

New Technique to Embed Encrypted QR

Code in Colored Image by Using

First and Third LSB

 LSBتقنيت جذيذة لتضمين رمز الاستجابت السريع داخل صورة ملونت باستخذام الرتبت الاولى والثالثت

Student Name: Muataz Safauldeen Abdulrahman

Student Number: 401120152

Supervisor

Dr . Hebah H. O. Nasereddin

Master Thesis

Submitted In Partial Fulfillment of the Requirements of the

Master Degree in Computer Information Systems

Faculty of Information Technology

Middle East University

May,2014

iv

28/5/2014

v

DEDICATION

This thesis is dedicated to all the people who never stopped

believing in me

To my country that have always been the science paradise

To my family who never stopped supporting me during the

journey of my life and gave up a lot of things for me and taught

me how to be patient, to my friends who have always been by

my side, to my teachers who lightened my mind.

vi

AKNOWLEDGEMENT

I would like to express my gratitude to my advisor for her support,

patience, and encouragement throughout my graduate studies. It is not

often that one finds an advisor and colleague that always finds the time

for listening to the little problems and roadblocks that unavoidably crop

up in the course of performing research. Her technical and editorial

advice was essential to the completion of this dissertation and has taught

me innumerable lessons and insights on the workings of academic

research in general, I would also like to thank my family members and

my dear friends.

vii

Table of Contents

Table of Figures ... ix

List of Tables .. xi

Abbreviations .. xii

Abstract .. xiii

لخلاصةا .. xiv

Chapter 1 Introduction .. 2

Introduction ... 2

1.1 Images Steganography .. 3

1.2 Portable Network Graphics ... 3

1.3 Quick Response Code ... 4

1.4 Advanced Encryption Standard ... 7

1.5 Problem Statement .. 8

1.6 Limitations .. 8

1.7 Objectives ... 8

1.8 Problem Motivation .. 9

Chapter 2 Related Work ...11

Chapter 3 Proposed Technique ... 19

3.1 Overview ... 19

3.2 QR Generation and Encryption ... 21

 QR Generation Process: .. 22

viii

 QR Encryption Process: .. 24

3.3 Embedding .. 25

3.4 Extracting .. 27

Chapter 4 Experimental Results.. 30

Experimental Setup ... 32

Experiments .. 32

First Experiment.. 32

Second Experiment ... 41

Third Experiment .. 49

Chapter 5 Conclusion .. 61

Conclusion .. 61

Future Work .. 61

References ... 62

Appendix: Source Code .. 65

ix

Table of Figures

Figure 1.1. QR Code ... 6

Figure 2.1. Steganography using LSB (Jantan, 2008) .. 13

Figure 2.2. Workflow of QR Code based OTP (Tandon, 2013) .. 16

Figure 2.3. Encryption in QR Code Using Stegnography (Dey, 2012) 17

Figure 3.1. Proposed Technique Flowchart. ... 20

Figure 3.2. QR Code Generation and Encryption flowchart .. 21

Figure 3.3. QR Code ... 23

Figure 3.4. Embedding Process .. 25

Figure 3.5. Embedding .. 26

Figure 3.6. Extracting and Decrypting QR Code Flowchart. ... 27

Figure 3.7. Extracting ... 28

Figure 4.1. Sea before and after first experiment using the proposed technique 33

Figure 4.2. Histogram for Sea in first experiment .. 34

Figure 4.3. Peppers before and after first experiment using the proposed technique 35

Figure 4.4. Histogram for Peppers in first experiment ... 36

Figure 4.5. Lena before and after first experiment using the proposed technique 37

Figure 4.6. Histogram for Lena in first experiment. ... 38

Figure 4.7. Baboon before and after first experiment using the proposed technique. 39

Figure 4.8. Histogram for Baboon in first experiment.. 40

Figure 4.9. Sea before and after the second experiment using the proposed technique 41

Figure 4.10. Histogram for Sea in second experiment.. 42

Figure 4.11. Peppers before and after the second experiment characters using the proposed

technique ... 43

Figure 4.12. Histogram for Peppers in third experiment .. 44

file:///D:\Work\Master's%20Thesis\Moutaz%20Obiede\updated.docx%23_Toc389256127
file:///D:\Work\Master's%20Thesis\Moutaz%20Obiede\updated.docx%23_Toc389256128
file:///D:\Work\Master's%20Thesis\Moutaz%20Obiede\updated.docx%23_Toc389256130
file:///D:\Work\Master's%20Thesis\Moutaz%20Obiede\updated.docx%23_Toc389256133
file:///D:\Work\Master's%20Thesis\Moutaz%20Obiede\updated.docx%23_Toc389256134

x

Figure 4.13. Lena before and after the second experiment characters using the proposed

technique ... 45

Figure 4.14. Histogram for Lena in second experiment. .. 46

Figure 4.15. Baboon before and after second experiment character using the proposed technique.

... 47

Figure 4.16. Histogram for Baboon in second experiment ... 48

Figure 4.17. Sea before and after third experiment using the proposed technique 49

Figure 4.18. Histogram for Sea in third experiment ... 50

Figure 4.19. Peppers before and after third experiment characters using the proposed technique51

Figure 4.20. Histogram for Peppers in third experiment .. 52

Figure 4.21. Lena before and after third experiment characters using the proposed technique ... 53

Figure 4.22. Histogram for Lena in third experiment. .. 54

Figure 4.23. Baboon before and after third experiment character using the proposed technique. 55

Figure 4.24. Histogram for Baboon in third experiment .. 56

xi

List of Tables

Table 4.1. Statistics for Sea first experiment after embedding. .. 33

Table 4.2. Statistics for Peppers first experiment after embedding ... 36

Table 4.3. Statistics for Lena first experiment after embedding using proposed technique 37

Table 4.4. Statistics for Baboon first experiment after embedding using proposed technique 39

Table 4.5. Statistics for Sea second experiment after embedding ... 42

Table 4.6. Statistics for Peppers second experiment after embedding using proposed technique 44

Table 4.7. Statistics for Lena second experiment after embedding using proposed technique 46

Table 4.8. Statistics for Baboon second experiment after embedding using proposed technique 48

Table 4.9. Statistics for Sea third experiment after embedding using proposed technique 50

Table 4.10. Statistics for Peppers third experiment after embedding using proposed technique . 52

Table 4.11. Statistics for Lena third experiment after embedding using LSB technique.............. 53

Table 4.12. Statistics for Baboon third experiment after embedding using proposed technique .. 55

Table 4.13. Peppers in first experiment .. 57

Table 4.14 . Peppers in second experiment ... 58

Table 4.15. Baboon in third experiment .. 59

xii

Abbreviations

AES: Advanced Encryption Standard.

CO: Cover Object.

DCT: Discrete Cosine Transform.

DFT: Direct Fourier Transform.

DH: Data Hiding.

LSB: Least Significant Bit.

RGBA: Red, Green, Blue and Alpha.

RMSE: Root Mean Squared Error.

PNG: Portable Network Graphics.

PNSR: Peak Signal to Noise Ratio.

QR: Quick Response.

SD: Standard Deviation.

SI: Stego Image.

xiii

Abstract

Steganography is the approach by which data is hidden such that one cannot know about it and

so data remains secure, this is usually done by hiding data inside an object through changing

some properties of that object, this is often called the cover object.

In this thesis, a novel steganography technique based on Quick Response code (QR code) and

colored images is proposed, the technique hides secret text in QR code, before hiding the QR

inside the four channels PNG cover image, the QR is saved as black and white image with 1 bit

per pixel and is stored in array of bytes to be encrypted using AES before embedding it inside the

cover image.

The results of the technique was superior when using large data, despite the fact that the impact

is greater when using the first and third bits than when using the least significant bit alone, the

proposed technique was tested by 3 experiments using 600, 65536 and 131070 characters as

secret text, the effect of the proposed technique on the picture was almost the same and even

better in some images than LSB when hiding relatively large data.

xiv

 الخلاصة

داخو مبئِ ٍِ خلاه حسبستبٍبّبث إخفبء ، عبدة ٌخٌ بحٍث لا ٌَنِ ىيَشء ٍعشفت رىل ٍِ خلاىٔ ّٖج ٌخٌ إخفبء اىبٍبّبثالاخخزاه

سٍز عيى حعخَذاىبٍبّبث خفبء فشٌذة لإحقٍْت ٌقخشح ٕزا اىبحث .اىغطبءةسَى اىنبئِ يحغٍٍش بعض خظبئض اىنبئِ، غبىبب ٍب

ٍِٗ ثٌ ٌخٌ ادخبىت سٍز الاسخجببت اىسشٌعت، ٌخٌ ححٌ٘و اىْض اىسشي اىَشاد اخفبئت اىىاىظ٘س اىَيّ٘ت، ٗ الاسخجببت اىسشٌع

بج ىنو بنسو ٌٗخٌ 1 بحٍث ٌخٌ اسخخذاًط٘سة ببلأبٍض ٗالأس٘د سٍز الاسخجببت اىسشٌع ك، ٌخٌ حفظ PNGداخو ط٘سٓ

بعذ دساست اىْخبئج حبٍِ اُ ٕزٓ ٌْٔ داخو ط٘سة اىغلاف، قبو حضٌ AES ف ٍِ اىببٌج ىخنُ٘ ٍشفشة ببسخخذاًٗحخزٌْٖب فً طف

حجبسة ثلاثت حٌ فحض اىطشٌقت ٍِ خلاه حٍث.اىبٍبّبثعْذ حخزٌِ حجٌ مبٍش ٍِ LSBاىطشٌقت حعطً ّخبئج افضو ٍِ اىـ

 الأٗه اُحأثٍش عْذ اسخخذاً اىبجاهعيى اىشغٌ ٍِ أُ ٗ ,حرف 131070ٗ 65536, 600ّظ٘ص ٍخخيفت ٍِ ط٘ه 3ببسخخذاً

ٗحذٓ، ٗمبُ حأثٍش اىخقٍْت اىَقخشحت عيى اىظ٘سة ّفسٖب حقشٌبب ٗحخى أفضو فً بعض اىظ٘س LSBٍِ اسخخذاً امثش ٗاىثبىث

ٍِ LSB مبٍشة ّسبٍبحٌ حخبئت بٍبّبث عْذٍب ي.

1

Chapter One

2

Chapter 1 Introduction

Introduction

Secure storage and transfer of data has always been a concern since the existence of

human being, this concern has been the main focus in information security. Information security

has two main approaches, the first is called data encryption which deals with performing some

transformations on the data in order to secure it, these transformations can include adding of

redundant data and noise and thus making the data unreadable.

The second approach is called steganography, it refers to the technique by which data is

hidden such that one cannot know about it and so data remains secure, this is usually done by

hiding viable data inside an object through changing some properties of that object, this is often

called the cover object, one cannot detect the existence of this data by simply looking at that

object (Jantan, 2008).

The change in properties of the object whether it is image, audio file or text file has to be

minimal so that no noticeable noise can be observed, otherwise it can result in revealing the

existence of the hidden data/message to the attacker, this puts a limitation on the payload of data

to be saved (Nath, 2012).

The first known use of steganography dates back to 440 B.C, a famous story of

Herodotus when he shaved the head of one of his slaves and tattooed it with a secret message and

after the hair grew again the message was invisible so the slave could carry the message easily

and it can be retrieved by shaving his head again.

Image steganography is the focus of this research study, this study will also introduce the

use of Quick Response Code (QR Code) for holding a text data before encrypting and then

embedding the QR Code inside a colored image.

3

1.1 Images Steganography

 Images steganography is the major concern of this study and it can be defined as the art

of hiding information inside an image through manipulating bits that when changed will have no

noticeable effect, and then the image that contains the hidden information can be exchanged

without exposing the existence of the hidden information, this technique exploits the property of

human eyes that are less sensitive to some color changes than others and are unable to

distinguish between two colors when the difference in value is too small (Morkel T. et al 2006).

A stego image contains viable information that can be in form of text or image, this

information can be as critical as plans for a company or design for new chip product. In colored

images, a pixel, which is the smallest component in an image, is expressed in a form of a three

color values being Red, Green and Blue (RGB).

Colored pixel is obtained by superposing these three color values, colored pixels are then

drawn to form an image, however, these values (RGB) are represented using binary numbering

system in computers, the change of value of a bit can be used to store the secret data, the position

of the bit changed would affect the amount of change on that pixel color so selecting the

appropriate bit is critical to keep the noise in the cover file minimal. One of the famous

techniques is the replace of the least significant bit (LSB) in each color value to store the

message, this technique will have low impact on the individual color but will spread over the

image due to the fact that one needs 8 bits, or 8 colors, to store one character. However, image of

the size (640x480 using 256 color) can hide up to 300KB worth of data (Rabah K., 2004).

1.2 Portable Network Graphics

Portable Network Graphics (PNG) is a raster graphics file format that supports lossless

data compression. PNG was created as an improved, non-patented replacement for

4

Graphics Interchange Format (GIF), and is the most used lossless image compression

format on the Internet.

PNG supports palette-based images (with palettes of 24-bit RGB or 32-bit RGBA colors),

grayscale images (with or without alpha channel), and full-color non-palette-based

RGB[A] images (with or without alpha channel). PNG was designed for transferring

images on the Internet, not for professional-quality print graphics, and therefore does not

support non-RGB color spaces such as CMYK.

1.3 Quick Response Code

 QR Code (Quick Response Code) is a special type of two-dimensional barcode designed

by Japanese automobile industry. The idea was first proposed by Denso Wave, QR Code is

usually attached to an item and it contains information about that item, information can be in

form of numeric data, alphanumeric and binary, this makes the QR Code capable of storing

theoretically any kind of data as long as they are represented in binary.

5

QR Code system has fast readability and great storage capacity which made it popular outside

the automotive industry, it is made of black dots arranged in a matrix-like order with white

background, this design makes it easier for imaging devices to capture, correct and interpret data

stored in QR Codes, the first module of QR Codes first used in 1997 by Association for

Automatic Identification and Mobility (AIM) and it is being widely used ever since.

 According to Suppat Rungraungsilp, QR Codes has maximum approximate capacity of

7089 characters (Suppat Rungraungsilp, 2012).

QR Generation Process:

1- Data Analysis and Encoding:

The QR encoding standards have 4 different models to encode data, these models

are numeric, alphanumeric, byte, and Kanji. The output of any model is a series of

bits, each model follows a different technique for generating the series of bits,

since each model behaves differently and generate different length of bits the data

should be analyzed to determine whether the text is preferred to be encoded in

numeric, alphanumeric or byte mode, then select the most optimal model in terms

of bits length to generate the stream of bits to generate the QR code.

2- Error Correction Coding:

After encoding the secret text, error correction codes are generated to be

embedded inside the bits stream to detect and correct errors , QR scanners read

both the codewords and data and compare them together to detect errors.

6

3- Module Placement in Matrix:

After embedding the codewords inside the data bites, the data must be placed in

the QR matrix along with pattern commonly used with QR codes such as black

boxes in corners.

4- Data Masking:

Specific patterns if found in QR matrix can make it difficult for QR scanners to correctly read the

data, to avoid such case, QR code standards provide 8 different mask patterns that alters the QR

code according to a particular pattern, the mask must be selected so that difficulties are minimal.

Figure 1.1. QR Code

7

1.4 Advanced Encryption Standard

 The Advanced Encryption Standard, (AES) is a standard for the encryption of digital

data; it was proposed by Joan Daemen and Vicent Rijmen under the name Rijndael cipher during

the selection process by the U.S National Institute of Standards and Technology (NIST) in 2001.

Rijndael is now widespread and is used by governments, essentially Rijndael is a symmetric key

algorithm that requires both parties the sender and the receiver to share the same key of 128, 192

and 256 bits in length, the encryption is performed on blocks each block size is 128 bits (Rijmen,

2002).

AES operates on a 4×4 column-major order matrix of bytes, termed the state, although some

versions of Rijndael have a larger block size and have additional columns in the state. Most AES

calculations are done in a special finite field.

The key size used for an AES cipher specifies the number of repetitions of transformation rounds

that convert the input, called the plaintext, into the final output, called the ciphertext. The number

of cycles of repetition are as follows:

 10 cycles of repetition for 128-bit keys.

 12 cycles of repetition for 192-bit keys.

 14 cycles of repetition for 256-bit keys.

8

1.5 Problem Statement

 Secure storage and transfer of data has always been a concern in the field of security, this

concern has led to several developments in the field of steganography and cryptography,

however, proposed studies in steganography field tend to focus more on the mechanism of hiding

secret data to achieve better security rather than the size of the hidden data, the goal of this thesis

is to study the effect of reducing the size of the secret text by converting it to QR Code and

encrypting it on the stego images and evaluate its usability to achieve better stego image quality.

1.6 Limitations

Limitations of this approach are:

1. Specific format of images have to be used.

2. QR Codes have limited capacity before reading becomes hard.

3. QR Code generation takes time for long messages.

4. Availability of QR Code readers.

1.7 Objectives

1- Reduce the effects of embedding on the stego image by reducing the size of secret

data before hiding it thought converting it to QR Code.

2- Achieve better security by encrypting QR code before hiding.

3- Study the effect of using the first and third LSBs for insertion.

9

1.8 Problem Motivation

 This study addresses a special category that is image steganography, there is still no

optimal technique used to solve the problem of image steganography, colored images are the

main concern of this study.

Although the topic of steganography exists since ancient times, the topic is still important in new

days and is motivated by the process of watermarking to protect copyrights of multimedia on the

Internet.

10

Chapter Two

11

Chapter 2 Related Work

(Zou & Shi, 2005) A novel formatted text document data hiding algorithm. Called Inter-word

Space Modulation (ISM) scheme, is proposed in which the spaces between neighboring words

are modulated to hide data. In contrast to prior arts, this method does not require original

documents for hidden data extraction. The hidden data are robust to printing, copying and

scanning. The experiments show that after printing, ten times of repeated copying, followed by

scanning, the hidden data can still be extracted without a single bit error. It is expected that it can

find wide applications for secure document processing, including digital notarization. Three

different methods for formatted text document data hiding: line shift coding, word shift coding

and feature coding. Line shift coding and word shift coding are robust to printing, copying and

scanning to some extent. The major drawback is that the original intact document is needed for

hidden data extraction which may not be available in many cases. Also the paper mention a

baseline detection method for line shift coding which did not require the original document.

However, as pointed out by the authors themselves, it is not reliable to printing, copying and

scanning. Besides, the embedding capacity is about one bit per two lines.

(Asif, Shaikh, Manza, & Ramteke, 2010) The comparison of original text in the form of bitmap

image and extracted image by using various fonts of text as a bitmap image. In image the basic

objective of data hiding is to store as much as data in the host image without degrading the

quality of the host image and which will be reconstructed again without compromising the loss

of source image data and the actual hided information. Out of which the most emerging area is

hiding the data into different media files such as image, audio, video, etc. In these media files the

image is considered as the most suitable file format for the data processing. The study has done

the preparation of the text data set of size 20 characters in single font type, variable font sizes

12

and the color of text as black. The bitmap image can be hided into any color image source which

will acts as a medium of carrier of the text data. This color image is further decoded to get the

actual data of 20 characters without any loss if possible. The experimental steps used for text

data hiding in images is done with above data set and image processing functions of MATLAB.

The data set of a single color source image and the data set of 2 to 3 sentence each of 24

characters with above specification. The result is found to be most satisfactory and prominent in

the font VERDANA in the font size of 26 to 30 resulted into 85% to 90% of reconstruction rate

of actual hided text data.

(Dutta, Bhattacharyya, & Kim, 2009) Data hiding in Audio Signal: a review. This paper

introduced a robust method of imperceptible audio data hiding. This system is to provide a good

and efficient method for hiding the data from hackers and sent to the destination in a safe

manner. This proposed system will not change the size of the file even after encoding and also

suitable for any type of audio file format. The proposed idea is to hide secret message within

audio signal using with a stego key, to retrieve the embedded message should be using the

extractor with the same stego key. This paper conclude that audio data hiding techniques can be

used for a number of purposes other than covert communication or deniable data storage,

information tracing and finger printing, tamper detection. As the sky is not limit so is not for the

development. Man is now pushing away its own boundaries to make every thought possible. So

similarly these operations described above can be further modified as it is in the world of

Information Technology. After designing any operation every developer has a thought in his

mind that he could develop it by adding more features to it.

 Least Significant Bit (LSB) technique is the most used technique for steganography, the

idea is to replace the 8
th

 bit in a byte with a bit from data to be hidden, (Younes&Jantan2008).

13

This technique does not increase the image size and the possibility of changing the value of the

least significant bit in a pixel is 50% (Jantan, 2008). However, new techniques showed some

advantages of using the two least significant bits instead of the least significant bit alone, Figure

2.1 shows the process of LSB insertion

 (Zhang, 2008) and his colleagues proposed an approach called multibit assignment

steganography for palette images, in which each gregarious color that possesses close

neighboring color in the palette is used to represent several secret bits (Xinpeng Zhang,

Shuozhong Wang, & Zhenyu Zhou, 2008).

Ross J. Anderson and Fabien A.P. Petitcolas (2007) claims that every steganographic

approach has its own limitations, another method is proposed by H. Motameni and his

colleague’s that suggests using dark corners of an image for embedding (Motameni H., 2007).

Also, embedding the secret information can be done in frequency domain by using

Discrete Wavelet Transform method (Po Yuch Chen, & Hung Ju Lin, 2006). With this technique

Figure 2.1. Steganography using LSB (Jantan, 2008)

14

the embedding ought to be done at high frequency coefficients. Also they urged that one will

apply block matching technique to go looking for similarity between blocks of the secret image

and embed in LSBs of the cover image.

 (Hus, 2009) used completely different strategy in image steganography art by mapping

the pixels of image to English letters and special characters. Lisa M. Marvel and Charles G.

Boncelet (1999) urged to cover at the inherent noise places.

Nath, et all, 2012) developed several information security systems that combine both

cryptography and steganography, in his technique ASA_QR Nath and his co-authors presented

an algorithm to hide small encrypted messages inside QR Codes, the QR Code is then

randomized before being embedded inside the cover image, ASA_QR is a combination of an

encryption and data hiding in two stages (Nath, 2012).

15

(SuppatRungraungsilp, 2012) argues that 2D barcodes (QR Codes) watermarks is an

interesting research in the security field, he proposed QR embedded technique for invisible

watermarking by using Discrete-Cosine-Transformation (DCT), DCT and DFT (Discrete Fourier

transform) allows QR Code images to be divided to different frequency bands by using blocks

DCT and DFT based techniques (Suppat Rungraungsilp, 2012).

(Suraj Kumar Sahu, 2013) used QR Codes to send encrypted data to receiver, he used QR

Codes as cover images to hide data inside them, he argues that QR Codes can work perfectly due

to their storage capacity, he claims that they can hold any type of data and they can be used in

business, advertising and social networking (Sahu, 2013).

16

(Abhas Tandon et.al, 2013) proposed the usage of QR Codes to design secure one time

password (OTP) scheme for authentication in Net-Banking, he argues that distribution of OTPs

to concerned user is a major issue, short message service is the most common way for OTP

distribution, he proposes a secure OTP using QR Codes and email (Tandon, 2013), Figure 2.2

shows the workflow of the QR code based OTP.

The system satisfies the high security requirements of the online users and protects them

against various security attacks. Also the system does not require any technical pre-requisite and

this makes it very user-friendly.

Figure 2.2. Workflow of QR Code based OTP (Tandon, 2013)

17

(Somdip Dey, 2012) used QR Codes to store encrypted secret messages with passwords,

he suggested using this technique in the government sector or for storage of important personal

data, he achieved his technique by entering the message with a password which generates a key

that is added to each alphabet in the numbers or text entered in the message which is needed to

be encrypted and then the first phase of encryption is generated, the newly generated encrypted

text is then encrypted again using other techniques to generate the final encryption message

(Dey, 2012), Figure 2.3 shows the encryption scheme in QR Code Using Steganography.

Figure 2.3. Encryption in QR Code Using Stegnography (Dey, 2012)

This method has a very large scope. Since Unicode format is used for encryption, this method

can be used to encrypt any type of message or file (picture, video, audio, etc.) and send it to the

receiver safely or the method can also be used to store important data or information safely.

18

Chapter Three

19

Chapter 3 Proposed Technique

3.1 Overview

Different techniques for data hiding are being discussed in the previous chapter, this

chapter proposes a new technique for data hiding, the proposed technique hide secret text in QR

code, before hiding the QR inside the 4 channels PNG cover image, the QR is saved as black and

white image with 1 bit per pixel and is stored in array of bytes to be encrypted using AES before

embedding it inside the cover image, the cover image has to be of type PNG with alpha channel,

the first pixel of the stego image will contain the length of the message, the actual embedding

starts after the first pixel the first and third bit of every color in the cover image is replaced with

2 bits of the encrypted QR code.

Steps:

1- Selecting cover image to hide QR code inside it

2- Inserting secret text to be hidden

3- Inserting key used for encryption using AES

4- Generating QR Code from the secret text.

5- Reading QR code as stream of bytes.

6- Store the length of the secret stream in the first pixel.

7- Encrypting QR Code, to provide extra security.

8- Embedding the encrypted QR Code in a PNG colored image; in the first and third bit of each

channel in the pixel.

20

Most of available techniques deal with gray scale images, this study however will deal with

colored images, in this context there are two aspects should be considered in order to perform the

embedding inside colored images, these are, choosing the right pixel for embedding, the second

level of security achieved by embedding. Below show more details for the technique.

 In this technique the text to be transferred is embedded inside a QR code and is then

encrypted using AES to provide extra security in case of detection of existence, this QR code is

then embedded inside of the cover image for safe transfer and can be extracted and decrypted

using a shared key later by the receiver, Figure 3.1 shows the flowchart of the proposed

technique

Figure 3.1. Proposed Technique Flowchart.

21

3.2 QR Generation and Encryption

 After entering the secret text to be transferred, we would embed it into QR code to take

advantage of its widespread use and of its error correction property, this could also give us the

advantage of storing the text in QR format, the QR Code is then encrypted using AES and a

shared key to increase the security and hardness of message retrieval in case the existence of the

message is revealed, Figure 3.2 show the flowchart of QR Code generation and encryption

process.

Figure 3.2. QR Code Generation and Encryption flowchart

22

 QR Generation Process:

1- Data Analysis and Encoding:

The QR encoding standards have 4 different models to encode data, these models

are numeric, alphanumeric, byte, and Kanji. The output of any model is a series of

bits, each model follows a different technique for generating the series of bits,

since each model behaves differently and generate different length of bits the data

should be analyzed to determine whether the text is preferred to be encoded in

numeric, alphanumeric or byte mode, then select the most optimal model in terms

of bits length to generate the stream of bits to generate the QR code.

2- Error Correction Coding:

After encoding the secret text, error correction codes are generated to be

embedded inside the bits stream to detect and correct errors , QR scanners read

both the codewords and data and compare them together to detect errors.

3- Module Placement in Matrix:

After embedding the codewords inside the data bites, the data must be placed in

the QR matrix along with pattern commonly used with QR codes such as black

boxes in corners.

23

4- Data Masking:

Specific patterns if found in QR matrix can make it difficult for QR scanners to

correctly read the data, to avoid such case, QR code standards provide 8 different

mask patterns that alters the QR code according to a particular pattern, the mask

must be selected so that difficulties are minimal.

Figure 3.3 show the QR Code.

Figure 3.3. QR Code

24

 QR Encryption Process:

1- Read the QR code as stream of bytes.

2- Start the encryption process:

a. Key Expansion: the first step in the encryption technique is to generate round

keys that’s derived from the main key using Rijndael's key schedule. AES requires

a separate 128-bit key for each round plus one more and 176 extra bytes

b. Add Round Key: each byte of the secret data is combined with a block of the

round key using bitwise xor.

c. Rounds:

- Sub Bytes: replacing each byte with another according to a lookup table.

- Shift Rows: shifting the last three rows cyclically for a number of steps.

- Mix Columns: combining the four bytes in each column.

- Add Round Key

d. Final Round (no Mix Columns)

- Sub Bytes

- Shift Rows

- Add Round Key.

25

3.3 Embedding

Take a colored image and store its components in four arrays, the first array would be the

red components of the image, the second is green, the third is blue and the fourth is the alpha

channel, the embedding is done by replacing the first and the third least significant bit of each

component with bit of the QR code that contains the text, Figure 3.4 show the steps of

embedding.

 Embedding Steps:

1- Use the encrypted QR:

Use the encrypted QR Code that’s generated from the secret text.

Figure 3.4. Embedding Process

26

2- Choosing the cover image:

The chosen image has to be of type PNG with alpha channel, each channel

will save 2 bits of the QR code, the image have to be of accepted size to be

able to store the code.

3- Reading the QR data:

The QR Code is saved as black and white image, the image is then read

and stored into a series of bytes.

4- Storing the length of the series:

The first pixel of the cover image will contain the length of the secret data

series, the length will be presented using 24 bits. This puts a limit on the

length that can be stored.

5- Embedding the secret data:

The secret data bytes are embedded inside each pixel of the cover image

using the four channels (RGBA), the embedding is made through the

replacement of the first and third bit of the cover image by 2 bits of the

secret data which gives the capacity of 1 byte per pixel. Figure 3.5 show

the embedding process.

Figure 3.5. Embedding

27

3.4 Extracting

After receiving the PNG stego image, the following steps are required in order to extract

the secret message from the image, the following Figure 3.6 show the flowchart of the

extracting and decrypting the QR Code.

Figure 3.6. Extracting and Decrypting QR Code Flowchart.

 Extracting Steps:

1- Retrieving the length of the secret message:

The length of the data is stored in the first pixel of the stego image, it is formed of

24 bits stored in Red, Green and Blue.

28

2- Extracting the encrypted data series:

The extraction from the image is done by taking the first and third least significant

bits from each channel to build the original byte, Figure 3.7 show the extraction

process from the pixel channels.

Figure 3.7. Extracting

3- Decrypting and reading the QR:

The QR code is decrypted using the shared key between the sender and the

receiver, after decrypting the bytes of the QR code, a code scanner is needed to

read and extract the data from the QR Code image.

29

Chapter Four

30

Chapter 4 Experimental Results

A series of experiments were conducted to show the effectiveness of the proposed

technique. The efficiency of the proposed technique is measured by four parameters which are:

1. Payload of secret data hidden in the cover image after stored inside the QR Code:

It is the size of secret text hidden inside the image.

2. Root Mean Squared Error (RMSE) of cover and stego images:

RMSE is the measure of the differences between values predicted by a model or an

estimator and the values actually observed.

3. Peak Signal-to-Noise Ratio (PSNR) of cover and stego images:

Peak signal-to-noise ratio is a term used to indicate the ratio between the maximum

possible quality of an image and the amount of corrupting noise that affects the fidelity of

its representation.

4. Standard Deviation between cover and stego images.

Standard Deviation shows how much values variation or dispersion from the average

exists.

5. Amount of pixels that contain error (Error Number).

The amount of pixels that contain difference between its values in the stego image before

and after embedding of secret data.

The objective of measuring the payload of data hidden in the cover image is to show that

the proposed technique can hide a relatively large payload of data, which will be compared to

results obtained using DiffImgPortable.

31

The PSNR is used to measure the quality of stego image compared to the cover image.

The quality of the image is higher if the PSNR value of the image is high. Since PSNR is

inversely proportional to RMSE value of the image, the higher the PSNR value is, the lower the

RMSE value will be. Therefore the better the stego image quality is the lower the RMSE value

will be, RMSE can be calculated using the following equation as stated by (Mohammad Ali Bani

Younes, & Aman Jantan, 2008).

RMSE =
 (𝑥1,𝑡−𝑥2,𝑡)2𝑛
𝑡=1

𝑛
…………………………………………………… (1).

Where:

X1,t : the value of pixel number (t) in the first image.

X2,t : the value of pixel number (t) in the second image.

N : The total number of pixels.

PSNR is calculated according to the following formula as stated by (Mohammad Ali Bani

Younes, & Aman Jantan, 2008):

PSNR = 20 ∙ log10(
255

𝑅𝑀𝑆𝐸
)…………………………………………………….(2).

32

Experimental Setup

 The simulation for the experiment was set up and run on a Windows 7 Home on 2.00

GHz Celeron with 2.5 GB of RAM.

In the experiments 4 PNG images of size 512 × 512 and 3 different messages with different

lengths been used to test the proposed technique, the first experiment was performed using text

of 600 characters, the second experiment is performed using 65536 characters and the final third

experiment is done using 131070 characters, the results was obtained by helper application

Differential Image Portable to calculate different parameters, the application is used in scientific

studies on images and calculate the discussed values.

Experiments

In this section the PSNR, RMSE, SD, Mean Error, Payload and Error Number values of each

experiment are being reviewed, the experiments are performed on 4 different images of size

512 × 512 of type 4 channels PNG.

First Experiment

First Image

 The first experiment was performed on the Sea image, embedding a text of length 600

characters, the embedding was performed using the proposed technique and the LSB technique,

in this section, Mean Error, Standard Deviation, RMSE and PSNR parameters are calculated

after the embedding process for each technique.

33

Figure 4.1 shows the sea image before and after embedding 600 characters using the proposed

technique

Figure 4.1. Sea before and after first experiment using the proposed technique

Table 4.1 shows the values of the studied parameters after storing 600 characters inside Sea using

the proposed QR based technique and the LSB technique.

 Proposed Technique LSB Technique

Mean Error 0.01207 0.00146

Standard Deviation 0.17765 0.04099

RMSE 0.17806 0.04102

PSNR 63.119 74.870

Error Number 1587 354

Table 4.1. Statistics for Sea first experiment after embedding.

34

Figure 4.2 is the histogram of Sea image after embedding the secret message in the first

experiment using the proposed technique.

Figure 4.2. Histogram for Sea in first experiment

35

Second Image

Figure 4.3 shows Peppers before and after embedding 600 characters using the proposed

technique

Figure 4.3. Peppers before and after first experiment using the proposed technique

 Table 4.2 contains the results after storing 600 characters inside Peppers using the

proposed QR based technique and LSB Method.

 Proposed Method LSB Method

Mean Error 0.01177 0.00135

Standard Deviation 0.17151 0.03884

RMSE 0.17191 0.03884

PSNR 63.424 76.345

36

Error Number 1605 334

Table 4.2. Statistics for Peppers first experiment after embedding

Figure 4.4 shows the histogram of Peppers after embedding the secret message of the first

experiment using the proposed technique.

Figure 4.4. Histogram for Peppers in first experiment

37

Third Image

 Figure 4.5 shows Lena before and after embedding 600 characters using the proposed

technique

Figure 4.5. Lena before and after first experiment using the proposed technique

Table 4.3 contains the results after storing 600 characters inside Lena.

 Proposed Method LSB Method

Mean Error 0.07067 0.00898

Standard Deviation 0.26320 0.04763

RMSE 0.27252 0.04847

PSNR 59.422 74.421

Error Number 1966 1008

Table 4.3. Statistics for Lena first experiment after embedding using proposed technique

38

Figure 4.6 shows the histogram Lena after embedding the secret message of the first

experiment using the proposed technique.

Figure 4.6. Histogram for Lena in first experiment.

39

Fourth Image

Figure 4.7 shows Baboon before and after embedding 600 characters of secret text using the

proposed technique

Figure 4.7. Baboon before and after first experiment using the proposed technique.

 Table 4.4 is the results after storing 600 characters inside Baboon using the proposed QR

based technique.

 Proposed Method LSB Method

Mean Error 0.07130 0.00914

Standard Deviation 0.26353 0.04804

RMSE 0.27301 0.04890

PSNR 59.407 74.344

Error Number 1971 1040

Table 4.4. Statistics for Baboon first experiment after embedding using proposed technique

40

Figure 4.8 shows the histogram Baboon after embedding the secret message of the first

experiment using the proposed technique.

Figure 4.8. Histogram for Baboon in first experiment

After studying the results in the first experiments for hiding 600 characters inside the

image it can be noted that the LSB method perform less effect on the stego image.

41

Second Experiment

First Image

 Figure 4.9 shows Sea before and after embedding 65536 characters of secret text using

the proposed technique

Figure 4.9. Sea before and after the second experiment using the proposed technique

Table 4.5 are the results after storing 65536 characters inside Sea using the proposed QR

based technique.

 Proposed method LSB method

Mean Error 0.69671 0.99604

Standard Deviation 0.17151 0.43704

RMSE 0.81612 1.08770

PSNR 49.895 47.40

Error Number 19388 111731

42

Table 4.5. Statistics for Sea second experiment after embedding

Figure 4.10 shows the histogram of Sea after embedding the secret message of the first

experiment using the proposed technique.

Figure 4.10. Histogram for Sea in second experiment

43

Second Image

Figure 4.11 shows Peppers before and after embedding 65536 characters of secret text using the

proposed technique

Figure 4.11. Peppers before and after the second experiment characters using the proposed

technique

Table 4.6 is the results after storing 65536 characters inside Peppers using the proposed QR

based technique.

 Proposed method LSB method

Mean Error 0.69010 0.97805

Standard Deviation 0.81041 0.43442

RMSE 1.06442 1.07019

PSNR 47.588 47.541

Error Number 19390 110618

44

Table 4.6. Statistics for Peppers second experiment after embedding using proposed technique

Figure 4.12 shows the histogram of Peppers after embedding the secret message of the

first experiment using the proposed technique.

Figure 4.12. Histogram for Peppers in third experiment

45

Third Image

 The following picture is Lena before and after embedding 65536 characters of secret text

using the proposed technique

Figure 4.13. Lena before and after the second experiment characters using the proposed

technique

Table 4.7 contains the results after storing 65536 characters inside Lena using the

proposed QR based technique.

 Proposed method LSB method

Mean Error 0.69652 0.98872

Standard Deviation 0.81577 0.43598

RMSE 1.07267 1.08058

PSNR 47.521 47.457

46

Error Number 19380 111230

Table 4.7. Statistics for Lena second experiment after embedding using proposed technique

Figure 4.14 shows the histogram of Lena after embedding the secret message of the first

experiment using the proposed technique.

Figure 4.14. Histogram for Lena in second experiment.

47

Fourth Image

Figure 4.15 is Baboon before and after embedding the secret text using the proposed

technique

Figure 4.15. Baboon before and after second experiment character using the proposed

technique.

Table 4.8 shows the results after storing 65536 characters inside Baboon using the

proposed QR based technique.

 Proposed method LSB method

Mean Error 0.69313 0.98898

Standard Deviation 0.81344 0.43602

RMSE 1.06869 1.08083

PSNR 47.553 47.455

48

Error Number 19393 111426

Table 4.8. Statistics for Baboon second experiment after embedding using proposed technique

Figure 4.16 is the histogram of Baboon after embedding the secret message of the first

experiment using the proposed technique.

Figure 4.16. Histogram for Baboon in second experiment

After studying the results of the second experiments when hiding 65536 characters, we

note that proposed method and the LSB method have almost equal effect on the stego image after

embedding.

49

Third Experiment

First Image

Figure 4.17 is Sea before and after embedding 131072 characters of secret text using the

proposed technique

Figure 4.17. Sea before and after third experiment using the proposed technique

Table 4.9 shows the results after storing 131072 characters inside Sea using the proposed QR

based technique.

 Proposed method LSB method

Mean Error 1.64470 1.97755

Standard Deviation 1.19799 0.50492

RMSE 2.03475 2.04099

PSNR 41.960 41.933

50

Error Number 45915 221817

Table 4.9. Statistics for Sea third experiment after embedding using proposed technique

Figure 4.18 is the histogram Sea after embedding the secret message of the first

experiment using the proposed technique.

Figure 4.18. Histogram for Sea in third experiment

51

Second Image

Figure 4.19 shows Peppers before and after embedding 131072 characters of secret text using the

proposed technique

Figure 4.19. Peppers before and after third experiment characters using the proposed technique

Table 4.10 contains the results after storing 131072 characters inside Peppers using the

proposed QR based technique.

 Proposed method LSB method

Mean Error 1.64699 1.94503

Standard Deviation 1.19996 0.50476

RMSE 2.03776 2.00946

PSNR 41.947 42.069

Error Number 45871 219974

52

Table 4.10. Statistics for Peppers third experiment after embedding using proposed technique

Figure 4.20 is the histogram of Peppers after embedding the secret message of the first

experiment using the proposed technique.

Figure 4.20. Histogram for Peppers in third experiment

53

Third Image

Figure 4.21 shows Lena before and after embedding 131072 characters of secret text

using the proposed technique.

Figure 4.21. Lena before and after third experiment characters using the proposed technique

 Table 4.11 shows the results after storing 131072 characters inside Lena using the

proposed QR based technique.

 Proposed method LSB method

Mean Error 1.64180 1.96491

Standard Deviation 1.19541 0.50487

RMSE 2.03089 2.02874

PSNR 41.977 41.986

Error Number 45878 221088

Table 4.11. Statistics for Lena third experiment after embedding using LSB technique

54

Figure 4.22 is the histogram of Lena after embedding the secret message of the first

experiment using the proposed technique.

Figure 4.22. Histogram for Lena in third experiment.

55

Fourth Image

Figure 4.23 is Baboon before and after embedding 131072 characters of secret text using the

proposed technique

Figure 4.23. Baboon before and after third experiment character using the proposed technique.

 Table 4.12 is the results after storing 131072 characters inside Baboon using the proposed

QR based technique.

 Proposed method LSB method

Mean Error 1.64152 1.96383

Standard Deviation 1.19686 0.50487

RMSE 2.03152 2.02769

PSNR 41.974 41.990

Error Number 45916 221448

Table 4.12. Statistics for Baboon third experiment after embedding using proposed technique

56

Figure 4.24 shows histogram for Baboon after embedding the secret message of the first

experiment using the proposed technique.

Figure 4.24. Histogram for Baboon in third experiment

57

Based on the above results, the following table show the best results achieved for each technique

in the three experiments.

First Experiment:

In the first experiment, the LSB method was better than the proposed method, however, the

performance of the proposed method was best in peppers

 Proposed Method LSB Method

Mean Error 0.01177 0.00135

Standard Deviation 0.17151 0.03884

RMSE 0.17191 0.03884

PSNR 63.424 76.345

Error Number 1605 334

Table 4.13. Peppers in first experiment

58

Second Experiment:

In the second experiment, the proposed method was better than the LSB, the performance of the

proposed method was best in peppers.

 Proposed method LSB method

Mean Error 0.69010 0.97805

Standard Deviation 0.81041 0.43442

RMSE 1.06442 1.07019

PSNR 47.588 47.541

Error Number 19390 110618

Table 4.14 . Peppers in second experiment

59

Third Experiment:

In the first experiment, the proposed method was better than the LSB mehod, the performance of

the proposed method was best in baboon.

 Proposed method LSB method

Mean Error 1.64152 1.96383

Standard Deviation 1.19686 0.50487

RMSE 2.03152 2.02769

PSNR 41.974 41.990

Error Number 45916 221448

Table 4.15. Baboon in third experiment

60

Chapter Five

61

Chapter 5 Conclusion

Conclusion

The proposed technique to hide secret text in QR code, before hiding the QR inside the 4

channels PNG cover image, the QR is saved as black and white image with 1 bit per pixel and is

stored in array of bytes to be encrypted using AES before embedding it inside the cover image.

After analyzing the results of the experiments of the proposed technique and comparing

the results with the LSB insertion it became obvious that the proposed technique provide

superior results than LSB when using large data, despite the fact that the impact is greater when

using the first and third bits than when using the least significant bit alone, the proposed

technique effect on the picture was almost the same and even better in some images than LSB

when hiding relatively large data.

Future Work

This study can provide the base for several future researches, the following points are

suggested to further study the performance of the proposed technique:

1. Combining QR codes with compression to enhance the payload.

2. Study the effect when using different types of images.

3. Use QR Codes to store audio data and compare the capacity with known techniques.

62

References

 Anderson, R. &. (1998). On the limits of steganography. IEEE Journal of Selected Areas

in Communications, 16(4), 474-481.

 Arts, D. (2001). Digital Steganography: Hiding Data within Data. Internet Computing,

IEEE, 5(3), 75-80.

 Currie, D. &. (1996). Surmounting the effects of lossy compression on steganography.

19th National Information Systems Security Conference., (pp. 194-201).

 Dey, S. (2012). SD-EQR: A New Technique To Use QR CodesTM. International Journal

of Information Technology & Computer Science (IJITCS), 29-35.

 Jantan, M. A. (2008). A New Steganography Approach for Image Encryption Exchange

by using LSB insertion. International Journal of Computer Science and Network

Security, 8(6), 247-254.

 Motameni H., N. M. (2007). Labeling technique in steganography. Proceedings of world

academy of science, engineering and technology, (pp. 349-354).

 Nath, J. (2012). Advanced Steganography Algorithm Using Randomized Intermediate QR

Host Embedded With Any Encrypted Secret Message: ASA_QR Algorithm. 6, 59-67.

 Po Yunch Chen, &. H. (2006). A DWT Based Approach for Image Steganography.

International journal of Applied Science and Engineering, 4(3), 275-290.

 Rijmen, J. D. (2002). The Design of Rijndael, AES - The Advanced Encryption Standard.

238.

 Sahu, S. K. (2013). Encryption in QR Code Using Stegnography. International Journal of

Engineering Research and Applications, (pp. 1783-1741).

63

 Suppat Rungraungsilp, M. K. (2012). Data Hiding Technique for QR Code Based on

Watermark by compare DCT with DFT Domain. International Conference on Computer

and Communication Technologies (ICCCT'2012), 144-148.

 Tandon, A. (2013). QR Code based secure OTP distribution. International Journal of

Engineering and Technology (IJET), 5(3), 2502-2505.

 Morkel T., Eloff J.H.P., & Olivier M.S., (2006)"An Overview of Image Steganography",

University of Pretoria.

 Kefa Rabah. (2004), Steganography-The Art of Hiding Data, Department of Physics,

Eastern Mediterranean University, Gazimagusa, North Cyprus, via Mersin 10, Turkey.

 Kumar P. Mohan, & Roopa D. (2007). An Image Steganography Framework with

Improved Tamper Proofing. Asian Journal of Information Technology, 6(10), 1023-1029.

 Al Husainy A.F. (2009). Image Steganography by mapping Pixels to letters. Journal of

Computer Science, 5(1), 33-38.

 Moerland, T. (2001), "Steganography and Steganalysis", Leiden Institute of Advanced

Computing Science.

 Ran-Zan Wang, & Yeh-Shun Chen. (2006). High Payload Image Steganography Using

Two-Way Block Matching. IEEE Signal Processing Letters, 13(3), 161 - 164.

http://dx.doi.org/10.1109/LSP.2005.862603

 Xinpeng Zhang, Shuozhong Wang, & Zhenyu Zhou. (2008). Multibit Assignment

Steganography in Palette Images. IEEE Signal Processing Transactions, 15, 553-556.

http://dx.doi.org/10.1109/LSP.2008.2001117.

 Luis von Ahn and Nicholas J. Hopper. Public-key steganography. In Advances in

Cryptology Proceedings of Eurocrypt 04, pages 323-341. Springer-Verlag, 2004.

http://dx.doi.org/10.1109/LSP.2008.2001117

64

 Asif, A. A., Shaikh, A., Manza, R. R., & Ramteke, R. J. (2010). Conversion of Bitmap

Text Images for Data Hiding. Computational Intelligence and Computing Research

(ICCIC), 2010 IEEE International Conference, 1 – 4

 Dutta, P., Bhattacharyya, D., & Kim, T.-h. (2009). Data Hiding in Audio Signal: A

Review. Kim International Journal of Database Theory and Application, 1-8.

 Zou, D., & Shi, Y. Q. (2005). Formatted Text Document Data Hiding Robust to Printing,

Copying and Scanning. Institute of Electrical and Electronics Engineers (IEEE), 4971 –

4974.

65

Appendix: Source Code

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.IO;
using System.Collections;
using System.Drawing.Imaging;
using System.Runtime.InteropServices;

namespace Image_Steganography
{
 public partial class Form1 : Form
 {

 Image CoverImage;
 BitmapIP CoverImageIP;
 Bitmap CoverImageBitmap;

 Image SecretImage;

 byte[] ImageBytes;

 public Form1()
 {
 InitializeComponent();
 SecretText.Visible = true;
 SecretImageBox.Visible = false;
 GenerateQR.Visible = true;
 EncryptQR.Visible = false;
 EmbedQR.Visible = false;
 SecretKey.Enabled = true;
 ExtractQR.Visible = false;
 DecryptQR.Visible = false;
 }

 private void BrowseCover_Click(object sender, EventArgs e)
 {
 OpenFileDialog CoverFile = new OpenFileDialog();
 CoverFile.Filter = "Images Files|*.bmp;*.png;*.jpeg; *.*;";
 if (CoverFile.ShowDialog() == System.Windows.Forms.DialogResult.Cancel)
 {
 return;
 }
 CoverImage = System.Drawing.Image.FromFile(CoverFile.FileName);
 CoverImageBox.Image = CoverImage;
 CoverImageBitmap = new Bitmap(CoverFile.FileName);
 CoverImageIP = new BitmapIP(CoverImageBitmap);

 }

 private void BrowseSecret_Click(object sender, EventArgs e)
 {
 OpenFileDialog SecretFile = new OpenFileDialog();
 SecretFile.Filter = "Images Files|*.bmp;*.png;*.jpeg; *.*;";

66

 if (SecretFile.ShowDialog() == System.Windows.Forms.DialogResult.Cancel)
 {
 return;
 }
 SecretImage = Image.FromFile(SecretFile.FileName);
 SecretImage.Save(@"D:\Secret.gif", System.Drawing.Imaging.ImageFormat.Gif);
 SecretImage = Image.FromFile(@"D:\Secret.gif");
 SecretImageBox.Image = SecretImage;
 }

 public bool ValidateInputs()
 {
 if (SecretKey.Text.Length == 0)
 {
 MessageBox.Show("Please enter the key");
 return false;
 }
 if (CoverImageBox.Image == null)
 {
 MessageBox.Show("Please select cover image");
 return false;
 }

 return true;
 }

 private void Hide_Click(object sender, EventArgs e) //this generates a QR
 {
 if (!ValidateInputs())
 return;
 string SecretText_ = new string(SecretText.Text.ToCharArray());

 int textLength = SecretText_.Length;
 int remainder = textLength % 600;
 int _noOfSegments = (int)(textLength / 600);
 string[] chuncks = new string[_noOfSegments];

 //Obaidah

 //Obaidah
 int j;
 Bitmap QR_Image = null;

 for (j = 0; j < _noOfSegments; j++)
 {
 chuncks[j] = SecretText_.Substring(j * 600, 600);

 QRCodeGenerator qrGenerator = new QRCodeGenerator();
 QRCodeGenerator.QRCode qrCode = qrGenerator.CreateQrCode(chuncks[j],
QRCodeGenerator.ECCLevel.L);
 QR_Image = qrCode.GetGraphic(3); //tested with 20
 QR_Image = BitmapTo1Bpp(QR_Image);

 QR_Image.Save(@"D:\Stego\" + j.ToString() + ".gif", ImageFormat.Gif);

 }

 DirectoryInfo directory = new DirectoryInfo("D:\\Stego\\");
 if (directory != null)

67

 {
 FileInfo[] files = directory.GetFiles();
 CombineImages(files);
 }

 //SecretImageBox.Image = QR_Image;
 SecretText.Visible = false;
 SecretImageBox.Visible = true;
 GenerateQR.Visible = false;
 EncryptQR.Visible = true;
 //ImageConverter converter = new ImageConverter();
 //return (byte[])converter.ConvertTo(QR_Image, typeof(byte[]));
 }

 private void CombineImages(FileInfo[] files)
 {
 //change the location to store the final image.
 string finalImage = @"D:\\QR.bmp";
 List<int> imageHeights = new List<int>();

 int nIndex = 0;
 int width = 0;
 foreach (FileInfo file in files)
 {
 Image img = Image.FromFile(file.FullName);
 imageHeights.Add(img.Height);
 width += img.Width;
 img.Dispose();
 }
 imageHeights.Sort();
 int height = imageHeights[imageHeights.Count - 1];
 Bitmap img3 = new Bitmap(width, height);
 Graphics g = Graphics.FromImage(img3);
 g.Clear(SystemColors.AppWorkspace);
 foreach (FileInfo file in files)
 {
 Image img = Image.FromFile(file.FullName);
 if (nIndex == 0)
 {
 g.DrawImage(img, new Point(0, 0));
 nIndex++;
 width = img.Width;
 }
 else
 {
 g.DrawImage(img, new Point(width, 0));
 width += img.Width;
 }
 img.Dispose();
 }
 g.Dispose();
 img3 = BitmapTo1Bpp(img3);
 //img3.Save(finalImage, System.Drawing.Imaging.ImageFormat.Bmp);
 img3.Save(finalImage);
 img3.Dispose();
 SecretImageBox.Image = Image.FromFile(finalImage);
 }

 public static Bitmap BitmapTo1Bpp(Bitmap img)
 {
 int w = img.Width;
 int h = img.Height;

68

 Bitmap bmp = new Bitmap(w, h, PixelFormat.Format1bppIndexed);
 BitmapData data = bmp.LockBits(new Rectangle(0, 0, w, h),
ImageLockMode.ReadWrite, PixelFormat.Format1bppIndexed);
 byte[] scan = new byte[(w + 7) / 8];
 for (int y = 0; y < h; y++)
 {
 for (int x = 0; x < w; x++)
 {
 if (x % 8 == 0) scan[x / 8] = 0;
 Color c = img.GetPixel(x, y);
 if (c.GetBrightness() >= 0.5) scan[x / 8] |= (byte)(0x80 >> (x % 8));
 }
 Marshal.Copy(scan, 0, (IntPtr)((long)data.Scan0 + data.Stride * y),
scan.Length);
 }
 bmp.UnlockBits(data);
 return bmp;
 }

 public int GetLength()
 {
 /*int iWidth = CoverImageIP.GetBitmap().Width;
 int iHeight = CoverImageIP.GetBitmap().Height;
 Color[,] ImageArray = CoverImageIP.GetImage2DArray();*/
 int Length;
 Color tmpColor = new Color();
 tmpColor = CoverImageBitmap.GetPixel(0,0);
 tmpColor = Color.FromArgb(tmpColor.R, tmpColor.G, tmpColor.B);
 int RColor = tmpColor.R;
 int GColor = tmpColor.G;
 int BColor = tmpColor.B;
 int x = new int();
 int y = new int();
 int z = new int();
 x = GColor % 10;
 y = BColor % 10;
 z = RColor % 10;
 Length = Convert.ToInt32((RColor * 10000 + GColor * 100 +
BColor).ToString());
 return Length;
 }

 public void Extract_Message()
 {
 int iLen = GetLength();
 int iHeight = CoverImageBitmap.Height;
 int iWidth = CoverImageBitmap.Width;
 bool completed = false;
 int[] ImageBits = new int[8];
 int w = 0;
 StringBuilder sHiddenData = new StringBuilder();
 for (int i = 1; i < iWidth; i++)
 {
 for (int j = 1; j < iHeight; j++)
 {
 if ((w) == iLen)
 {
 completed = true;
 break;
 }
 sHiddenData.Append(GetStoredValue(CoverImageBitmap.GetPixel(i, j)));
 w++;
 }

69

 if (completed)
 break;
 }
 ImageBytes = GetBytesFromString(sHiddenData.ToString());
 MessageBox.Show("Encrypted QR Extracted Successfuly!");
 }

 public static byte[] GetBytesFromString(string bitString)
 {
 return Enumerable.Range(0, bitString.Length / 8).
 Select(pos => Convert.ToByte(
 bitString.Substring(pos * 8, 8),
 2)
).ToArray();
 }

 string GetStoredValue(Color tmpColor)
 {

 string sStoredValue = "";
 byte bRed, bGreen, bBlue, bAlpha;

 bRed = tmpColor.R;
 bGreen = tmpColor.G;
 bBlue = tmpColor.B;
 bAlpha = tmpColor.A;
 int[] iRedBits, iGreenBits, iBlueBits, iAlphaBits;

 iRedBits = Util.ConvertToBits(bRed);
 iGreenBits = Util.ConvertToBits(bGreen);
 iBlueBits = Util.ConvertToBits(bBlue);
 iAlphaBits = Util.ConvertToBits(bAlpha);

 int iFirstBit;
 int iSecondBit;
 int iThirdBit;
 int iFourthBit;
 int iFifthBit;
 int iSixthBit;
 int iSeventhBit;
 int iEightethBit;

 iFirstBit = iRedBits[7];
 iSecondBit = iRedBits[5];

 iThirdBit = iGreenBits[7];
 iFourthBit = iGreenBits[5];

 iFifthBit = iBlueBits[7];
 iSixthBit = iBlueBits[5];

 iSeventhBit = iAlphaBits[7];
 iEightethBit = iAlphaBits[5];

 sStoredValue = iFirstBit.ToString() + iSecondBit.ToString() +
iThirdBit.ToString() + iFourthBit.ToString() + iFifthBit.ToString() +
iSixthBit.ToString() + iSeventhBit.ToString() + iEightethBit.ToString();
 return sStoredValue;
 }

70

 public void SetLength(int TxtLength)
 {

 Color tmpColor = new Color();
 tmpColor = CoverImageBitmap.GetPixel(0,0);
 int RColor = tmpColor.R;
 int GColor = tmpColor.G;
 int BColor = tmpColor.B;

 int[] x = new int[6];

 for (int ii = 0; ii < 6; ii++)
 x[ii] = 0;

 string TxtLength12 = "000000";
 TxtLength12 = TxtLength12 + TxtLength.ToString();
 x[0] = Convert.ToInt32(TxtLength12.ToString().ElementAt(TxtLength12.Length -
1).ToString());
 x[1] = Convert.ToInt32(TxtLength12.ToString().ElementAt(TxtLength12.Length -
2).ToString());
 x[2] = Convert.ToInt32(TxtLength12.ToString().ElementAt(TxtLength12.Length -
3).ToString());
 x[3] = Convert.ToInt32(TxtLength12.ToString().ElementAt(TxtLength12.Length -
4).ToString());
 x[4] = Convert.ToInt32(TxtLength12.ToString().ElementAt(TxtLength12.Length -
5).ToString());
 x[5] = Convert.ToInt32(TxtLength12.ToString().ElementAt(TxtLength12.Length -
6).ToString());
 RColor = Convert.ToInt32(x[5] + "" + x[4]);
 GColor = Convert.ToInt32(x[3] + "" + x[2]);
 BColor = Convert.ToInt32(x[1] + "" + x[0]);
 tmpColor = Color.FromArgb(RColor, GColor, BColor);
 CoverImageBitmap.SetPixel(0, 0, tmpColor);
 }

 Color ChangeColorValue(Color tmpColor, int iFirstBit, int iSecondBit, int
iThirdBit, int iFourthBit, int iFifthBit, int iSixthBit, int iSeventhBit, int
iEightethBit)
 {

 byte bRed, bGreen, bBlue, bAlpha;

 bRed = tmpColor.R;
 bGreen = tmpColor.G;
 bBlue = tmpColor.B;
 bAlpha = tmpColor.A;
 int[] iRedBits, iGreenBits, iBlueBits, iAlphaBits;

 iRedBits = Util.ConvertToBits(bRed);
 iGreenBits = Util.ConvertToBits(bGreen);
 iBlueBits = Util.ConvertToBits(bBlue);
 iAlphaBits = Util.ConvertToBits(bAlpha);
 //MessageBox.Show(bRed.ToString());
 //test here obaidah
 iRedBits[7] = iFirstBit;
 iRedBits[5] = iSecondBit;

 iGreenBits[7] = iThirdBit;
 iGreenBits[5] = iFourthBit;

71

 iBlueBits[7] = iFifthBit;
 iBlueBits[5] = iSixthBit;

 iAlphaBits[7] = iSeventhBit;
 iAlphaBits[5] = iEightethBit;

 bRed = Convert.ToByte(ReturnBitStr(iRedBits), 2);
 bGreen = Convert.ToByte(ReturnBitStr(iGreenBits), 2);
 bBlue = Convert.ToByte(ReturnBitStr(iBlueBits), 2);
 bAlpha = Convert.ToByte(ReturnBitStr(iAlphaBits), 2);

 Color EncodedColor = Color.FromArgb(bAlpha, bRed, bGreen, bBlue);
 return EncodedColor;
 }

 private string ReturnBitStr(int[] iBits)
 {
 string s = "";

 for (int i = 0; i <= iBits.GetUpperBound(0); i++)
 {
 s = s + iBits[i];
 }

 return s;
 }

 public void Hide_Message()
 {
 WSImages myImage = new WSImages();
 SetLength(ImageBytes.Length);
 Color tmpColor;
 int iHeight = CoverImageBitmap.Height;
 int iWidth = CoverImageBitmap.Width;
 bool completed = false;
 int[] ImageBits = new int[8];
 int w = 0;
 for (int i = 1; i < iWidth; i++)
 {
 for (int j = 1; j < iHeight; j++)
 {
 if (w == ImageBytes.Length)
 {
 completed = true;
 break;
 }
 ImageBits = Util.ConvertToBits(ImageBytes[w++]);
 tmpColor = CoverImageBitmap.GetPixel(i, j);
 tmpColor = Color.FromArgb(tmpColor.A, tmpColor.R, tmpColor.G,
tmpColor.B);
 tmpColor = ChangeColorValue(tmpColor, (ImageBits[0]), (ImageBits[1]),
 (ImageBits[2]), (ImageBits[3]), (ImageBits[4]),
 (ImageBits[5]), (ImageBits[6]), (ImageBits[7]));
 CoverImageBitmap.SetPixel(i, j, tmpColor);
 }
 if (completed)
 break;
 }
 CoverImageBitmap.Save("d:\\Stegno.png");
 SecretImageBox.Image = CoverImageBitmap;

 }

72

 private void EncryptQR_Click(object sender, EventArgs e)
 {

 WSImages myImage = new WSImages();
 ImageBytes = myImage.GetImage("d:\\QR.bmp");
 if (SecretKey.Text.Length != 0)

 ImageBytes = RijndaelHelper.EncryptBytes(ImageBytes, SecretKey.Text,
"key");

 MemoryStream memStream = new MemoryStream(ImageBytes);
 // Convert memory stream to a Bitmap
 try
 {
 File.WriteAllBytes(@"D:\Encrypted QR.dmp", ImageBytes);
 MessageBox.Show(@"Encrypted Successfuly!, file stored on D:\");
 EncryptQR.Visible = false;
 EmbedQR.Visible = true;
 SecretKey.Enabled = false;
 }
 catch
 {
 MessageBox.Show("Unable to Encrypt QR!");
 }
 // save image returned to local disk(requested server/client machine)
 }

 private void EmbedQR_Click(object sender, EventArgs e)
 {
 Hide_Message();
 EmbedQR.Visible = false;
 }

 private void Embedding_CheckedChanged(object sender, EventArgs e)
 {
 SecretText.Visible = true;
 SecretImageBox.Visible = false;
 GenerateQR.Visible = true;
 EncryptQR.Visible = false;
 EmbedQR.Visible = false;
 SecretKey.Enabled = true;
 ExtractQR.Visible = false;
 DecryptQR.Visible = false;
 }

 private void Extracting_CheckedChanged(object sender, EventArgs e)
 {
 SecretText.Visible = false;
 SecretImageBox.Visible = false;
 GenerateQR.Visible = false;
 EncryptQR.Visible = false;
 EmbedQR.Visible = false;
 SecretKey.Enabled = true;
 ExtractQR.Visible = true;
 }

 private void ExtractQR_Click(object sender, EventArgs e)
 {
 Extract_Message();
 ExtractQR.Visible = false;
 DecryptQR.Visible = true;

73

 }

 private void DecryptQR_Click(object sender, EventArgs e)
 {

 SecretImageBox.Visible = true;
 byte [] ImageBytes1 = RijndaelHelper.DecryptBytes(ImageBytes, SecretKey.Text,
"key");
 if (ImageBytes1 == null)
 return;
 ImageBytes = ImageBytes1;
 WSImages myImage = new WSImages();

 MemoryStream memStream = new MemoryStream(ImageBytes);
 // Convert memory stream to a Bitmap
 try
 {
 Bitmap bm = new Bitmap(memStream);
 bm = BitmapTo1Bpp(bm);
 bm.Save("d:\\Extracted QR.bmp");
 MessageBox.Show("Extracted Successfuly!");
 SecretImageBox.Image = bm;
 DecryptQR.Visible = false;
 }
 catch
 {
 MessageBox.Show("Unable to extract image, please check key");
 }
 }

 private void SecretText_TextChanged(object sender, EventArgs e)
 {
 textlength.Text = SecretText.TextLength.ToString();
 }
 }
}

