Figure 2.9 TAILOR information flow diagram…………………………….. 49

Figure 3.1 Framework for duplicate detection ……………………. ………….. 54

Figure 4.1 Sorted neighborhood method with window size =10 and varying

threshold …………………………………………………..

67

XI

TABLE OF CONTENTS

 PAGE

 Dedication ……………………………..………………………………….. V

 Acknowledgements …………………….………………………………… VI

 Abstract………………………………….………………………………… VII

 Abstract in Arabic……………………….………………………………… VIII

 List of Tables……………………………………………………………… IX

 List of Figures …………………………..………………………………… X

 Table of Contents….……………………………………………………… XI

Chapter 1 Introduction 1

 1.1 Data Duplication and Data Quality…………………………………... 1

 1.2 Duplicate Record Detection and Blocking ………………………….. 3

 1.3 Motivation……………………………………………………………. 6

 1.4 Problem Definition …………………………………………………... 7

 1.5 Contribution…………………………………………………………... 8

 1.6 Thesis Outline………………………………………………………… 9

Chapter 2 Literature Review 10

 2.1 Blocking Methods ……………………………………………………. 10

 2.1.1 Standard Blocking Method ……………….……………………. 13

 2.1.2 Sorted Neighborhood Method …………….…………………… 15

 2.1.3 Sorted Blocks Method …………………………………………. 17

 2.1.4 Suffix Array Blocking Method …...……………………………. 19

 2.1.5 Improved Suffix Array Blocking Method ……………………... 21

 2.1.6 Q-Gram Based Blocking Method …………………………….... 22

 2.1.7 Canopy Clustering Method ...…………………………………... 23

 2.1.8 String Map Based Blocking Method…………………………… 26

 2.2 Attribute Similarity Measures…………………………………………. 27

 2.2.1 Character-Based Similarity Metrics …………………………….. 29

 2.2.1.1 Levenshtein Edit Distance………………………………. 29

 2.2.1.2 Jaro Distance Metric…………………………………….. 31

 2.2.1.3 Q-Grams Distance ………………………………………. 33

 2.2.2 Token-Based Similarity Metrics…………………………………. 36

 2.2.3 Phonetic Similarity Metrics……………………………………… 37

XII

 2.2.3.1 Soundex ………………………………….……………… 37

 2.2.3.2 Metaphone Coding Method………………….………….. 40

 2.2.3.3 Phonex and Phonix..……………………………………. 40

 2.2.3.4 New York State Identification and Intelligence System.. 41

 2.3 Decision Models for Detecting Duplications…………………………. 41

 2.3.1 Probabilistic Matching Models………………………………….. 42

 2.3.2 Supervised-Learning-Based Approaches………………………... 43

 2.3.3 Active-Learning-Based Approaches…………………………….. 44

 2.3.4 Rule-Based Approaches ………………………………………… 45

 2.4 Duplicate Detection Tools…………………………………………….. 46

 2.4.1 FEBRL ……………………………………………......………… 46

 2.4.2 FRIL …………………………………………………………….. 47

 2.4.3 TAILOR…………………………………………………………. 48

 2.4.4 BIGMATCH…………………………………………………….. 49

 2.5 Related Studies.……………………………………………….............. 50

Chapter 3 Duplicate Detection Framework Design 53

Chapter 4 Experimental Evaluation 60

 4.1 Data Set…………………….…………………………………………. 60

 4.2 Environment………………….………………………………………... 61

 4.3 Performance Evaluation Measures ………………...…………………. 61

 4.4 Experiments…..……………………………………………………….. 64

 4.4.1 Experiment 1 ………………………………………………….… 64

 4.4.1.1 Results Analysis ………………………………………… 67

 4.4.2 Experiment 2 ……………………………………………............. 70

 4.4.2.1 Results Analysis ………………………………………… 71

Chapter 5 Conclusions And Future Work

75

 5.1 Conclusions…….…………………………………………………….. 75

 5.2 Future Work…….……………………………………………………. 76

References 78

Appendices 84

Appendix 1 Blocking Algorithms Codes …………………………………… 83

Appendix 2 Experiment 1 Results Graphs ………………………………….. 88

Appendix 3 Experiment 2 Results Graphs …………………………………... 92

1

CHAPTER 1

INTRODUCTION

For decades there is a tremendous growth for the need of a various application that can

access, relate, use, and integrate of multiple disparate information sources and repositories

including databases, knowledge bases, file systems, digital libraries and electronic mail

systems. All Indications suggest that this growth will continue in the years to come. The

contributing factors to this increase are the expansions of business over the globe and the

revolution of the fast reliable inexpensive communication links.

Data integration is a core issue in these applications, especially in the area of Business

Intelligence (BI), Customer Relationship Management (CRM), Online Analytical

Processing (OLAP), data mining and in the area of e-Business. Ensuring data integrity in

the process of integration of heterogeneous data sources has proven to be a very

challenging task due to the difficulties and challenges faced in dealing with the

heterogeneity, technology obsolescence and semantic discrepancy associated with multiple

source information systems. (Tang et al., 2003) (Ziegler & Dittrich, 2004)

1.1 Data Duplication and Data Quality

While data integration is essential and important in various domains, we have to be aware

that the quality of the information integrated from diverse data sets is highly dependent on

the quality of these data sets. A data set that is incomplete, noisy and inconsistent may

result in conclusions that do not truly reflect the underlying truth and lead to false

decisions. So we need to pre-process data sets to create a complete, clean and consistent

data set prior to any data integration tasks. (Bleiholder & Naumann, 2008)

2

The results of poor quality of data are often experienced in everyday life, but without

making the necessary connections to its causes. For example, the late or missed delivery of

a letter is often blamed on a dysfunctional postal service, although a closer look often

reveals data related causes, typically an error in the address, originating in the address

database. Similarly, the duplicate delivery of automatically generated post is often

indicative of a database record duplication error. Inaccurate and duplicate addresses are

examples of data quality problems. (Scannapieco et al., 2005)

Data quality is a very complex concept, the complexity results from its composition of

various characteristics or dimensions but most researchers have traditionally agreed on it to

be defined as fitness for use. Another definition for data quality is ”the distance between

the data views presented by an information system and the same data in the real

world” such a definition can be seen as an ”operational definition”, although evaluating

data quality on the basis of comparison with the real world is a very difficult task.

(Bertolazzi et al., 2003)

Although a standard set of dimensions not yet defined, the researcher’s community agrees

on a common minimal set of specific quality characteristics. Characteristics that captures a

specific aspect of quality and data satisfying those quality characteristics is said to be of

high quality. (Müller & Freytag, 2003)

 The most commonly referenced dimensions include accuracy, completeness, currency and

consistency. These four dimensions are only some of a large set of dimensions proposed in

the data quality literature. For instance, many subjective dimensions have also been

3

proposed to characterize data quality, including, among others, reputation, objectivity,

believability, interpretability. (Scannapieco et al., 2005)

1.2 Duplicate Record Detection and Blocking

The problem that we study has been known for decades as the record linkage or the record

matching problem in the statistics community where the goal of record matching is to

identify a group of records from different sources that refer to the same real world entity.

Many recent studies have pointed out that similar types of problem have been described

differently in different research fields, for example In the database community, the problem

is described as merge-purge, data deduplication which emphasizes the elimination of

duplications in a database. Also the same problem is described as instance identification,

database hardening and name matching in the Artificial Intelligence community. The names

coreference resolution, identity uncertainty, and duplicate detection are also commonly

used to refer to the same task. We will use the term duplicate record detection in this thesis

or simply duplicate detection. (Aizawa & Oyama,2005), (Elmagarmid et al., 2007)

Duplicate record detection can be defined as” the process of identifying different or

multiple records that refer to one unique real world entity or object”. Typically, the

process of duplicate detection is preceded by a data preparation stage during which data

entries are stored in a uniform manner in the database, resolving (at least partially) the

structural heterogeneity problem. The data preparation stage includes a parsing, a data

transformation, and a standardization steps in order to transform the data present in the

sources into a common representation. In this stage, many problems arise such as naming

conflicts happened when the same name is used for different objects (homonyms) or

4

different names are used for the same object (synonyms). For example, surname may be

used to represent last name in one data set, while family name may be used to represent last

name in another data set. Also, state and district may be used to describe addresses in

different data sets. (Bleiholder & Naumann, 2008)

The approaches that deal with data preparation are also described under using the term ETL

(Extraction, Transformation, Loading). These steps improve the quality of the in-flow data

and make the data comparable and more usable. (Gu et al., 2003)

After the data preparation phase, the data are typically stored in tables having comparable

fields. The next step is to identify which fields should be compared. For example, it would

not be meaningful to compare the contents of the field surname with the field Address.

Even after parsing, data standardization, and identification of similar fields, it is not trivial

to match duplicate records. Misspellings and different conventions for recording the same

information still result in different, multiple representations of a unique object in the

database. For example, in the bibliographic data sets, one may store the first name and last

name of an author (e.g. “Musbah Aqel”), while another data set may store only the initials

and the last name of the person (e.g. “M. M. Aqel”) and simply integrating them without

eliminating these duplicates will result in data with redundancy. (Elmagarmid et al., 2007)

The duplicate detection methods have its roots from the record linkage theory and share

many techniques used to solve the same problems. It’s worth highlighting the main phases

of a record linkage process that is applicable to duplicate detection process where major

phases include as shown in Figure 1.1: (Cibella et al., 2008)

1. Pre-processing of the input files

5

2. Choice of the identifying attributes (matching variables)

3. Choice of the comparison function

4. Creation of the search space of link candidate pairs

5. Choice of the decision model

6. Selection of unique links

7. Record linkage evaluation

Figure 1.1: Phases of a record linkage project (Cibella et al., 2008)

One of the most important stages in any record linkage and duplicate record detection

process is the reduction of the search space of the candidate pairs. To reduce the large

amount of potential record pair comparisons, traditional data linkage techniques employ

blocking where a single record attribute or a combination of attributes called the blocking

key value is used to split the databases into blocks. All records having the same value in the

blocking key will be inserted into one block, and candidate record pairs are then generated

only from records within the same block. While the aim of blocking is to reduce the

number of record pair comparisons made as much as possible (by eliminating pairs of

6

records that obviously are not matches), it is important that no potential match is removed

by the blocking process. The candidate record pairs generated by the blocking process are

then compared using a variety of comparison functions applied to one or more (or a

combination of) records attributes. And finally a decision is made to classify each pair as

matches, unmatched and possible matches. (Christen , 2007)

1.3 Motivation

The revolution and advances in the field of database systems and computer networks open

the door widely for the need to access and manage information from a variety of sources

and applications using different data models, representations and interfaces has created a

great demand for tools supporting data and systems integration. One reason for this need

was the paradigm shift from centralized to client-server and distributed systems, with

multiple autonomous sources producing and managing their own data. A more recent cause

for the interest in integration technologies is the emergence of E-Commerce and its need for

accessing repositories, applications and legacy systems located across the corporate intranet

or at partner companies on the Internet.

The motivation for the work in this thesis mainly comes from my work for many years as a

programmer and database administrator which have encourage me to focus on the

integration of multi-source information systems. And one of the major motivation for this is

the need to find the best and optimal method for detecting duplicates data in such systems

in my enterprise in order to provide a comprehensive view of data represented in different

ways and to help the users of such systems to automate the process of duplicate detection

7

so that they don’t have the need to directly interact and manually deal with the underlying

data.

1.4 Problem Definition

Many organizations and businesses collect vast amounts of data. The need for techniques

that allow efficient processing and analyzing of such data is essential and important in such

projects. One of the most important stages in this process is the pre-processing stage where

the detecting and removing of duplicate records that relate to the same entity within one

database. Similarly, linking or matching records relating to the same entity from several

databases is often required as information from multiple sources needs to be integrated,

combined or linked in order to enrich data and allow more detailed data mining analysis.

The aim of such integration is to match and aggregate all records relating to the same

entity, such as a patient, a customer, a person.

 Duplication detection can be used to improve data quality and integrity to allow re-use of

existing data sources for new studies, and to reduce costs and efforts in data acquisition.

A major challenge to achieve such goals is that many systems depend on the accuracy of

databases to carry out operations. Therefore, the quality of the information (or the lack

thereof) stored in the databases can have significant cost implications to a system that relies

on information to function and conduct business. In an error-free system with perfectly

clean data, the construction of a unified view of the data consists of linking or joining two

or more records on their key fields. Unfortunately, data often lack a unique, global

identifier that would permit such an operation.

8

Efficiency is another major challenge in duplicate detection especially when the data sets

are large. In real life data sets, most record pairs are not duplicates, and comparing them

will waste plenty of time and resources .To reduce the large amount of potential record pair

comparisons, a number of blocking methods have been proposed to reduce the number of

comparisons in order to improve the efficiency whilst still maintaining accuracy.

These methods needed to be evaluated for quality, efficiency and performance within a

common framework, in order to answer questions such as: How does the blocking method

improve the quality of the resulting candidate record pairs? Which blocking method

performs best for databases with certain characteristics? Which methods have the highest

performance for a given resource?

1.5 Contribution

Given these requirements and challenges, we proposed a framework for duplicate record

detection that takes its roots from generic designs suggested and used in solving record

linkage and duplicate detection problems. Also, we evaluated the performance of the major

methods used in the blocking stage which is part of any duplicate record detection process.

Below are the contributions we make in this thesis.

• We have surveyed the duplicate record detection problem and introduced some of

the latest advances in the recent years, we briefly discussed the major steps in the

duplicate detections process and take a closer look of data quality and how it’s

related to duplicate detection problem. We presented the major methods used for

matching records attributes and the strings similarity functions used .We presented

and classified the decision models used in identifying duplicates records.

9

• We have surveyed the major blocking methods used in the blocking process and

introduced some of the new methods being used. We presented and classified the

major methods used to improve the efficiency using blocking and the measurement

tools used to measure its quality and efficiency.

• We experimentally implemented two recently developed, blocking methods, the

sorted blocks and standard suffix array and its improvements, with two older

methods, the standard blocking and sorted neighborhood blocking using the same

data set and the same decision model and evaluated the results of these methods

using the standard measurements tools.

1.6 Thesis Outline

The remainder of this thesis is organized as follows. In chapter 2, we review the most

important literature related to the duplicate record detection. In chapter 3, we describe the

main elements of our framework design for duplicate record detection problem. In chapter

4, we present the conducted experiments with their used settings and their results. Finally,

the conclusions and future work are presented in chapter 5. Our thesis includes also

references and appendices.

10

CHAPTER 2

LITERATURE REVIEW

In this chapter, we present a comprehensive review of the literature on duplicate record

detection. In Section 2.1, we review several blocking methods that are used to improve the

efficiency and scalability of approximate duplicate detection methods. In Section 2.2, we

review the similarity measures that are commonly used to detect similar attributes values.

In Section 2.3, we review decision models that are used for matching records with multiple

attributes. In Section 2.4, we present a range of tools that are used for duplicate detection.

Finally in Section 2.5, we presented some of the most important related studies in the field

of duplicate record detection.

2.1 Blocking Methods

Efficiency is a major challenge in duplicate detection especially when the data sets are

large. In real life data sets, most records pairs are not duplicates, and comparing them will

waste plenty of time and resources and similarly for data linkage if unique entity identifiers

(or keys) are available in all the databases to be linked, then the problem of linking at the

entity level becomes trivial: a simple database join is all that is required. (Christen , 2007)

However, in most cases no unique keys are shared by all records and for two data sets, A

and B, are to be linked, potentially each record from A has to be compared with all records

from B. The total number of potential record pair comparisons thus equals the product of

the size of the two databases, |A|×|B|. With |A|, |B| denoting the number of records in the

data set. For example, linking two databases with 100,000 records each would result in 1010

11

(ten billion) record pair comparisons. On the other hand, the maximum number of true

matches corresponds to the number of records in the smaller database (assuming there are

no duplicate records in the databases, and one record in database A can only match to one

record in database B, and vice versa). Thus, the space of potential links becomes sparser

when linking larger data sets, while the computational efforts increase exponentially.

(Christen & Churches, 2005)

Similarly, when detecting duplication in a data set A, the total number of possible record

pair comparisons is |A| x (|A| -1)/2. The performance bottleneck in a duplicate detection

process is usually the expensive detailed comparison of fields (or attributes) between pairs

of records, making it unfeasible to compare all pairs when the databases are huge.

Therefore, while the computational efforts increase quadratically, the number of potential

true matches only increases linearly for deduplication, where the number of duplicate

records is always less than the number of records in a data set. (Christen, 2007)

To reduce the large amount of possible record pair comparisons, a number of methods have

been proposed to reduce the number of comparisons in order to improve the efficiency and

at the same time still maintain accuracy. These methods group the data set into blocks or

clusters of records where a single record attribute or a combination of attributes called the

blocking key value (BKV) is used to split the databases into blocks with respect to a

defined criterion or some threshold values. All records having the same value in the

blocking key will be inserted into one block, and candidate record pairs are then generated

only from records within the same block. (Baxter et al., 2003) ,(Christen,2007)

,(Tamilselvi & Saravanan, 2009)

12

Blocking is essential in order to make duplication detection possible at all, and to improve

the efficiency of the duplication detection process. Blocking, however, will reduce the

detection quality, as it is likely that some true matched record pairs will be removed by the

blocking process, if records are not being inserted into the correct block (or blocks) due to

variations and errors in their BKVs. The blocking process can be split into the following

two steps.

1. Build: All records from the data set are read, the blocking key values are created from

record attributes, and the records are inserted into an index data structure. For most

blocking methods, a basic inverted index can be used. The blocking key values will

become the keys of the inverted index, and the record identifiers of all records that have

the same blocking key value will be inserted into the same inverted index list. (Christen

,2007)

2. Retrieve: Record identifiers are retrieved from the index data structure block by block,

and candidate record pairs are generated. Each record in a block will be paired with all

other records in the same block. The generated candidate record pairs are then

compared and the resulting vectors containing the numerical comparison values are

given to a classifier.

We should note that the choice of blocking keys is usually done manually by domain and

duplication detection experts and are usually chosen to be very general in order to produce

a high quality result, while also producing a reasonable reduction in the amount of data

required to compare against for each record to be matched. Only recently have learning

approaches been explored that aim to automate this step. (De vries et al., 2009)

13

A blocking key can be defined as either the values taken from a single record attribute (or

parts of values, like the first two initial letters only), or the concatenation of values (or parts

of them) from several attributes. To reduce the effect of variations, and typographical and

other spelling errors, phonetic encodings, such as Soundex, are commonly used when

blocking keys are generated. They work by encoding names such that similar sounding

values are replaced by the same code. (Christen , 2007)

Next we present some of the major blocking methods that are used to improve the

efficiency and scalability of duplicate detection process.

 2.1.1 Standard Blocking Method

The Standard Blocking (SB) method group records into disjoint blocks where they have the

same blocking key value and then compare all pairs of records only within each block. A

blocking key is defined to be composed from the record attributes of the data set. Assuming

a data set with N records needed to be deduplicated, and the blocking method resulted in B

blocks (all of the same size containing N/B records), the resulting number of record pair

comparisons is O (N2/B). Thus, the overall number of comparisons is greatly reduced. This

is of course the ideal case, hardly ever achievable with real data. Thus, the number of

record pair comparisons can be dominated by the largest block. (Baxter et al., 2003)

14

Figure 2.1: Standard blocking method (Draisbach & Naumann, 2009)

An important decision for the blocking method is the choice of a good partitioning

predicate or blocking key, which determines the number and size of the blocks. They

should be chosen in a manner that potential duplicates appear in the same block. For

example in Customer Relationship Management (CRM) applications a typical blocking is

by zip-code or by the first few digits of zip-codes. If two duplicate records have retained

the same zip code, they appear in the same block and thus can be recognized as duplicates.

Other partitioning might be by last name or some fixed-sized prefix of them, by street

name, by employer, etc. (Draisbach & Naumann, 2009)

 In general, blocks of roughly same size are preferable. For simplicity we use in our work

blocks of an equal size as shown in Figure 2.1. In Appendix 1.a we listed our

implementation algorithm for standard blocking method.

Although blocking can substantially increase the speed of the comparison process, it can

also lead to an increased number of false mismatches due to the failure of comparing

records that do not agree on the blocking field. It can also lead to an increased number of

missed matches due to errors in the blocking step that placed entries in the wrong blocks,

thereby preventing them from being compared to actual matching entries. One alternative is

15

to execute the duplicate detection algorithm in multiple runs, using a different field for

blocking each time. This approach can substantially reduce the probability of false

mismatches, with a relatively small increase in the processing time. (Elmagarmid et al.,

2007)

Also other major drawbacks of standard blocking are the sizes of the blocks generated. As

these sizes depend upon the frequency distributions of the blocking key values, it is

difficult to predict the total number of candidate record pairs generated by this blocking

technique. (Christen , 2007)

2.1.2 Sorted Neighborhood Method

Sorted Neighborhood Method (SNM) or Windowing method is slightly more elaborate than

standard blocking method. The SNM is proposed by Hern´andez and Stolfo to effectively

reduce the number of comparisons by limiting the similarity measures on a small portion of

the data sets. The method can be summarized in three steps. (Hernández & Stolfo, 1998)

1- Create key: A blocking key for each record in the data set is computed by

extracting relevant attributes, or a sequence of substrings within the attributes,

chosen from the record in an ad hoc manner. Attributes that appear first in the

key have a higher priority than those that appear subsequently. For example the

key may composed from first three constants characters of a person surname

concatenated by the first three constants characters of a person given name and

first 3 digits of the social security id.

Given name Surname Address Social security id Key

Sarah Bright Hardman Street 456769608828987 BRGSRH456

16

2- Sort data: The records in the data set are sorted by using the blocking key value

created in the first step.

3- Merge: A window of fixed size w >1 is moved through the sequential list of

records in order to limit the Comparisons for matching records to those records

in the window. If the size of the window is w records, then every new record

that enters that window is compared with the previous w - 1 record to find

“matching” records. The first record in the window slides out of it as shown in

Figure 2.2.

Figure 2.2: Sorted neighborhood method (Draisbach & Naumann, 2009)

 For example using zip-codes as blocking key in the Sorted-Neighborhood method, we sort

the data according to the zip-code, and then slide a window of fixed sized across the sorted

data and compare pairs only within the window. The use of the window limits the number

of possible record pair comparisons for each record to w −1. The resulting total number of

record pair comparisons for a data set with n records using the sorted neighborhood method

is O (wn). In Appendix 1.b we listed our implementation algorithm for Sorted

Neighborhood Method.

17

We can see that the accuracy of the SNM method depends on the quality of the keys

chosen. A poorly chosen key will filter out a lot of true duplicates. Also, the size of the

window is very important. For records with a large number of duplicates, a small window

size will result in the same result as that of a poorly-chosen key, and a large window size

will bring in too much unnecessary comparisons. The size of the window (typically

between 10 and 20) represents the trade-off between efficiency and effectiveness; larger

windows yield longer run times but detect more duplicates. (Draisbach & Naumann, 2009)

To solve this problem, Hernandez and Stolfo implemented a multi-pass sorted

neighborhood method which Execute the SNM method independently several times and

each time the records are sorted using a different key and a small window size. Finally the

result is computed by merging the results from the multi-pass. (Hernández & Stolfo, 1998)

2.1.3 Sorted Blocks Method

Draisbach & Naumann presented a new generalized algorithm, the Sorted Blocks method

that generalized the blocking algorithm and slightly improves upon it in terms of efficiency

for detecting duplicates against the overall number of comparisons. (Draisbach &

Naumann, 2009)

The basic idea of the Sorted Blocks method is to sort all records so that duplicates are close

in the sort sequence, then partition the records into disjoint sorted subsets, and finally to

overlap the partitions. The size of the overlap can be defined using u, e.g., u = 3 means that

three records of each neighboring partition are part of the overlap, which hence has a total

size of 2u. Within the overlap, a fixed size window with size u + 1 is slide across the sorted

data and all records within the window are compared. In this way, the additional

18

complexity of the overlap is linear. Note that this windowing method is used only in the

overlapping part; within a partition all pairs of records are compared.

Figure 2.3 shows the Sorted Blocks method for partitions with equal size and an overlap u

= 2. Within a partition, each record is compared with all other records. The overlap

between the partitions results in several windows, which have to be checked for duplicates.

For instance, overlap between partitions P1 and P2 has windows F(P1;P2) and between

partitions P2 and P3 has windows F(P2;P3) .

Figure 2.3: Sorted blocks method.

The sorted blocks parameterize the degree of overlap from none (Blocking method) to w-1

(Sorted Neighborhood method). In Appendix 1.c we listed our implementation algorithm

for the Sorted Blocks Method using equal block sizes with an overlap partition equal to the

half block size.

19

2.1.4 Standard Suffix Array Blocking Method

The Suffix Array blocking method proposed by Akiko Aizawa and Keizo Oyama as a fast

and efficient domain independent method for blocking of large scale record linkage for

multi-source information integration. (Aizawa & Oyama , 2005)

 The basic idea is to insert the blocking key values (BKV) and their variable length suffixes

into a suffix array based inverted index (an indexing structure). The suffix array contains

strings and their suffixes in an alphabetically sorted order. The purpose of the indexing

structure is to find a set of references to original records that contain a certain suffix, when

queried with that suffix. (Christen , 2007)

In this blocking technique, only suffixes down to a minimum length min_suff_length are

inserted into the suffix array. For example, for a blocking key value `Christen' and a

minimum length min_suff_length = 3, will be decomposed into the following suffixes

values `Christen', `hristen', `risten', `isten', `sten', and `ten', then it will be inserted into the

suffix array (along with the identifiers of all records that have this BKV will be added to

the corresponding inverted index lists). Similar to Q-gram based and canopy clustering

blocking, the identifier of each record will be inserted into several blocks (i.e. inverted

index lists), according to the length of its blocking key value (a blocking key value of

length c character will be inserted into c - min_suff_length + 1 index lists).

After generating suffix array from its BKVs, and inserting the suffixes from these suffix

array into the indexing structure, one further optimization step is carried out in order to

limit the maximum block size, only values in the suffix array inverted index that have less

than a maximum number block of record identifiers in their corresponding list will be used.

20

So they introduced the Max_block_size parameter for this purpose to deal with low values

of minimum suffix length especially when some words may all feature a common suffix.

 This occurrence can result in the block for common suffixes such as ‘ing’ to be extremely

large, and this has a significant adverse effect of the efficiency of the suffix array blocking

method. Therefore, a basic rule is introduced to remove any particular block entirely if it

contains references of more than Max_block_size . For example, if the suffix array value

`ten' appears in 20 records, and the value `sten' in only 5 records, and Max_block_size = 6,

then `ten' is considered to be too general and is not used in the retrieve step (when blocks

are extracted and record pairs are generated), as it would produce too many pairs. (De vries

et al., 2009)

The Suffix Array blocking method retains accuracy by allowing the correct blocking of

records that share common rare suffixes, even if they are short, while excluding very

common suffixes. Since each input BKV is decomposed into multiple suffixes, the removal

of the block for some of these suffixes does not adversely affect the result. Another

advantage of suffix array blocking over traditional blocking is that it is not prone to

blocking key value errors. If errors occur in the BKVs, usually not all of the suffixes of

these BKVs will change, only some of the longer ones. One record will be inserted into

several blocks, adding a form of redundancy to try to ensure that true matched record pairs

are grouped into the same block at some stage.

Analysis of the Suffix Array blocking against many recent alternatives found that the

efficiency gain is very high for this method, but the accuracy can suffer with standard data

21

sets and when the blocking key value is chosen by concatenating several key fields, as is

the standard for comparison.

2.1.5 Improved Suffix Array Blocking Method

Timothy de vries and others have proposed some improvements to enhance the limitations

of the suffix array blocking method such as when two BKV substrings may be long enough

to surpass the minimum suffix length parameter, and contain just one small difference due

to misspellings or typographical errors, resulting in an inability to group these two BKVs

into the same block. For example consider the BKVs ‘tophills’ and ‘topbills’ with a

minimum suffix length min_suff_length = 5 , the suffix array will be ‘hills’, ‘phills’,

‘ophills’, and ‘tophills’ for the first BKV, and ‘bills’, ‘pbills’, ‘opbills’, and ‘topbills’ for

the second. Clearly, most of these suffixes have a high similarity. However, the standard

suffix array blocking method will not group any of these suffixes into the same block,

causing it to miss the comparison that should be carried out between these two BKVs. (De

vries et al., 2009)

De vries propose an approach towards solving this problem, by carrying out a grouping

operation on similar suffixes using many methods for grouping or clustering of these

suffixes. However we should consider the time complexity of the indexing method in order

to avoid an overall scalability decrease for duplication detection such as the large number

of comparisons between the BKV suffixes.

A simple method for grouping that does not cause adverse scalability reductions can be

implemented by only checking nearby neighbors when carrying out the grouping.

Specifically by implementing a method that can iterate over the sorted set of BKV suffixes,

22

comparing each current suffix with the following one using a similarity metric to compare

BKV suffixes such as edit distance , Q-grams or Longest Common Subsequence (LCS)

operator. If a similarity exists, the following suffix can be merged into the same group as

the current suffix. If no similarity exists, the method continues with the next suffix

becoming the one currently being processed.

Appendix 1.d listed our implementation algorithm for the suffix array using similarity

functions for suffix array comparison.

2.1.6 Q-gram Based Blocking Method

This method aims to allow blocking such that variations in the blocking key values (like

deletions, insertions or substitutions of characters) do not affect the blocking process. It

works by inserting records into more than one block. This is achieved by transforming the

blocking key values into lists of Q-grams (sub-strings containing q characters), and creating

all combinations of sub-strings down to a certain length (determined by a threshold value t

between 0.0 and 1.0 which designates the fraction of the shortest sub-lists to be generated

relative to the length of the Q-gram list). The resulting Q-gram sub lists are sorted and

inserted into an inverted index, which will be used to retrieve the corresponding record

numbers in a block. (Gu &Baxter , 2004) , (Christen , 2007)

For example, assume a blocking key value `peter', q =2 and a threshold value of t = 0.8.

The 2-gram list for this value is [`pe',`et',`te',`er'] with four elements, and using the

threshold 0.8 results in 4 x 0.8 = 3:2, rounded to 3, which means all sub-list combinations

with a length of 3 are generated: [`et',`te',`er'], [`pe',`te',`er'], [`pe',`et',`er'],and [`pe',`et',`te'].

Therefore, the record identifiers of all records with blocking key value `peter' will be

23

inserted into five inverted index lists (the original 2-gram list is also used as inverted index

key) with key values `peetteer', `etteer',`peteer', `peeter', and `peette'.

The number of sub-lists created for a blocking key value depends both on the length of the

key value and the chosen threshold. The lower the threshold the shorter the sub-lists and

therefore many different inverted index key values. But also the more sub-lists there will be

per blocking key value result in smaller blocks in the inverted index. (Baxter et al., 2003)

Like standard blocking, the number of record pair comparisons with two data sets with N

records each and B blocks all contain the same number of records is O (N2/B). However,

the number of blocks b will be much larger in Q-gram blocking. For a blocking key value

of length n characters, there will be (n - q + 1) Q-grams, and therefore n sub-lists containing

(n - 1) Q-grams, n x (n - 1) sub-lists containing (n - 2) Q-grams, etc. This explosion in the

number of sub-lists limits Q-gram based blocking to short blocking key values. (Christen ,

2007)

 2.1.7 Canopy Clustering Method

 Canopies are a two-step efficient clustering method for high dimensional data sets that

have been proposed for speeding up duplicate detection process. The key idea behind this is

to use a cheap similarity measure such as Jaccard to roughly partition the whole data set

into a number of overlapping clusters or subsets which are referred to as canopies and then

employ standard similarity measures to compare records within the same canopy. For

attributes with text values, they use an inverted index to efficiently construct canopies. This

method is also used for reducing the computational cost. (Elmagarmid et al., 2007)

24

Others also propose the use of Canopy Clustering with TFIDF (Term Frequency/Inverse

Document Frequency) forms blocks of records based on those records placed in the same

canopy cluster. A canopy clusters formed by choosing a record at random from a candidate

set of records (initially, all records) and then putting in its cluster all the records within a

certain loose threshold distance of it. The record chosen at random and any records within a

certain tight threshold distance of it are then removed from the candidate set of records.

(Baxter et al., 2003)

 Both Jaccard or TFIDF/cosine similarities are based on Q-grams (or more generally,

tokens) and can be implemented efficiently using an inverted index with the Q-grams.

Where the blocking key values are first converted into Q-gram lists and then each Q-gram

is inserted into an inverted index. For TFIDF/ cosine similarity additional information has

to be calculated: for each unique Q-gram the number of records that contain the Q-gram,

i.e. its term frequency (TF); and within the inverted index the document frequency (DF) for

each Q-gram in each record (i.e. the frequency of a Q-gram in a blocking key value). Once

all records in a database have been read and processed, the TF and DF values can be

normalized and the inverse document frequency (IDF) can be calculated for each Q-gram.

No such frequency information or normalization is required for Jaccard similarity. (

Christen , 2007)

When record identifiers are retrieved from the inverted index they are inserted into a pool

of candidate records. Canopy clusters are then generated by randomly selecting a record

from the pool (which will become the centroid of the cluster), and adding all records from

the pool into the cluster that are closer than a loose similarity value threshold tloose. Of

25

these, all records within a tight similarity threshold ttight, with ttight >> tloose are removed

from the candidate pool of records (these are the records that have the most similar

blocking key values to the centroid record). This process is repeated until no candidate

record is left in the pool.

Using the Jaccard measure, the similarity between two records is calculated as the number

of Q-grams in the two blocking key values in common is divided by the union of Q-grams

in the two values. Where the TF-IDF/cosine similarity is calculated in a related way, but

additionally TF and IDF values are included, which makes the calculations computationally

more expensive. If both thresholds tloose and ttight are set to a value of 1.0 (i.e. only exact

similarity), the canopy clustering method reduces to standard blocking.

Similar to the previously described blocking methods, the canopy clustering approach with

global thresholds tloose and ttight will result in blocks (i.e. canopy clusters) of different sizes

(even though the TF-IDF/cosine similarity measure to some degree adjust similarity

weights according to the frequency of the Q-grams in the blocking key values). The number

of record pair comparisons resulting from canopy clustering is O(fn2/c) where n is the

number of records in each of the two data sets, c is the number of canopies and f is the

average number of canopies a record belongs to. The threshold parameter should be set so

that f is small and c is large, in order to reduce the amount of computation. However, if f is

too small, then the method will not be able to detect typographical errors. (Baxter et al.,

2003), (Christen, 2007)

26

2.1.8 String Map Based Blocking Method

This method is originally based on the idea of mapping the blocking key values (assumed

to be strings) to objects in a multi-dimensional Euclidean space, such that similarities (or

distances, like edit distance) between pairs of strings are preserved followed by finding

pairs of objects in this space that are similar to each other. Others have modified the

FastMap algorithm into StringMap, which has a linear complexity in the number of strings

to be mapped. (Christen , 2007)

This algorithm iterates over d dimensions; for each it finds two pivot strings and then forms

orthogonal directions and calculates the coordinates of all other strings on these directions.

In the second step, the authors use R-trees as multidimensional data structure in

combination with a queue to efficiently retrieve pairs of similar strings. Choosing an

appropriate dimensionality d is done using a heuristic approach that tries a range of

dimensions and selects the one that minimizes a cost function (dimensions between 15 and

25 typically seem to achieve good results) .In implementation, the replacement of the R-

tree data structure with a grid based index, as most tree-based multidimensional index

structures degrade rapidly with increasing dimensionality. It is reported that with more than

15 to 20 dimensions, in most tree based indices all objects in an index will be accessed

when performing similarity searches.

The grid based index works by having a regular grid of dimensionality d implemented as an

inverted index in each dimension (i.e. all objects mapped into the same grid cell in a

dimension are inserted into the same inverted index list). The Retrieve step is implemented

in a similar way as canopy clustering described above. An object (blocking key value) is

27

randomly picked from the pool of (initially all) objects, and the objects in the same, as well

as in the neighboring grid cells, are then retrieved from the index. Similar to canopy

clustering, two thresholds tloose and ttight are used to put objects into clusters.

This blocking method can be modified by replacing the global thresholds with nearest-

neighbor parameters nloose and ntight in the same way as described with canopy clustering.

2.2 Attribute Similarity Measures

Given a pair of records, most traditional duplicate detection approaches employ generic

string similarity measures or domain specific measures to compute the attribute similarity

and make decisions based on the similarity score. Typographical variations of string data is

among the most common sources of mismatches in database entries therefore, duplicate

detection typically relies on string comparison techniques to deal with these variations.

In addition to the typographical variations in attribute values the data entry operations will

determine the types of errors and their distribution such as: (Christen, 2006)

� Handwritten forms are scanned and optical character recognition (OCR) is applied the

most likely types of errors will be substitutions between similar looking characters (like

‘q’ and ‘g’), or substitutions of one character with a similar looking character sequence

(like ‘m’ and ‘r n’, or ‘b’ and ‘l i’).

� Manual keyboard based data entry will mainly result in wrongly typed neighboring

keys (for example ‘n’ and ‘m’, or ‘e’ and ‘r’).

� Data entry over the telephone (for example as part of a survey study) is a confounding

factor to manual keyboard entry. The person doing the data entry might not request the

28

correct spelling, but rather assume a default spelling (which is based on the person’s

knowledge and cultural background).

� Limitations in the maximum length of input fields can force people to use

abbreviations, initials only, or even disregard some parts of a name.

� People themselves sometimes report their names differently depending upon the

organization they are in contact with, or deliberately provide modified or wrong names.

In addition to string similarity measures there are multiple methods have been developed

for the task of approximate string matching, and each method works well for particular

types of errors. Table 2.1 shows some of the available functions used during the

comparison process.

Exact string either field value strings are the same or not

Truncated string only consider beginning of strings

Approximate string using Jaro, Winkler, Edit distance, Bigram etc. algorithm

Keying difference allow a certain number of different characters

Encoded string using Soundex, NYSIIS, Phonex etc. algorithm

Date allow day tolerance

Time allow minute tolerance

Numeric absolute allow absolute tolerance

Numeric percentage allowing percentage tolerance

Age allow percentage tolerance

Distance allow kilometer tolerance, for example for postcode cancroids

Table 2.1: Available attribute comparison functions (Christen & Churches, 2005)

In this thesis we will focus on string similarity measures that basically can be classified into

three categories: Character-Based Similarity Metrics, Token-Based Similarity Metrics, and

Phonetic Similarity Metrics. (Elmagarmid et al., 2007)

Next, we describe each category of these metrics and give some examples of them.

29

2.2.1 Character-Based Similarity Metrics

Character-level similarity measures match strings character by character. The edit distance

is one of the most commonly used measures for string similarity. It models the conversion

from one string to the other in three operations: insertion, deletion, and substitution. The

edit distance between two strings is then given by the minimum number of operations

required to transform one string to the other. Waterman generalizes the edit distance by

allowing multiple deletions and insertions to handle strings that are either truncated or

shortened. Furthermore, for strings with mismatches at the beginning and at the end, Smith

and Waterman extend the edit distance by assigning lower costs to the characters at the

beginning and the end of a string than in the middle because they observe that it is less

likely to make mistakes in the middle of a string than at the beginning and the end. (Cohen

et al., 2003) (Elmagarmid et al., 2007)

2.2.1.1 Levenshtein Edit Distance

Levenshtein edit distance is named after the Russian scientist Vladimir Levenshtein, who

devised the algorithm in 1965. It is defined as the minimum number of edit operations

required to change one string S1 into another S2 (not necessarily of the same length). It is

calculated using a dynamic programming algorithm. (Elmagarmid et al., 2007) .The edit

distance metrics work well for catching typographical errors, but they are typically

ineffective for other types of mismatches.

There are three types of edit operations: (Wang, 2008)

� Insert a character into the string,

� Delete a character from the string,

30

� Substation or replacing one character with a different character.

For Example consider S1= quickly , S2= qucehkly

The edit distant between s1 and s2 is denoted by Ed (S1, S2) =3

There are multiple answers for their transformation, one of them as follow ,the deletion of i

from S1 ,the insertion of e after c in S1 and the insertion of h before k in S1 .

Each one the above transformations are called an alignment and represent a possible

explanation of the error made.

The time-complexity of the edit distance algorithm is O (|S1|*|S2|), where |S1|,|S2| are the

string length. I.e. O (n2) if the lengths of both strings are about `n'. (Elmagarmid et al.,

2007)

Figure 2.4 shows the algorithm used for a the edit distance that takes two strings, S1 of

length m, and S2 of length n, and computes the edit distance between them: (Black, 2008)

Int LevenshteinDistance(char s1[1..m], char s2[1..n])

 { // d is a table with m+1 rows and n+1 columns

 declare int d[0..m, 0..n]

 for i from 0 to m

 d[i, 0] := i // deletion

 for j from 0 to n

 d[0, j] := j // insertion

 for j from 1 to n

 { for i from 1 to m

 { if s1[i] = s2[j] then

 d[i, j] := d[i-1, j-1]

 else

 d[i, j] := minimum (d[i-1, j] + 1, d[i, j-1] + 1 ,

 d[i-1, j-1] + 1)

 }

 }

 return d[m, n] }

Figure 2.4: Levenshtein Edit Distance algorithmes

31

The edit distance similarity metric between two strings is constructed ranging from 0 to 1.0

using a normalized formula. (Wang, 2008)

Where Maxlen is the maximum length of the two strings and ED is the edit distance

between S1 and S2. (i.e. minimum number of edit operations required to change one string

S1 into another S2) , where a similarity value of 1.0 means that that the two strings are

exactly the same , and zero indicates a little similarity . Table 2.2 provides more examples

of similarity values obtained using the edit distance algorithms for several pairs of

surnames.

S1 S2 ED(S1,S2) Sim(S1,S2)
chamberlain chambernain 1 0.909

chilcrott childott 2 0.777

armqsorqng armstcrong 4 0.600
verdouw werduow 3 0.571

dixon dickson 3 0.571

Table 2.2: Examples of similarity values obtained using edit distance algorithm

2.2.1.2 Jaro Distance Metric

Jaro introduced a string comparison algorithm that was used for comparison of first and last

names, and mainly takes into account typical spelling deviation for measurement of

closeness of two strings for comparison. Jaro string distance metric accounts for insertion,

deletion and transpositions. (Cohen et al., 2003)

The basic algorithm for computing the Jaro metric for two strings S1 and S2 includes the

following steps:

1- Compute the string lengths for both S1 and S2.

32

2- Find the number of common characters in the two strings; the definition of common is

that the agreeing character must be within ½ the length of the shorter string. (i.e. S1

(i) = S2(j) and |i-j| ≤ min{ |S1|,|S2|}/2)

3- Find the number of transpositions. The definition of transposition is that the character

from one string is out of order with the corresponding common character from the

other string. We compare the ith common character in S1 with the ith common

character in S2, each no matching character is transposition.

The Jaro Distances similarity metric between two strings is constructed ranging from 0 to

1.0 using a normalized formula.

Where c is the number of common characters and t is the number of transpositions, |S1| and

|S2| is the length of the S1 and S2 respectively.

For Example Lets compare S1=’Taylor’ with S2 =‘Tyalor’

Here c= 6, t=2, |S1|=|S2|=6 We got SimJaro(S1,S2) = 0.9444

 Also Lets compare S1=’Taylor’ with S2 =‘Sailor’

Here c= 4, t=0, |S1|=|S2|=6 We got SimJaro(S1,S2) = 0.7778

The above calculations means that ’Tyalor’ have a better match to ’Taylor’ with compare

to ‘Sailor’ , and this result is identical with the human judgment .

Using of Jaro’s algorithm the transposition of two characters causes less or equal of down

weighting of similarity than substitution. For example compare ‘Martha’ with ‘Marhta’ and

‘Jonathan’ with ‘Jonathon’, the values of Jaro’s similarity is 0.9444 and 0.9167

respectively. Table 2.3 shows examples of Jaro’s Similarities for people names.

33

S1 S2 Sim(S1,S2)
SHACKLEFORD SHACKELFORD 0.970

DUNNINGHAM CUNNIGHAM 0.896

NICHLESON NICHULSON 0.926

JONES JOHNSON 0.790

MASSEY MASSIE 0.889

ABROMS ABRAMS 0.889

ITMAN SMITH 0.000

JERALDINE GERALDINE 0.926

MARHTA MARTHA 0.944

MICHELLE MICHAEL 0.869

JULIES JULIUS 0.889

Table 2.3: Examples of Jaro’s similarities for names

the Jaro algorithm requires O(|S1|*|S2|) for two strings of length |S1|, |S2| , mainly due to

Step 2 in the algorithm , which computes the “common characters” in the two strings.

 2.2.1.3 Q-gram Distance

A Q-gram is a subsequence of q items from a given sequence. The items in question can be

phonemes, syllables, letters, words or base pairs according to the application. A Q-gram of

size 1 is referred to as a "unigram"; size 2 is a "bigram" (or, less commonly, a "digram");

size 3 is a "trigram"; and size 4 or more is simply called a "Q-gram". The use of bigrams or

trigrams for compression of field value can be used to measure the closeness of match.

Letter Q-grams, including trigrams, bigrams, and/or unigrams, have been used in a variety

of ways in text recognition and spelling correction. (Innerhofer-Oberperfler, 2004)

 The notion of Q-grams for given a string σ , its Q-grams are obtained by “sliding” a

window of length q over the characters of σ. Since Q-grams at the beginning and the end of

the string can have fewer than q characters from σ we introduce new Σ characters “#” and

“%” not in σ, and conceptually extend the string σ by prefixing or padding it with q - 1

occurrences of “#” and suffixing it with q -1 occurrences of “%”. Thus, each Q-gram

contains exactly q characters, though some of these may not be from the alphabet Σ .

34

The intuition behind the use of Q-grams as a foundation for approximate string processing

is that when two strings σ1 and σ2 are within a small edit distance of each other, they share

a large number of Q-grams in common. (Ukkonen, 1992)

For example consider the Q-grams of length q=3 for string “john smith” are { (##j), (#jo),

(joh), (ohn), (hn_), (n_s), (_sm), (smi), (mit), (ith), (th%), (h%%) }. Similarly, the Q-

grams of length q=3 for “john a smith”, which is at an edit distance of two from “john

smith”, are { (##j), (#jo), (joh), (ohn), (hn_), (n_a), (_a_), (a_s), (_sm), (smi),(mit), (

ith), (th%), (h%%) }. If we ignore the position information, the two Q-gram sets have 11

Q-grams in common. Interestingly, only the first five Q-grams of the first string are also Q-

grams of the second string.

The Q-grams similarity metric between two strings is constructed ranging from 0 to 1.0

using a normalized formula.

)

Where |Gs1∩Gs2| is the number of common Q-grams between S1 & S2, |Gs1| and |Gs2| is the

number of Q-grams of s1 and s2 respectively.

For the above example we have |Gs1|=12, |Gs2|=14, |Gs1∩Gs2|=11, so the similarity

between them is 0.8511 according to the above formula.

Also consider a Q-grams of length q = 3 for S1 = ’Street’ can be constructed as Gs1=

{##S, #St, Str, tre, ree, eet, et#, t##} , and S2 = ’Steret’, are Gs2 = {##S, #St, Ste, ter, ere,

ret, et#, t##} . The two strings have 4 Q-grams in common. We have |Gs1|=8, |Gs2|=8,

|Gs1∩Gs2|=4, so the similarity between them is 0.5 according to the above formula.

35

Figure 2.5 shows the algorithm for the calculation of the similarity metric between two

different strings S1 and S2. (Innerhofer-Oberperfler, 2004)

Algorithm Q-gram (S1, S2)

// Input: two strings S1 and S2

// Output: matching-quota between S1 and S2 in %

 match = 0, i = 0, j = 0

 Generate the list GS1 from S1 and the list GS2 from S2

 Sort GS1 and GS2

 While (i < |GS1 | and j < |GS2 |)

 if GS1 (i) = GS2 (j) then

 Match + +

 i + +

 j + +

 Else

 if Gs1 (i) < GS2 (j) then

 i + +

 else

 j + +

 endif

 endwhile

Return ((match / |Gs1 | + match / |Gs2 |) / 2)

End

Figure 2.5: Algorithm for calculating Q-grams similarity metric (Innerhofer-Oberperfler, 2004)

For the Q-grams complexity when sorting the lists Gs with the appropriate use of hash-

based indexes, it takes O (n log n), with n = max (|GS1 |, |GS2 |). But the average time

required for computing the Q-gram overlap between two strings O (max {|S1|, |S2|}).

(Elmagarmid et al., 2007)

It’s worth indicating that an extension to Q-grams is being adapted to add positional

information (location of a Q-gram within a string) and to match only common Q-grams that

are within a maximum distance from each other. For example, ‘peter’ contains the

positional bigrams (‘pe’,0), (‘et’,1), (‘te’,2) and (‘er’,3). If a maximum distance of

comparison is set to 1, then bigram (‘et’,1) will only be matched to bigrams in the second

36

string with positions 0 to 2. Positional Q-grams can be padded with start and end characters

similar to non-positional Q-grams, and similarity measures can be calculated in the same

three ways as with non-positional Q-grams. (Christen , 2006)

2.2.2 Token-based Similarity Metrics

Character-based similarity metrics work well for typographical errors. However, it is often

the case that typographical conventions lead to rearrangement of words (e.g., “John Smith”

versus “Smith, John”). In such cases, character-level metrics fail to capture the similarity of

the entities. Token-based metrics try to compensate for this problem by focusing on the

common terms shared by strings instead of characters. (Elmagarmid et al., 2007).

Token-Based metrics consider strings as consequences or sets of words as in S1= {W1 W2

W3 … Wn } and s2 = {W1 W2 W3 … Wn } respectively , where each word as a sequence

of characters as in character-based ring matching , this adds great flexibility for two

obvious reasons :(Wang, 2008)

1- Stop words and punctuation, which have no significant in content representation,

can be easily removed from strings and only meaningful strings are left to compare.

2- Abbreviations can be taken care by expressing words as sequences of characters as

in St � Street and MEU � Middle East University.

 One measure of the token-based metrics is the cosine similarity with the Vector Space

Model. The basic idea is to represent strings using vectors in which the components are the

term frequency-inverse document frequency (TF-IDF) weight of each token in strings, and

then the similarity is computed as the product of these vectors. (Cohen et al., 2003).

(Elmagarmid et al., 2007)

37

The simplest token–based field matching algorithm is the Jaccard Similarity metrics, which

counts the number of common words Nc and the number of distinct words Nd of two strings

in comparisons and take the ratio of Nc/Nd as the similarity degree of two strings. The

simple field matching algorithms is very similar to the Jaccard metrics, in which the

similarity degree is calculated by a simple formula

Where |S1| is the number of words in S1 and |S2| is the number of words in S2. (Wang ,

2008)

2.2.3 Phonetic Similarity Metrics

While the above measures focus on the spelling aspect of strings, some strings may be

phonetically similar but not similar in spelling such as “Smyth” and “Smis”. For this

problem, several phonetic similarity measures are proposed based on phonetic codings such

as Soundex, NYSIIS, ONCA, Metaphone, and Double Metaphone. These measures first

convert strings into codes using a phonetic coding scheme based on their pronunciations,

and then compare them by matching their phonetic codes. Only strings with the same

phonetic code are considered to be duplicates. Most phonetic methods including all

presented here have been developed mainly with English in mind. Several techniques have

been adapted for other languages.

2.2.3.1 Soundex

Soundex algorithm began in a patent by Robert C. Russell in 1918; the Soundex search

algorithm takes a written word, such as a person's surnames, as input and produces a

character string that identifies a set of words that are phonetically alike. It is very handy for

38

searching large databases when the user has incomplete data. For example, the word

“Kageonne” is phonetically similar to “Cajun” despite the fact that the string

representations are very different. The phonetic similarity metrics are trying to address such

issues and match such strings. (Elmagarmid et al., 2007)

The method used by Soundex is based on the six phonetic classifications of human speech

sounds (bilabial, labiodentals, dental, alveolar, velar, and glottal), which in turn are based

on where you put your lips and tongue to make the sounds. (idmatchsystems.com, 2010)

A basic algorithm for calculating Soundex coding of a string includes the following steps:

1. Capitalize all letters in the word and drop all punctuation marks. Pad the word with

rightmost blanks as needed during each procedure step.

2. Retain the first letter of the word.

3. Change all occurrence of the following letters to '0' (zero):

 'A', E', 'I', 'O', 'U', 'H', 'W', 'Y'.

4. Change letters from the following sets into the digit given:

o 1 = 'B', 'F', 'P', 'V'

o 2 = 'C', 'G', 'J', 'K', 'Q', 'S', 'X', 'Z'

o 3 = 'D','T'

o 4 = 'L'

o 5 = 'M','N'

o 6 = 'R'

5. Remove all pairs of digits which occur beside each other from the string that

resulted after step (4).

39

6. Remove all zeros from the string that results from step 5.0 (placed there in step 3)

7. Pad the string that resulted from step (6) with trailing zeros and return only the first

four positions, which will be of the form <uppercase letter> <digit> <digit> <digit>.

For example HERMAN" will code to "H06505” which will then reduce to "H650”,

Table 2.4 shows more examples of the Soundex coding.

Surnames Letters Coded Coding

Allricht l, r, c A462

Eberhard b, r, r E166

Engebrethson n, g, b E521

Hanselmann n, s, l H524

Henzelmann n, z, l H524

Lind, Van n, d L530

Lukaschowsky k, s, s L222

McDonnell c, d, n M235

McGee C M200

O'Brien b, r, n O165

Opnian p, n, n O155

Oppenheimer p, n, m O155

Swhgler s, l, r S460

Riedemanas d, m, n R355

Zita T Z300

Table 2.4: Examples of Soundex coding

Soundex acts as a bridge between the fuzzy and inexact process of human vocal interaction,

and the concise true/false processes at the foundation of computer communication. As such,

Soundex is an inherently unreliable interface. For this reason, Soundex is only usable in

applications that can tolerate high false positives (when words that don't match the sound of

the inquiry are returned) and high false negatives (when words that match the sound of the

inquiry are not returned). This limitation is true even of the best Soundex improvement

techniques available.

40

A major drawback of Soundex is that it keeps the first letter, thus any error or variation at

the beginning of a name will result in a different Soundex code. (Christen , 2006)

Other limitations of Soundex that were designed only for the 26 letters of English and the

sound mapping cover Anglo-Saxon names only or primarily the Caucasian surnames, but

works well for names of many different origins (such as those appearing on the records of

the US Immigration and Naturalization Service). However, when the names are Latin and

Chinese, this code is less satisfactory because much of the discriminating power of these

names resides in the vowel sounds, which the method ignores. (idmatchsystems.com, 2010)

 2.2.3.2 Metaphone Coding Method

This method was used for matching words that sound alike and is based on commonplace

rules of English pronunciation. Metaphone ignores vowels after the first letter and reduces

the remaining alphabet to sixteen consonant sounds, although vowels are retained when

they are the first letter. Duplicate letters are not added to the code. Zero is used to represent

the ‘th’ sound since it resembles the Greek theta when it has a line through it, and ‘X’ is

used for the ‘sh’ sound. The sixteen consonant sounds are: B X S K J T F H L M N P R Ø

W Y. (Lait & Randell, 1998)

2.2.3.3 Phonex and Phonix

 Phonex is a variation of Soundex that aims to improve the encoding quality by

preprocessing names according to their English pronunciation. Phonix goes a step further

than Phonex and applies more than one hundred transformation rules on groups of letters.

Some of these rules are limited to the beginning of a name, some to the end, others to the

middle, and some will be applied anywhere. (Christen , 2006)

41

2.2.3.4 New York State Identification and Intelligence System (NYSIIS)

The NYSIIS system differs from Soundex in that it retains information about the position

of vowels in the encoded word by converting most vowels to the letter A. Furthermore,

NYSIIS does not use numbers to replace letters; instead, it replaces consonants with other,

phonetically similar letters, thus returning a purely alpha code (no numeric component).

Usually, the NYSIIS code for a surname is based on a maximum of nine letters of the full

alphabetical name, and the NYSIIS code itself is then limited to six characters. Taft

compared Soundex with NYSIIS, and concluded that NYSIIS is 98.72 percent accurate,

while Soundex is 95.99 percent accurate for locating surnames. (Elmagarmid et al., 2007)

2.3 Decision Models

So far we have described methods that can be used to match individual fields of a record. In

most real-life situations, however, the records consist of multiple fields; making the

duplicate detection problem much more complicated and a decision must be made as to

whether consider these records as duplicate (match), not duplicate (unmatched) or possibly

duplicate (possibly match) . (Wang, 2008)

Many methods may be used for matching records with multiple fields. The presented

methods can be broadly divided into two categories: (Elmagarmid et al., 2007)

• Approaches that rely on training the data to “learn” how to match the records. This

category includes (some) probabilistic approaches and supervised machine learning

models.

42

• Approaches that rely on domain knowledge or on generic distance metrics to match

records. This category includes approaches that use declarative languages for

matching and approaches that devise distance metrics.

2.3.1 Probabilistic Matching Models

After standardizing the data sets and choosing the similarity measures, the next step is to

match every pair of potential duplicates and resolve the duplicates. To compare records, the

duplicate detection process is modeled as a probabilistic model in which the probability is

the normalized similarity score of two records between 0 and 1. Depending on the

similarity score and the given threshold, pairs of records are labeled as match, possible

match or unmatched. Monge and Elkan propose several string matching algorithms for

detecting duplicated records in the database. They first introduce a basic field matching

algorithm which treats fields as a sequence of atomic strings (sorted) and computes the

matching score by counting the number of matched strings. To address the problem of

abbreviations and ordering of strings, they propose a recursive field matching algorithm

which compares every pair of strings and chooses the maximum score as the similarity

score of two strings. Cohen implements the WHIRL system that uses the cosine similarity

measure, together with the vector space model, to measure the similarity of records.

(Elmagarmid et al., 2007)

Fellegi and Sunter proposed in 1969 that a probability that a field agrees given the record

pair examined is a matched pair (m probability) ,its also uses the probability that a fields

agrees given the records pair examined is an unmatched field (u probability) . The value of

u is calculated by occurrences of field entries within a database. Then u needs to be

43

recalculated after entry of new data or segment of new data. Guessing what the occurrences

of error is in various field approximate the value of m. The weight of matching field is

computed as log2 (m/u) and the weight of field disagreement is log2 (1-m)/ (1-u). The

composite weight of record matching is the sum of the weight for individual fields. The

greater the composite weight, the greater the probability the records are the same. (Wang,

2008)

Chaudhuri propose a fuzzy similarity measure to match records in databases. They define

three transformation operations: token replacement, token insertion, and token deletion,

each of which is associated with a cost. The similarity of two records is then measured by

computing the cost required to transform one tuple into the other using these operations.

Note that this method is different from the edit distance in that the fuzzy matching function

focuses on token level operations while the edit distance operates at the character level.

(Chaudhuri et al., 2003)

2.3.2 Supervised-Learning-Based Approaches

A problem with Probabilistic and rule-based approaches is that the weights of different

attributes and the threshold for optimal resolution results are difficult to decide. Also, some

types of records may require different measures for different attributes. Manually choosing

the measures or weights for each attribute is not only tedious but subject to produce errors.

In the presence of some labeled samples, a number of supervised learning approaches that

incorporate the properties of data sets into the similarity measures are proposed for

duplicate detection. Therefore supervised learning systems rely on the existence of training

data in the form of record pairs, prelabeled as matching or not. (Elmagarmid et al., 2007)

44

Bilenko compare several similarity measures on different benchmark data sets, they found

out that no single similarity measure can perform the best in all cases. They propose to use

similarity vectors of two references to train a binary support vector machine (SVM)

classifier and use the classifier’s confidence in the match class as a new similarity measure

for references. (Bilenko & Mooney, 2003)

2.3.3 Active-Learning-Based Approaches

One problem with supervised learning approaches is that a large training data set is

required to train a classifier and preparing such a training data set that contains enough

negative or positive representative cases is difficult. To reduce the size of training data sets

and still achieve high accuracy, some methods have been proposed using active learning

approaches.

An active learner starts with a small labeled training data set and a large pool of unlabeled

data items. It then actively picks out the important records that when labeled will improve

the performance of the learner during the learning process. Each time new labeled records

are added into the training data set, the learner will be retrained. ALIAS system is a

learning-based duplicate detection system which aims to minimize the size of labeled data

sets. For ambiguous instances that are difficult to resolve, they introduce an uncertainty

score for each instance and propose a classifier independent way to measure the uncertainty

score of instances. Using the uncertainty score, the system picks out the most uncertain

instances to be manually labeled and retrains the learner based on the users’ feedback.

Tejada uses a similar strategy for learning mapping rules. A mapping-rule learner in their

45

system actively chooses the most informative candidate mappings and thus reduces the

number of training examples. (Elmagarmid et al., 2007)

2.3.4 Rule-Based Approaches

The probabilistic model enforces pre-defined rules on records. For example, a rule can be

defined like this: if the similarity of two records is greater than threshold ø1, then they are

considered to be duplicates otherwise if the similarity is less than threshold ø2, then they are

not duplicates. The rule-based approaches aim to categorize records using these pre-defined

rules or rules learned from training data sets.

Hern´andez and Stolfo suggest the use of an equational theory to model the logic of domain

equivalence. In their system, the rules for their test data are first described and evaluated

using a declarative rule language and then converted into a more efficient C

implementation. The logic of these rules is expressed using well chosen similarity measures

and thresholds like those introduced above. For example, if two people have similar name

spellings and these people have the same address, we may infer that they are the same

person. We can note here that the selection of distance function and a proper threshold is

knowledge intensive activities that demand experimental evaluation. Figure 2.6 shows an

example of rules defined in their method. (Hernández & Stolfo, 1998)

 Given two records, r1 and r2.

 IF the last name of r1 equals the last name of r2 ,

 AND the first names differ slightly ,

 AND the address of r1 equals the address of r2

 THEN

 r1 is equivalent to r2.

Figure 2.6: Simplified rule in English to illustrate the equational theory (Hernández & Stolfo, 1998)

46

Shahri uses fuzzy logic and machine learning approaches to define the degree of match

between a pair of records by mapping of similarity values to linguistic concepts such as

“matched”, “possible matched” and “unmatched” using two step process by first

determining a quantitative measure of the comparison or attribute in question and assign a

number between 0 and 1 to represent how strongly the comparison or attributes measures

relates to the linguistic concepts. Then devising fuzzy rules to be used in the inference

engine implemented in an expert system, which uses attribute similarities for comparing

and detecting the duplicates. The advantages of utilizing fuzzy logic for fuzzy duplicate

elimination include the ability of specifying the rules in natural language easily and

intuitively so removing the hard-coding process. (Shahri & Shahri, 2006)

2.4 Duplicate Detection Tools

Next we highlight some of the software tools being developed by the record linkage and

duplicate record detection research community as an open architecture for academic and

commercial use. The importance of these software tools came from its rich architecture that

can help us in development of such tools.

2.4.1 FEBRL

FEBRL is an open source data cleaning software that provides data standardization and

probabilistic record linkage with choices of methods for blocking and comparison

functions. FEBRL’s data standardization primarily employs a “supervised machine learning

approach” implemented through a novel application of hidden Markov models. For

duplicate detection, FEBRL implements a variety of string similarity metrics, such as Jaro,

edit distance, and Q-gram distance. FEBRL also supports phonetic encoding (Soundex,

47

NYSIIS, and Double Metaphone) to detect similar names. Since phonetic similarity is

sensitive to errors in the first letter of a name, FEBRL also computes phonetic similarity

using the reversed version of the name string, sidestepping the “first-letter” sensitivity

problem. Figure 2.7 shows processing view of standard record linkage system architecture

as implemented in FEBRL. (Gu et al., 2003) (Baxter et al., 2003) (Elmagarmid et al., 2007)

Figure 2.7: Processing view architecture in FEBRL. (Baxter et al., 2003)

2.4.2 FRIL

FRIL is a fine-grained record integration and linkage tool (FRIL) that extends traditional

record linkage tools with a richer set of parameters. The users may systematically and

iteratively explore the optimal combination of parameter values to enhance linking

performance and accuracy. FRIL implements several search or blocking methods such as

the sorted neighborhood method.

48

Results of linking birth defects monitoring program and birth certificate data using FRIL

show 99% precision and 95% recall rates when compared to results obtained through

handcrafted algorithms, and the process took significantly less time to complete.

Experience and experimental result suggest that FRIL has the potential to increase the

accuracy of data linkage across all studies involving record linkage. In particular, FRIL will

enable researchers to assess objectively the quality of linked data. Figure 2.8 shows The

FRIL architecture. (Jurczyk et al., 2008)

Figure 2.8: FRIL architecture. (Jurczyk et al., 2008)

2.4.3 TAILOR

TAILOR is a record linkage toolbox that follows a layered design, separating comparison

functions from the duplicate detection logic, and can be used to build a complete record

linkage and duplicate record detection models by tuning a few parameters and plugging in

some in-house developed and public domain tools that includes performance and accuracy

metrics to compare these different models. TAILOR incorporates other ready-made tools

49

in order to provide additional functionality such as MLC++ that contains, among other

things, classification methods that are used by TAILOR in both the induction and the

hybrid record linkage models. Another tool is called DBGen which is used to generate

synthetic data files. The operation of DBGen is controlled by a large number of parameters

such as data size, duplication rate, and error probabilities in the various fields. Figure 2.9

shows TAILOR Information Flow Diagram (Elfekey et al., 2002)

Figure 2.9: TAILOR information flow diagram. (Elfekey et al., 2002)

2.4.4 BigMatch

BigMatch is a record linkage and duplicate detection program tool used by the US Census

Bureau that allows to run several different blocking criteria for two relations (a large file

and a moderate size file) by just requiring the large file to be read just once and without

requiring prior sorting of either file. The only requirement is that one of the two relations

should fit in memory. The required sorting is done on a key list in memory, and the time

required to run the program is generally modest. For each blocking criterion, the program

outputs a file of records from the large file that are plausible matches to records in the

moderate file. (Yancey, 2007)

50

Most standard US Census Bureau record linkage program features one-to-one matching

which results in each record being paired with its most likely match within its blocking

group. BigMatch program does not do this, so that an output file may contain several

records from the large file that were stored as likely matches to the same record in the

moderate file. The purpose of the BigMatch program is to function as a preprocessor that

can efficiently extract smaller files from a very large file so that these smaller files can be

used efficiently with standard record linkage software. However, the BigMatch program

has also been used for deduplicating a single file. If a file contains multiple duplicates, then

the absence of one-to-one matching can be advantageous, provided that the file can fit in

core memory. (Elmagarmid et al., 2007)

2.5 Related Studies

There has been a lot of work and researches in the field of duplicate record detection and

many systems have been implemented with different approaches to blocking. In this section

we are going to introduce some of the most important related studies in this field which

provides us a good guidance to our work.

• (Hernández & Stolfo, 1998): The authors introduced a system for accomplishing

data cleansing tasks and demonstrate its use for cleansing lists of names of

potential customers in a direct marketing-type application. The system provides a

rule programming module using an intelligent equational theory “in addition to

the sorted neighborhood method as a blocking method.

51

• (Gu et al., 2003): The authors presented the current standard practices in record

linkage methodology. The definition of the record linkage problem, the formal

probabilistic model and an outline of the standard practice algorithms and its

recent proposals. And concludes with a summary of the current methods and the

most worthwhile research directions.

• (Christen 2007): The author evaluated the traditional, as well as several recently

developed, blocking methods within a common framework with regard to the

quality of the candidate record pairs generated by them. Also propose

modifications to existing blocking methods that replace the traditional global

thresholds with nearest-neighbor based parameters.

• (Elmagarmid et al., 2007): The authors presented a thorough analysis of the

literature on duplicate record detection covering similarity metrics that are

commonly used to detect similar field entries. They also present an extensive set

of duplicate detection techniques that can detect approximately duplicate records

in a database. They also cover multiple methods for improving the efficiency and

scalability of approximate duplicate detection algorithms. In addition to coverage

of existing software tools with a brief discussion of the big open problems in this

filed.

• (Draisbach & Naumann, 2009): The authors in this paper briefly introduced and

analyzed two popular families of methods for duplicate detection. Blocking

methods and Windowing methods. Also the authors proposed a generalized

52

algorithm, the Sorted Blocks method and compared the approaches qualitatively

and experimentally.

• (Devries et al., 2009): The authors introduced an improvement to the suffix array

blocking method, together with an in-depth analysis and experimental results

showing the effectiveness of the method on real and synthetic data. Also compare

the improved method against the base method of suffix array blocking as well as

the well-known traditional blocking methods.

• (Tamilselvi & Saravanan, 2009): The authors present a general sequential

framework for duplicate detection and elimination using a rule-based approach to

identify exact and inexact duplicates and to eliminate duplicates. The proposed

framework uses six steps to improve the process of duplicate detection and

elimination. Also the authors compare this new framework with previous

approaches using the token concept in order to speed up the data cleaning process

and reduce its complexity. Analysis of several blocking key is made to select best

blocking key to bring similar records together through extensive experiments to

avoid comparing all pairs of records.

53

CHAPTER 3

DUPLICATE DETECTION FRAMEWORK DESIGN

Our design for duplicate record detection framework takes its roots from the generic

frameworks suggested and used in solving record linkage and duplicate detection problems.

(Gu et al., 2003), (Tamilselvi & Saravanan, 2009)

In Figure 3.1 we show a sequential based framework developed for detection of duplicate

records system. Each stage in this framework represents a part or subsystem of the whole

system. In our implementation for evaluation of blocking methods, we have only

implemented the needed stages or part of them required for basic functionality to help us

focus on problem at hand. The stages on this framework are as follow:

A. Data preparation: This stage refers to the process in which our data set would be

processed and stored in a uniform manner in the database.

B. User Interaction: In this stage the user would interact with the system through the

user interface for the selection of cleaned standardized data set, selection of

attributes to be used as a key and supply the parameters required for the blocking

methods.

C. Blocking key value generation: In this stage the blocking key is being generated

from attributes of each record and data is being sorted.

D. Blocking: In this stage in order to reduce our comparison space, a blocking method

is being used to group the data into blocks.

54

E. Similarity computation & comparison: By using of similarity metrics repository

the similarities is being calculated and compared for each pair of records.

F. Decision model: In this stage we use a decision model to identify records as

duplicates or not duplicates and record this information in our log files.

Next we discuss each stage in detail.

Figure 3.1: Framework for duplicate detection

A: Data preparation:

When integrating data from different sources, many issues may cause the irregularity

problem in the data set. Data sets from different sources are usually collected by different

sources using different means and tools. The format used in one data set may not be the

format used in other data sets, and these data sources may follow different conventions. So

a data preparation stage is needed during which data entries are stored in a uniform manner

55

in the database, resolving the structural heterogeneity problem. This stage is an optional

stage depending on the quality of the data, but mainly the data preparation stage includes

parsing, data transformation and standardization steps. (Elmagarmid et al., 2007)

1- Parsing: In which we locates, identifies and isolates individual data elements in the

source files. Parsing makes it easier to correct, standardize, and match data because

it allows the comparison of individual components, rather than of long complex

strings of data.

2- Data transformation: Refers to simple conversions that can be applied to the data in

order for them to conform to the data types of their corresponding domains.

3- Standardization: Without standardization, many true matches could be wrongly

identified as unmatched because the common identifying attributes do not have

sufficient similarity. The basic functionality of this step is to

a. To replace many spelling variations of commonly occurring words with

standard spelling.

b. To standardize the representation of various attributes, to the same system of

units, or to the same coding system. For example, 0/1 instead of M/F for a

‘gender’ attributes.

c. To perform integrity checks on attribute values or combinations of attribute

values.

B: User Interaction

56

After the data preparation stage, the user interacts with system through the user interface to

facilitate doing several functionalities such as:

o Identifying and selection of the required data set.

o Identifying and selection of attributes used in building of blocking key value.

o Entry of parameters needed for different blocking methods such as the window size,

overlapping block size, minimum suffix length, and maximum block size.

o Identifying and selection of attributes used in comparison.

o Identifying of similarities functions used for comparing pair attributes such as edit distance,

Q-gram, etc.

o Identifying of similarity threshold values used in decision model.

o Facilitate the tracing of results at each step to identify and evaluate any possible

illogical or wrong results, also support for the presentation and displaying of the

results of quality and complexity measurements for blocking methods such as

reduction ratio, pair completeness and processing time.

C: Blocking key value generation

After selection the required key attributes, for each record we create the key by extracting

relevant fields or portion of the field’s. We have different choices here:

1- A blocking key taken from a single record attribute or its parts values, like the value

of surname attribute or the first two initial letters for given mane attribute only.

2- By concatenation of values (or parts of them) from several attributes. For example

concatenation of a person surname with the first 3 characters of a person given

name for each record.

57

3- Using phonetic encodings, for example in our experiments we used a key value

composed of the Soundex code of surnames (4 characters) concatenated by the first

four non vowels (constant) characters of given names and the first 4 digits of social

security numbers.

In this stage we mainly depend on our Database Management System for some of the

background activities needed such as navigating, retrieving of related records during

blocking key value generation , also provides us with some helpful built-in tools such as

sorting and indexing functionalities that is required after the key generation .

D: Blocking

The blocking stage is used to reduce the huge number of comparisons of record pairs by

bringing potentially duplicate record pairs together. Using a blocking method from the

blocking methods repository we can generate blocks of records where each pair is being

compared. In this stage several blocking methods such as the standard blocking, sorted

neighborhood, or suffix array could be used. Several parameters supplied in the user

interaction stage are needed such as the minimum suffix length and maximum block size

for blocks generation.

E: Similarity computation & comparison

 Using similarity metrics repository the records pair are being compared with each others

and for each pair of records the similarities is being calculated. We can compare each

58

attribute with the corresponding one or select attributes that have sufficient information’s

content to support the detection process and got the similarity weight. (Gu et al., 2003)

The attribute selection step is the foundation step for all the remaining steps and very

important to reduce the time and effort for the further work such as elimination process.

For example, a field such as gender only has two value states and therefore could not

convey enough information to identify a match uniquely. On the other hand, a field such as

surname conveys much more information, but it may frequently be recorded incorrectly. In

our implementation we have chosen given names, surnames, addresses as the most

important attributes that characterize our data set.

Duplicate detection processes depend on string similarity functions for record fields and

similarity computation functions depend on the data type. Therefore the user must choose

the function according to the attribute’s data type, for example numerical, string and so on.

 Several string similarity measures or domain specific measures to compute the attribute

similarity can be employed here such as Character-level or Token-based metrics.

F: Decision Model

Generally in this stage the records can be identified as duplicates or not duplicates, and this

information is being recorded in the log file and numbers is being collected for measuring

the quality and performance of the blocking technique.

Once matching weights of individual attributes of two records are calculated, the next step

is to combine them to form a composite weight or score and then decide whether a record

pairs should be matched or unmatched.

59

The simplest way to calculate the composite weight is to use the average of all the

matching weights assuming each attribute contributes equally. If some knowledge on the

importance of individual attributes is available, the weighted (fixed) average can be used.

In our implementation we have followed the equational theory proposed by Hern´andez and

Stolfo , where we have inferred simple rules that dictate the logic of the data set domain by

using a proper threshold to detect whether two records have a match or don’t match. For

example if two persons have a high degree of similarity in their given name and surnames

and have an intermediate similarity in their addresses then the two records are considered

matched. We have chosen a 0.8 for high similarity and 0.6 for an intermediate, these

numbers are very important to the accuracy and efficiency, and have been chosen after

several runs to ensure that we have high precession in identifying that two records are a

possible candidate match and at the same time be able to detect a large number of matching

records. During this stage numbers could be collected such as the total number of records

in the data set, total number of identified possible duplicates, total number of true

duplicates, total number of false positives (non-duplicates which where classified as

duplicates), total number of comparisons performed and processing time.

Using the numbers collected in this stage the quality, accuracy, efficiency and complexity

of the blocking methods are being calculated using the above numbers. The results after

each run would be like reduction ratio, pair’s completeness, pair’s quality, F-score.

60

61

CHAPTER 4

EXPERIMENTAL EVALUATION

In this chapter, we present the conducted experiments with their used settings and their

results. The experiments are conducted on a synthetic data set that was previously used as

benchmark in other related work. The data set is presented in detail in Section 4.1.The

development environment is presented in Section 4.2. In Section 4.3, we introduce the

performance measures used for evaluating and comparing the quality and complexity of

blocking methods.

The experiments in Section 4.4 evaluate the performance of two recently developed,

blocking methods, the sorted blocks and standard suffix array and its improvement, with

two older methods, the standard blocking and sorted neighborhood blocking, using standard

measures of accuracy, efficiency and quality.

4.1 Data Set

The data set we have used for the evaluation is called FEBRL (Freely extensible

biomedical record linkage) data set. The FEBRL data set contains patients data such as

names (given and surname), addresses, ages, phone numbers and social security numbers.

This data set contains 9968 records among them there are 6000 original records and 3968

duplicated records. There is up to 9 duplicates for an original record, a maximum of 3

modifications per attribute, and a maximum of 10 modifications per record in each

duplicated record. Table 4.1 shows a sample duplicate records from this data set.

62

GIVEN_NAME SURNAME ADDRESS AGE PHONE_NUMBER SOC_SEC_ID

Hannah urquhart florina place - 03 50770094 1614610

hann ah urquzart florihaplace - 03 50770094 1614510

Teagan Upton Wilkins street 18 07 45868407 1198233

Teagan Uptiny Wilkins street 18 07 45867407 1198233

Teatan Upton Wilkins street - 07 45886407 1198233

Brooke Uren barrett street 31 03 38165026 5411400

Broole Umrh barrettaareet 31 03 38165026 5421400

Brooke Urpn barrettistreet 31 03 38170526 5411050

 Table 4.1 Sample duplicate records from the FEBRL data set (datamining.anu.edu.au)

4.2 Environment

To evaluate and compare the various blocking methods, all the methods have been

implemented using Java and Oracle Database 10g Express Edition (Oracle Database XE)

environment. The development environment used was Netbeans IDE for compiling and

executions. The experiments were carried out on a Dell server equipped with an Intel Xeon

Quad Core of 2.66 GHz and 2GB RAM, running MS Windows 2003 standard server

operating system.

4.3 Performance Evaluation Measures

The performance of blocking methods have traditionally been evaluated using the reduction

ratio, pairs completeness, F-score, and pairs quality measures (Christen & Goiser, 2007),

as defined below.

Let NM and NU be the total number of matched and un-matched record pairs, respectively,

such that NM + NU = |A| x |B| for linkage of two data sets A and B, and NM + NU = |A| x

(|A|-1)/2 for deduplication of a data set A. Next, let SM and SU be the number of true

matched and true unmatched record pairs generated by a blocking method, respectively,

with (SM + SU) << (NM + NU).

63

Reduction Ratio

The measure of efficiency is typically carried out with the use of the Reduction Ratio

measure (RR), which quantifies the reduction the number of record pairs to be compared in

detail in the candidate set of the comparison space, i.e. where the more record pairs are

removed by a blocking method the higher the reduction ratio value becomes (Christen,

2007).

The RR is simply the ratio of the number of records (SM + SU) in the candidate set as

decided by the blocking method, and the total number of records that would be in the

candidate set and matched against when no blocking method is used (NM + NU). The result

is then taken as the difference from 1, to cause a higher RR to equal a more desirable result.

The RR measures the relative reduction of the comparison space, but without taking into

account the quality of the reduction, i.e. how many record pairs from U and how many

from M are removed by the blocking process. The RR measure is given by:

Pairs Completeness

Accuracy measurement for blocking methods is usually carried out with the use of the Pairs

Completeness measure (PC). This measure is simply the ratio of the number of true

matches (SM) generated by the blocking algorithm correctly includes in the candidate set to

be matched, and the total number (NM) of true matches that exist in the data set and would

all be found when using no blocking. It measures how effective a blocking method is in

generating true matched record pairs. Pair’s completeness therefore corresponds to the

64

recall measure used in information retrieval and it measures the coverage of true positives

(De vries et al., 2009). The PC is given by:

F-score

Both PC and RR measures should be maximized, but there is a tradeoff between them. F-

score measure captures this tradeoff by combining PC and RR via a harmonic mean. So it’s

a measure of accuracy of the experiment (Yan et al., 2007). The F-score is given by:

Pairs Quality

The measure of the quality of the blocking method is typically carried out with the use of

the pairs quality (PQ). It is the number of true matched record pairs generated by a blocking

method (SM) divided by the total number of record pairs returned (SM + SU). A high pair's

quality means a blocking method is efficient and mainly generates true matched record

pairs, while a low PQ means a large number of true unmatched are also generated. This

results in more record pair comparisons that have to be made, which is computationally

expensive. The PQ corresponds to the precision measure as used in information retrieval (

Christen, 2007) (Christen & Goiser, 2007). The PQ is given by:

65

4.4 Experiments

We have conducted two sets of experiments, where in the first one we have compared both

windowing and blocking methods with sorted blocks method and in the second one we

have compared the improved suffix array method against both standard suffix array method

and standard blocking method.

4.4.1 Experiment 1

Our first set of experiments is designed to compare the four blocking methods, using the

standard performance measures defined in Section 4.3. The methods are:

1. Standard blocking.

2. Sorted neighborhood method.

3. Sorted blocks method (overlapping blocks are quarter of the block size)

4. Sorted blocks method (overlapping blocks are half of the block size)

For each method we have used a window or block size that range from 2 up to 200 records

each and all of the four methods have been tested under the same conditions such as the

sorting key, similarity functions and decision model.

For the blocking key value we used a key composed of the Soundex code of surnames (4

characters) concatenated by the first four non vowels (constant) characters of given names

and the first 4 digits of social security numbers, in the case of missing or null attribute in a

record or the number of characters less than the required we used a special characters

padding at the end of each part. After key generation all the records are being sorted using

the built in features of Oracle DBMS since it’s highly optimized for performance.

66

The similarity functions used for comparison were Levenshtein edit distance, Jaro distance

and Q-grams. We choose Levenshtein and Jaro distance for use since it can give us a good

result in detecting similarity for surnames and given names especially for typographical and

spelling errors, we used the Q-grams to handle spelling errors in addresses composed of

more than one string or token , all these functions can handle insertion, deletion ,

substitutions in strings for matching of two attributes and correspondingly returned a value

between zero and one , where zero means that there is no match and one full match.

For comparison of records to detect duplication we have inferred simple rules that are based

on equational theory that dictate the logic of the data set domain, we used the following

four rules to determine whether two records have a match or don’t match:

1. If two persons have a high degree of similarity in their given names and surnames

and have an intermediate similarity in their addresses.

2. If two persons have a high degree of similarity in their surnames and have the same social

security numbers.

3. If two persons have a high degree of similarity in their surnames and have some

intermediate similarity in their addresses.

4. If two persons have an intermediate similarity in surnames, given names, addresses using

multiple edit distance functions.

The above rules are used in stages for example if the first rule wasn’t satisfied we go to the

next rule as so on.

The implementation of “having a high degree of similarity “and “intermediate degree of

similarity “is based on computing of distance function for each related pair attributes in

67

records and comparing the result with a distance threshold, we have chosen a 0.8 for high

similarity and 0.6 for an intermediate, these numbers are very important to the accuracy and

quality , and have been chosen after several runs to ensure that we have high quality in

identifying that two records are possible candidates and at the same time be able to detect

a large number of matching records. Table 4.2 and Figure 4.1 show the effect of varying the

value for threshold and its effect in the measurements percentages. We can see that a 0.8

and 0.9 is a good candidate for a threshold value. PQ is higher for 0.9 compare to 0.8 and

PC is higher for 0.8 compare to 0.9 threshold values. So we chose 0.8 to detect a large

number of true matches without compromising the quality at the same time.

Threshold

Total

Identified

True

False PQ

PC RR F-score

0.9 3171 1712 1459 53.99 43.15 99.99 60.28

0.8 4518 2067 2451 45.75 52.09 99.99 68.5

0.7 5458 2162 3296 39.61 54.49 99.99 70.54

0.6 8644 2205 6439 25.51 55.57 99.98 71.44

0.5 11388 2217 9171 19.47 55.87 99.98 71.68

0.4 15456 2229 13227 14.42 56.17 99.97 71.93

Table 4.2: Sorted neighborhood method with window size =10 and varying threshold

We should note that a similarity threshold of 0.78 used in other works for delivering good results

for both precision (PQ) and recall (PC). (Draisbach & Naumann, 2009)

68

Figure 4.1: Sorted neighborhood method with window size =10 and varying threshold

We should note that the above chosen equational theory rules are used for experimental

purposes and in real life such rules should be extended and built more accurately with the

help of an expert from the problem domain.

Once a rule declares a possible match between any two records the result is being logged in

the log table with additional information collected for measuring the quality and

performance of the blocking method for statistical purposes.

4.4.1.1 Results Analysis

Comparing the results for quality we used the PQ measurement we have noted that the

quality is decreasing whenever we increase the window or block size and this primarily due

to the increasing number of true unmatched records detected by the blocking methods and

the increasing number of records being compared. The standard blocking method has

outperformed all other methods in PQ and quality is increasing whenever generalizing the

standard blocking and increasing the number of overlapping blocks.

69

Comparing the results for accuracy we used the PC and have noted that the proportion of

identified true duplicates is increasing in an accelerated way whenever block size is less

than 20 and then it tends to increase in a linear fashion after this. Sorted neighborhood

method outperforms all other methods in PC percentage and we were able to reach a

percentage of 50% with a window size of 8 , standard blocking got the lowest percentage

due to the fact that a lesser number of records is compared will decrease the chance of

detecting duplicates. We have reached a maximum of 69% PC in best situations and this

number can be increased with the help of optimizing our rule-based decision model and

increasing number of detection rules although this may slightly decrease our precession.

The experiment also confirmed that the generalized algorithm of sorted blocks where

overlapping block size is equal to block size -1 can outperform the sorted neighborhood

method slightly especially in terms of PC but in the expense of processing time needed as

shown in Table 4.3.

Sorted Neighborhood

Method

Sorted Blocks Method

 (overlapping =block size -1) Window/block

size PC Processing time (sec) PC Processing time (sec)

2 25.3 2 25.5 10
8 52.7 9 54.6 14

14 54.4 11 56.2 23

26 58.6 21 60.4 31
38 61.5 30 63.7 50

50 63.4 38 65.5 63
65 64.8 49 66.7 79

77 65.7 58 67.5 93

Table 4.3: Sorted neighborhood method compared with Sorted blocks method where overlapping

portion is equal block size -1

For RR which measures the reduction of the comparison space or how many records being

removed by the blocking method all methods give almost similar results between 99.9886%

70

up to 99.998%, where standard blocking always outperform other methods in RR and this

can be referred to the fact that the disjoint blocks decrease the chance for additional

comparisons for unmatched records with the help of a key used for sorting the records.

Sorted neighborhood method got the lowest RR percentage where our sliding moving

window increases the number of non matching records, for sorted blocks methods the RR

decreases whenever the overlapping size is increasing for a windows/block size of 50 and

an overlapping partition half the block size of the precession is the same.

The F-score which calculate the mean of RR and PC and measure the accuracy of our test is

showing similar results for all methods, where the F-score is increasing whenever moving

from standard blocking through overlapping to the standard neighborhood method, after a

windows size of 25 there is a slight chance of getting better results.

A note for the sorted blocks method where results show that standard blocking can be

enhanced by using overlapping. We can see from the figures in Appendix 2 that blocking

can be enhanced by using overlapping but its participation in detection is decreases

whenever block size increases probably to the fact that larger disjoint blocks tend to have

high degree of similar records.

In addition to the accuracy of blocking methods, we also measure the time efficiency for

these methods, processing time collected during the tests shows clearly that sorted

neighborhood method is having the highest processing time among all other methods, this

can be reasoned by the high number of comparison performed and that number is always

high with comparison to other methods.

Experiment 1 results graphs are shown in appendix 2.

71

4.4.2 Experiment 2

Our second set of experiments designed to compare the following blocking methods:

1. Standard suffix array method

2. Improved suffix array method using edit distance.

3. Improved suffix array method using Q-gram.

4. Standard blocking method.

Using the standard performance measures defined in Section 4.3.

The blocking key value (BKV) used in the above blocking methods based on using a

concatenation of a person surname with the first 3 characters of a person given name for

each record .

For standard blocking we used only the blocking values to group and compare records in

each block that have the same BKV. For the remaining suffix array methods we build a

suffix array inverted index that has 46906 unique values for the above data set. During

processing we have used the minimum suffix length value of 2; also we have ignored all

suffix blocks that have more than 50 records during execution to maintain accuracy by

allowing the correct blocking of records that share a common rare suffix.

For standard suffix array we compared records only located in the same exact suffix block,

but for the improved suffixes we used two similarity functions the edit distance and Q-gram

for construction of suffix blocks, using a threshold of 0.9 for similarity between each suffix

codes this allow us to increase the size of blocks and allowing more records to be

compared. The threshold value selected after several runs to ensure we have a higher

number of correct duplicates.

72

The second experiment have been executed twice for each method, the first one we have

varied the minimum suffix length parameter from 2 up to 15 while keeping the maximum

block size at 50. The second one we have varied the maximum block size from 2 to 50

while keeping the minimum suffix length at 2.

For comparison of records to detect duplication we have used the same four rules used

earlier in the first experiment which mainly based on similarity of surnames , given names

and social security numbers .

4.4.2.1 Results Analysis

In our first run we have evaluated the effect of varying the maximum block size from 2 up

to 50 while keeping the minimum suffix length of no more than 2. For standard blocking

we saw that there is stability in detecting duplicates when the maximum block size is over

than 5, while the standard suffix array is able to get more duplicates at this point. As shown

in Table 4.4 for a block size of more than 30 we saw that both improved suffix array can

enhance the detection process of at least 7% comparing to standard suffix array and this is

due to the using of similarity functions to include more records in each block of suffixes.

The typographical problems such as swapping or replacing of characters in records fields

can be solved by using these similarity functions.

 For an overall detection performance the suffix array with all of its variations have

improved the detection process up to 45% with comparison to standard blocking. This can

be reasoned to the nature of comparison more records in the suffixes array. The use of

suffix array as a basis for blocks has increased the chance of including more records in each

block. But an interesting notice that using similarity for suffix blocks creations where the

73

maximum block size is smaller than 30 have a side effect in decreasing the chance of

detecting duplicate since it tends to expand the block sizes and causes the block to be

excluded entirely from the comparisons process .

Maximum

block size

Standard

Blocking

Standard

Suffix Array

Improved Suffix Array

(Edit Distance)

Improved Suffix Array

 (Q-gram)

2 304 278 20 48

8 1673 2030 930 1241

13 1717 2329 1582 1831

22 1753 2587 2334 2467

30 1753 2738 2695 2735

38 1753 2786 2885 2849

44 1753 2813 2994 2929

50 1753 2866 3082 3012

Table 4.4: Total number of identified duplicates Vs the Maximum block size

Using the standard measurements of PC, PQ and RR, we can measure accuracy and

scalability of the compared methods. For PQ or precision we can see that a block size of

less than 10 is almost the same in all methods. But after that point the quality of correctly

identifying duplicates is decreases with comparison to standard blocking and this can be

reasoned to the fact that more diverse and irrelevant records are included in each block and

the total number of blocks is increases and each block has records from a wide range of

sources.

For PC we can see stability in detecting records for standard blocking when the maximum

block size of more than 14 and due to the fact that most of the blocks size in the data set

don’t exceed that number. But for the suffix array methods we can see an improvement in

detecting more true matches since we have more blocks and same record is now located in

more than one block and thus increasing the possibility of being identified as a duplicate by

the detection process.

74

For RR all methods give almost similar results between 100% up to 99.990% where this

ratio in the fever of the suffix array since it has detected more possible duplicate with

comparison to the standard blocking.

The F-Measure which calculate the mean of RR and PC and measure the accuracy of our

tests is showing the F-Measure increasing whenever moving from standard blocking

through to the improved suffix method and almost similar results for all suffix methods.

In our second experiment we have evaluated the effect of varying the minimum suffix

length from 2 up to 15 while keeping the maximum block size of no more than 50. We can

see that always under these circumstances that improved suffix array will result in high

number of duplication identification whenever suffix lengths is low and this will result in

an increasing number of blocks and therefore the number of comparison. Increasing the

suffix length value will cause more records not to be compared since its BKV length is less

than the minimum suffix length. For standard blocking decreasing the minimum suffix

length (BKV length) will decrease the number of identified duplicates especially whenever

the minimum suffix length is greater than 7 and due to the fact that most of the blocking

key values are usually less than this number and will drop them from being taken in

consideration during comparison. The processing time calculated for this experiment is

always showing a decrease in time needed whenever we increase the minimum suffix

length since more and more records is less compared.

The PQ for the second experiment shows a stability in value for standard blocking for all of

the blocking key value lengths since every record will be compared only in one block and

this will decrease the chance of being wrongly compared. For the suffix array method PQ

75

increases to some extent whenever we increase the minimum suffix length and that can be

reasoned for a simple fact that records of larger suffix lengths will only located in a less

number of blocks and this will decrease the chance of being wrongly compared with

irrelevant records.

For PC the same reasons of increasing the suffix length value will cause more records not

to be compared since its BKV length is less than the minimum suffix length and this will

reduce the chance of identifying true possible duplicates and this is also applicable to the

standard blocking method.

For RR all methods have almost similar results between 100% up to 99.990% where this

ratio in the fever of the suffix array since it has detected more possible duplicates with

comparison to the standard blocking. But all methods have almost the same result

whenever suffix lengths value greater than 5-7 characters.

Measuring the time efficiency for these methods, the processing time collected during the

tests shows clearly that the improved suffix array method has the highest processing time

among all other methods, this can be reasoned by the high number of comparisons

performed in each block and the overhead time needed when using of similarity functions

for comparing each suffix with each neighbor suffix. The standard blocking always has the

lowest processing time since we have only small number of comparisons done in each

block and the elimination of suffix formation for creation of blocks.

Experiment 2 results graphs are shown in appendix 3.

76

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

This chapter summarizes the conclusions we have achieved in this thesis and discusses

possible future works that can further extend or improve our work.

5.1 Conclusions

Duplicate detection which aims to identify different or multiple records that refer to one

unique real world entity or object is a crucial step for preparing data of high quality and can

increase the information availability in many application areas.

 In this thesis we have proposed a generic framework for duplicate detection process,

provided four simple brief algorithms for blocking methods and their variations, and we

have experimentally compare their performance and efficiency.

Using a synthetic same data set, we have implemented the standard blocking, sorted

neighborhood method and the sorted blocks methods using an equal block size. The

experiments also confirmed that using the sorted neighborhood method can make the

duplicate detection process more efficient by detecting more duplicates without the need to

compare all records which is very crucial for many systems performance.

Result from the experiments confirmed that standard blocking can be enhanced by using

overlapping partitions where we can see that by using them, we were able to detect more

duplicates records.

Our experiments also confirmed that the generalized algorithm of sorted blocks where

overlapping block size is equal to block size -1 can slightly outperform the windowing

77

method especially in term of the percentage of true duplicate record pairs detected by the

sorted blocks to the total number of correctly matched pairs exist in the data set (pair

completeness) but in the expense of processing time needed.

The experiment also shows the effect of varying the value for threshold and its effect in the

measurements percentages. Choosing the proper threshold depends in our interest, where

we would like to detect a large number of true matches without compromising the quality.

Also using the same data set and decision model we have implemented the standard

blocking method and the standard suffix array method and also proposed two variations to

it, the improved suffix array using edit distance and the improved suffix array using Q-

gram. The experiments confirmed previous results that the accuracy of standard blocking

can be dramatically improved using the suffix array and its variations, deferent parameters

such as the maximum block size and minimum suffix length have important effects

regarding the performance, accuracy and quality of the results.

5.2 Future Work

Our work on duplicate record detection and the various methods for enhancing the

efficiency of the blocking methods have confirmed previous results, they also lay basis for

future work. There are a number of key challenges that are significant to address in the near

future.

First, the experiment was done using synthetic data set and needed to be confirmed with

different data sets, with real data sets and with large-scale data sets in order to verify the

effectiveness and efficiency of the proposed blocking methods.

78

Second, many parameters have been varied manually, and this is usually done with the help

of an expert from the problem domain which open the door for the need to be adjusted

automatically by algorithms during the processing time in an adaptive way to achieve better

results. Parameters such as threshold values are one of the major challenging values that

show a promising possible future work.

Third, in this thesis we have implemented the blocking key value that have been used for

sorting the data set in different ways using phonetic coding or by concatenating different

record attribute and there is more work needed to address their effect in obtaining

optimized result for blocking.

Fourth, in this thesis we have implemented the decision model using a Rule-Based

approach where in fact there are different approaches used for decisions that rely on

training data to “learn” how to match the records. This category includes probabilistic

approaches and supervised machine learning approaches that can be used to enhance the

accuracy and quality of the results.

Fifth, our work in this thesis in term of performance measurements have focused on

processing time as a major measurement where in the future we can address other needed

criteria such as the effect on systems resources such as memory and disk usage .

Finally, we need to have a comprehensive framework that can determine which blocking

method is better with specific data set, and that requires evaluating and comparing other

blocking methods that we didn’t implement in this thesis such as the Q-gram based

blocking and Canopy clustering.

79

REFERENCES

Aizawa, A. & Oyama, K. (2005): A Fast Linkage Detection Scheme for Multi-Source

Information Integration, Proceedings of the International Workshop on Challenges in Web

Information Retrieval and Integration, p.30-39.

Baxter, R. , Christen, P. & Churches, T. (2003): A Comparison of Fast Blocking Methods

for Record Linkage, ACM SIGKDD Workshop on Data Cleaning, Record Linkage and

Object Consolidation, Washington DC, pp. 25--27.

Bertolazzi, P., DeSantis, L. , & Scannapieco, M. (2003) , Automatic Record Matching in

Cooperative Information Systems, Proceedings of the Workshop on Data Quality in

Cooperative Information Systems (ICDT'03).

Bilenko, M. & Mooney, R. (2003) ,Adaptive Duplicate Detection Using Learnable String

Similarity Measures. Proceedings of the Ninth ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (KDD-2003), Washington DC, pp.39-48.

Black, P. (2008). Levenshtein distance, available

http://www.itl.nist.gov/div897/sqg/dads/HTML/Levenshtein.html, Accessed April 2010.

Bleiholder, J. & Naumann, F. (2008) : Data Fusion , Data Fusion Journal : ACM

Computing Surveys, Vol. 41, No. 1, Article 1.

Chaudhuri, S. , Ganjam, K. ,Ganti, V. & Motwani, R. (2003) Robust and Efficient Fuzzy

Match for Online Data Cleaning. ACM SIGMOD International Conference on

Management.

Christen, P. & Churches, T. (2005). A Probabilistic Deduplication, Record Linkage and

Geocoding System. Advances in Data Mining: Theory, Methodology, Techniques, and

Applications. State-of-the-Art Lecture Notes in Artificial Intelligence, Volume 3755,

Springer-Verlag.

80

Christen, P. (2006) , A Comparison of Personal Name Matching: Techniques and Practical

Issues. Joint Computer Science Technical Report Series, September. Tr-Cs-06-02,

Department Of Computer Science, Computer Sciences Laboratory Research School Of

Information Sciences And Engineering, The Australian National University .

Christen, P. (2007) Improving data linkage and deduplication quality through nearest-

neighbour based blocking. Proceeding of thirteenth ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining (KDD'07) .

Christen, P. & Goiser, K. (2007) Quality and Complexity Measures for Data Linkage and

Deduplication. Quality Measures in Data Mining ,Studies in Computational Intelligence ,

Volume 43/2007 .

Cibella, N. , Fortini, M. , Scannapieco, M. , Tosco, L. & Tuoto, T. (2008) Theory and

practice of developing a record linkage software. Proceeding of the Workshop

"Combination of surveys and administrative data" of the CENEX Statistical Methodology

Project Area "Integration of survey and administrative data". Vienna .

Cohen, W. (1998) Integration of Heterogeneous Databases Without Common Domains

Using Queries Based on Textual Similarity. ACM SIGMOD Int’l Conf. Management of

Data (SIGMOD’98).

Cohen, W. , Ravikumar, P. & Fienberg, S. (2003) A comparison of string distance metrics

for name-matching tasks, Proceedings of the IJCAI -2003 Workshop on Information .

De vries, T. , Ke , H. & Chawla, S. (2009), Record Linkage in the Industry: Applications of

an Improved Suffix Array Blocking Method.Techincal Report, School Of Information

Technologies,The University Of Sydney .

Draisbach, U. & Naumann, F. (2009): Comparison and generalization of blocking and

windowing algorithms for duplicate detection, Proceedings of QDB 2009 Workshop at

VLDB.

81

Elfekey, M. , Vassilios, V. , & Elmagarmid, A. (2002) , “TAILOR: A Record Linkage

Toolbox,” IEEE International Conference on Data Engineering 2002, San Jose, USA,

Elmagarmid, A. , Ipeirotis, P. & Verykios, V. (2007) Duplicate Record Detection: A

Survey, IEEE Transactions On Knowledge And Data Engineering, VOL. 19, NO. 1.

Gu, L. , Baxter, R. , Vickers, D. & Rainsford, C. (2003) Record Linkage: Current Practice

and Future Directions : Technical Report 03/83, CSIRO Mathematical and Information

Sciences.

Gu, L. & Baxter, R. (2004) Adaptive Filtering for Efficient Record Linkage , 2004 SIAM

Int. Conf. on Data Mining , Orlando, Florida .

Hernández, M. & Stolfo, S. (1998), Real-world Data is Dirty: Data Cleansing and The

Merge/Purge Problem, Data Mining and Knowledge Discovery ,Volume 2 , Issue 1 ,

Pages: 9 – 37 .

Idmatchsystems.com (2010) Soundex Problems & Issues, Available

http://www.idmatchsystems.com/products/idmatch/soundex-problems. Accessed April ,

2010.

Innerhofer-Oberperfler , R. (2004) Using Approximate String Matching, Techniques to Join

Street Names of Residential Addresses, Bachelor Thesis ,Academic Year 2003/2004 1st

Graduate Session .

Jurczyk, P. , Lu , J. , Xiong, L. , Cragan, J. & Correa, A. (2008) FRIL: A Tool for

Comparative Record Linkage. Available

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2656092/?log%24=activity , AMIA Annu

Symp Proc. 2008; 440–444. Published online 2008. , Accessed June 2010 .

Lait, A. & Randell, B. (1998) An Assessment of Name Matching Algorithms , Society of

Indexers Genealogical Group, Newsletter Contents, SIGGNL issues 17.

82

Müller, H. & Freytag, J. (2003) Problems, Methods, and Challenges in Comprehensive

Data Cleansing Technical Report. Humboldt University Berlin , Available

http://www.dbis.informatik.hu-berlin.de/fileadmin/research/papers/techreports/2003-

hub_ib_164-mueller.pdf . Accessed May 2010.

Scannapieco, M. , Missier, P. & Batini, C. (2005) :Data Quality at a Glance : Databank

Spektrum Journal issue 14 .

Shahri, H. & Shahri, S. (2006) Eliminating Duplicates in Information Integration: An

Adaptive, Extensible Framework, IEEE Intelligent Systems, Volume 21, and Issue 5,

Pages: 63 – 71.

Tamilselvi, J. & Saravanan, V. (2009) Detection and Elimination of Duplicate Data Using

Token-Based Method for a Data Warehouse: A Clustering Based Approach, International

Journal of Dynamics of Fluids , ISSN 0973-1784 Volume 5, Number 2, pp. 145–164

Tang, Y. , Zhang, J. , Tan, C. & Wong, M. (2003) A Five-step Approach to Multi-source

Information Infusion with Guaranteed Data Integrity. Singapore Institute of Manufacturing

Technolog,Available http://www.simtech.a-star.edu.sg/research/technicalreports/tr0302.doc

. Accessed May ,2010.

Ukkonen, E. (1992) ,Approximate string-matching with Q-grams and maximal matches

,Theoretical Computer Science , Volume 92 , Issue 1 ,Selected papers of the Combinatorial

Pattern Matching School ,Pages: 191 - 211 .

Wang, X. (2008) Matching records in multiple databases using a hybridization of several

technologies, Dissertation. Department of Industrial Engineering. University of Louisville,

KY,USA .

Yan, S. , Lee ,D. , Kan ,M. & Giles, C. (2007) Adaptive Sorted Neighborhood Methods for

Efficient. Record Linkage. International conference on digital libraries JCDL'07,

Vancouver, British Columbia, Canada.

83

Yancey, W. (2007) BigMatch:A Program for Extracting Probable Matches from a Large

File , Research Report Series , (Computing #2007-1) , Statistical Research Division ,U.S.

Census Bureau.

Ziegler, P. & Dittrich, K. (2004) Three Decades of Data Integration - All Problems Solved,

In 18th IFIP World Computer Congress, Building the Information Society.

84

APPENDICES

Appendix 1 Blocking Algorithms Codes

1.A: Standard blocking algorithm using equal block size

Input: Data set (table), block size

Output: LOG table

Var: n ← no. of records, currentRow, lastrecord, innerRow, outerrow

Begin

Sort table using key

currentRow=1

while(currentRow<= n)

 lastrecord =minimum (currentRow+ blockSize-1,n)

 while (outerRow< lastrecord)

 Get record (outerRow)

 innerRow=outerRow+1

 while (innerRow<= lastrecord)

 Get record (innerRow)

 Compare innerrow record with outerrow record using decision rules

 If matched

 Log duplicate

 End if

 innerRow = innerRow +1

 endwhile

 outerRow= outerRow + 1

 endwhile

 currentRow=currentRow+ blockSize

endwhile

End

85

1.B : Sorted Neighborhood Algorithm using equal block size

Input: Data set (table), windowSize

Output: LOG table

Var: n ← no. of records, currentRow, lastRowInWindow

Begin

Sort table using key

 lastRowInWindow= minimum (windowSize,noOfRecords)

 currentRow=1

 while (currentRow<= n)

 Get record (currentRow)

 windowlistrow=currentRow+1

 while (windowlistrow<= lastRowInWindow)

 Get record (windowlistrow)

 Compare currentRow record with windowlistrow record using decision rules

 If matched

 Log duplicate

 End if

 windowlistrow = windowlistrow+1

 endwhile

 lastRowInWindow= minimum (lastRowInWindow+1,noOfRecords) ;

 currentRow=currentRow+1

 endwhile

 End

86

 1.C Sorted Blocks Algorithm using equal block size

Input: Data set (table), block size

Output: LOG table

Var: n ← no. of records, currentRow, lastrecord, innerRow, outerrow

 Begin

 Sort table using key

Overlap = blockSize /2

 currentRow=1

 while(currentRow<= n)

 lastrecord =minimum (currentRow+ blockSize-1,n)

 while (outerRow< lastrecord)

 Get record (outerRow)

 innerRow=outerRow+1

 while (innerRow<= lastrecord)

 Get record (innerRow)

 Compare innerrow record with outerrow record using decision rules

 If matched

 Log duplicate

 end if

 innerRow = innerRow +1

 endwhile

 outerRow= outerRow + 1

 endwhile

 outeroverlap = (currentRow+blockSize- overlap)

 while (outeroverlap <=lastrecord)

 Get record (outeroverlap)

 inneroverlap = currentRow+blockSize

 lastrecordoverlap= minimum (noOfRecords, outeroverlap+ overlap)

 while (inneroverlap<=lastrecordoverlap)

 Get record(inneroverlap)

 Compare inneroverlap record with outeroverlap record using decision rules

 If matched

 Log duplicate

 End if

 Inneroverlap= inneroverlap+1

 endwhile

 outeroverlap = outeroverlap +1

 endwhile

 currentRow=currentRow+ blockSize

endwhile

End

87

1.D: Suffix Array Algorithm

Input: Data set (table), min_suff_length , Max_block_size, similiarty_Threshold

Output: suffix_array , LOG table

Var: first_row_in_block,last_row_in_block,last_row_in_block, first_suffix , next_suffix

Var: no_of_records_in_block, outerRow, innerRow

Begin

 Create the suffix array inverted index

 Sort the suffix array alphabetically

 get (first suffix code)

 first_row_in_block= 1

 last_row_in_block=1

 first_suffix = get (suffix_code)

no_of_records_in_block=1

 get (next suffix code)

while (not end of suffix array)

 next_suffix = get(suffix_code)

 result =(calculate similarity between first_suffix and next_suffix codes)

 /* the next if statement only for improved suffix array otherwise should equal to 1 */

 if (result >= similiarty_Threshold)
 /* only for improved suffix array otherwise does not affect */

 first_suffix=Next_suffix ;

 last_row_in_block=current row number

 no_of_records_in_block=no_of_records_in_block+1 ;

 else

 if (no_of_records_in_block>1 and no_of_records_in_block <=Max_block_size)

 outerRow=first_row_in_block

 while (outerRow< last_row_in_block)

 Get record (outerRow)

 innerRow=outerRow+1

 while (innerRow<= last_row_in_block))

 Get record (innerRow)

 Compare innerrow record with outerrow record using decision rules

 If matched

 Log duplicate

 End if

 innerRow = innerRow +1

 endwhile

 outerRow= outerRow + 1

 endwhile

 endi if

 first_row_in_block= current row number

 first_suffix = get(suffix_code)

 last_row_in_block== current row number

 no_of_records_in_block=1

88

 endif

 get(next suffix code)

 endwhile

End

89

Appendix 2: Experiment 1 Results Graphs

Figure A.2.1: PQ Vs window/ block size

Figure A.2.2: PC Vs window/ block size

90

Figure A.2.3: RR Vs window/ block size

Figure A.2.4: F1-score Vs windows/ block size

91

Figure A.2.5: Scalability of the blocking methods in respect to window/ block size

Figure A.2.6: Complexity comparison of the blocking methods in respect to window/
block size

92

Figure A.2.7: Total number of identified duplicate Vs windows/ block size

93

Appendix 3: Experiment 2 Results Graphs

Figure A.3.1: PQ Vs the maximum block size

Figure A.3.2: PC Vs the maximum block size

94

Figure A.3.3: RR Vs the maximum block size

Figure A.3.4: F1-score Vs the maximum block size

95

Figure A.3.5: Scalability of the blocking methods in respect to the maximum block size

Figure A.3.6: Complexity comparison of the blocking methods in respect to the maximum
block size

96

Figure A.3.7: Total number of identified duplicates Vs the maximum block size

Figure A.3.8: PQ Vs the minimum suffix length

97

Figure A.3.9: PC Vs the minimum suffix length

Figure A.3.10 RR Vs the minimum suffix length

98

Figure A.3.11: F1-score Vs the minimum suffix length

Figure A.3.12: Scalability of the blocking methods in respect to the minimum suffix length

99

Figure A.3.13: Complexity comparison of the blocking methods in respect to the minimum
suffix length

Figure A.3.14: Total number of identified duplicates Vs the minimum suffix length

100

