

An Enhancement of the Replacement Steady State

Genetic Algorithm for Intrusion Detection

� ا��ال ا���ارز��� ا������ ����� ا����ار �
	� ا���������

By:

 ShathaAbd-Alhafid Aziz

Supervisor:

 Prof. Reyadh Shaker Naoum

A Thesis Submitted In Partial Fulfillment of the Requirements of the

Master Degree in Computer Information Systems

Faculty of Information Technology

Middle East University

(May,2014)

II

Middle East University

Authorization Statement

I am, Shatha Abd-Alhafid Aziz, authorize Middle East University to supply hard and

electronic copies of my Thesis to libraries, establishments or bodies and institutions

concerned with research and scientific studies upon request, according to the university

regulations.

III

 $��#� ا�	�ق ا�و�

 ا����&%

� ا	��ق ا�و�� ���و�� ��� �� ر��	� ور��� وأ	���و��� ����أ��)'ى "%� ا	$�!# "��� أ! ض

� ".� 0+%/� ،أو ا	*.-*�ت ،	+*��%�ت�*+�� ����$�ث وا	�را��ت ا	�.�.أو ا	/��3ت وا	*���2ت ا	*

IV

V

Dedication

To

My parents

My husband

My brothers and sisters

My friends

For their love, support and encouragement, without them nothing of this

would have been possible. Thank you for everything.

VI

Acknowledgments

 At the end of this work, many people deserve to be acknowledged for their

contribution to complete this work.

I would like to thank my parents; they always helped me in all my life, I am very thankful

for my husband Wisam for his encouragement and support. I thank my children

Abdullah, Rawan and fahed, because even if they don’t know anything of what I’m

doing, they tried to help me, I love you!

A very special thank to my advisor Prof. Reyadh Naoum for his helpful advices,

motivation and knowledge he provided me throughout this work. He continually and

convincingly pushes this research to the limit. Without his guidance and persistent help,

this research would not be accomplished.

Finally, I would like to thank the Information Technology Faculty members and the

management of Middle East University for providing adequate environment and

supporting their students.

VII

Table of Contents

Authorization Statement II

ا	�6 �5 III

Examination Committee Decision IV

Dedication V

Acknowledgements VI

Table of Contents VII

List of tables X

List of figures XII

Abbreviations XIII

Abstract XIV

ا	*+78 XV

Chapter One: Introduction

1.1 Preface 1

1.2 Problem Identification 2

1.3 Questions 2

1.4 Objectives 2

1.5 Significance 3

1.6 Limitations 3

1.7 Thesis Outline 4

Chapter Two: Literature Review& Related Work

2.1 Overview 5

2.2 Literature Review related to Intrusion Detection Systems 5

2.3 Literature Review related to Genetic Algorithm 9

2.4 Literature Review related to Detection Systems based on GA 10

Chapter Three: Theoretical Background: Intrusion Detection &Genetic Algorithm

3.1 Overview 14

VIII

3.2 Intrusion Detection 1 4

3.2.1 Computer Security 15

3.2.2 Firewall 16

3.2.3 Intrusion Detection Systems (IDS) 17

3.2.4 Components of intrusion detection system 18

3.2.5 Intrusion Detection Classification 19

3.2.6 Intrusion Detection Systems Taxonomy 20

3.2.7 Network Attacks 21

3.2.8 Signature and Signature Alarms 23

3.2.9 Intrusion Detection Evaluation 24

3.3 Genetic Algorithm (GA) 25

3.3.1Working mechanism of Genetic Algorithm: 26

3.3.2 Steady State Genetic Algorithm (SSGA) elements 27

3.3.3 GA Forms 35

3.4 KDD Cup 99 Dataset 38

Chapter Four: Proposed Model & Methodology 41

4.1 Overview 41

4.2 Methodology 41

4.3 Proposed Model 42

4.4 The algorithm of Steady State Genetic Algorithm 43

4.5 Proposed Model Structure 43

4.5.1 Environment 43

4.5.1.1 Training Dataset 44

4.5.1.2 Testing Dataset 44

4.5.2 Classifier 44

4.5.3 Distinct Rules 45

4.5.4 Steady state Genetic Algorithm Unit 45

4.5.5 Rules Pool 47

4.5.6 Testing (Matching) 47

IX

4.5.7 System Evaluation 47

4.6 Attack types and Features selection 47

Chapter Five: Experimental Results 49

5.1 Overview 49

5.2 Dataset 49

5.3 Classification 50

5.4 Features selection 51

5.5 Fitness Function 53

5.5.1 Why Fitness Function after using SSGA is equal to A 54

5.6 Tracking the genetic algorithm by values 56

5.7 The convergence 62

5.8 The Results of Detection Rate (DR) and False Positive Rate (FPR) 63

 5.9 Tracking increasing of DR in U2R attack type with Double and Triple

Replacement:

64

5.10 Comparing thesis results with other results: 66

Chapter Six: Conclusion and Future Work 68

6.1 Conclusion 68

6.2 Future Work 69

 References 70

 Appendix 75

X

List of Tables

3.1 The classification of main attacks categories 22

3.2 KDD’99 Feature Descriptions 39

4.1 Researches to determine the most significant feathers for each attack 48

5.1 Distribution of Attacks within Training Dataset 50

5.2 Sub attack types that appears in training dataset 50

5.3 Selected Features by Mukkamala, Sung and Abraham 51

5.4 Number of records before and after filtering for DoS attack 52

5.5 Number of records before and after filtering for R2L attack 52

5.6 Number of records before and after filtering for U2R attack 53

5.7 Number of records before and after filtering for Probe attack 53

5.8 Fitness value for each record in U2R 56

5.9 The values after selection process 57

5.10 Records form of U2R after crossover 57

5.11 The values of A for each record after mutation 58

5.12 Features values of U2R after crossover on the second generation 59

5.13 The values of A for each record after mutation in the second generation 59

5.14 Features values of U2R after crossover in the third generation 60

5.15 The values of A for each record after mutation on the third generation 60

5.16 Chromosomes value after Triple replacement process 61

5.17 Results of DR and FPR with Double Replacement 63

5.18 Results of DR and FPR with Triple Replacement 63

XI

5.19 Number of records in the first 100 generations of U2R attack 64

5.20 Number of records after the 100 generations of U2R attack 65

5.21 First comparison 66

5.22 Second comparison 67

XII

List of Figures

3.1 Misuse Intrusion Detection System 19

3.2 Anomaly Intrusion Detection System 20

3.3 Genetic Algorithm Structure 26

4.1 Enhanced Steady State Genetic Algorithm Model for Intrusion Detection System 42

5.1 The difference between double and triple replacement in the first 100 generation 64

5.2 The difference between double and triple replacement after the 100 generations 65

XIII

List of Abbreviations

Abbreviation Meaning

AI: Artificial Intelligent

BTR: Binary Tournament Replacement

DOS: Denial of Service

DR: Detection Rate

FPR: False Positive Rate

IDS: Intrusion Detection System

ID: Intrusion Detection

GA: Genetic Algorithm

KDD: Knowledge Discovery Database

NIDS: Network Intrusion Detection System

NN: Neural Network

R2L: Remote to Local

RGA: Recurrent Genetic Algorithm

SGA: Simple Genetic Algorithm

SSGA: Steady State Genetic Algorithm

TTR: Triple Tournament Replacement

U2R: User to Root

XIV

Abstract

In these days, Internet and computer systems face many intrusions without detection or

prevention by security systems built for this purpose; large volume of important data is

transferred through the networks such as personal data and credit cards information.

Thus, the networks security has become more important than before. This led the

researchers to make additional researches to develop Intrusion Detection Systems.

An Intrusion Detection System (IDS) is a system used to monitor the events and

detect attacks; Steady State Genetic Algorithm is applied to support IDS by supplying the

rule pool with additional data, these data can be used in testing phase to detect the

attacks.

The main goal of this research is to enhance Replacement steady state genetic

algorithm to detect intrusions.The enhancement has been achieved by

comparingreplacement methods.

This research provides that the Triple Tournament Replacementproduces more accurate

results than Binary Tournament Replacement in increasingDetection Rate(DR), but both

of methodsgive the same values of False Positive Rate (FPR).The results of DR with

Triple Replacement are 100% for three types of attack (DoS, Probe and R2L) and 53%

for U2R.The average ofDRof this system is 88.25%, andFPR is 1.48%. It’s considered

accepted results when comparing with the previous results.

XV

 ا�()�'

 ه'= ا>��م!، ?�� ا>����E و�-D ا	$�� ب ا	���� �� ا	�A6B@@ ا�%(�Bا� � F.� او Gون آ��%

� 	/'ا ا	�Jض�.%� ���*K D-�، %����ت	ا LM� %��ت�	ل اAO LP.@ �DQK آ%�� �� ا	%����ت ا	*/*

� و��+ ��ت ��B��ت ا>�R*�ن�S8�	ا، L%� �� �وه'ا �P د ،	'	V اT%U ا�� ا	�%��ت اآ�M اه*�

L6B�	ا Gآ� D-� �� B�	 ل�Q*	ه'ا ا . ا	%���MK 	*��� �� ا	%$ ث !

� ،�G ا	/Q*�تآ+*�ا�%� ا>�Kاث و�-�م آ�G ا	�L6B ه �-�م �����8	�$	 ��.�Q	ا �ا	8 ارز��

� 	�"D �-�م آ�G ا	�AO �� L6Bل P%B� ار�P��<ا �+K�� ! ���8��� ��!�Yا���ج �����ت ا

 .ا>�O%�ر 	��G ا	/Q*�ت

L6B�	ا G��	 ار�P��<ا �	�$	 ��.�Q	ا � 	/'ا ا	%$] ه @$��� ا��ال ا	8 ارز����R�	/�ف ا	،ا ��و

 �� ا��ال ان ! ه'ا ا	%$] @ U+.� ا	[.�0ق ا>��ال@D ه'ا ا	�$��� �� AOل ��Pر�P��0

��^AM	ت ا�" *Q*	ا � ���R_ اآ�M د�B�@ ! ��R�.M	ت ا�" *Q*	ا��ال ا �P��0 ل ز��د����ة �

G��	ا،��Q�<ا G��	ل ا��*	 D�P	ا a6� EB"ا ���P��B	ا �� Lآ ��	.

� G��	ل ا��� ���وي �K] آ�ن ��^AM	ا>��ال ا �P��B�100 % 	AMث أ� اع �� ا	�L6B وه

DoS,Probe , وR2L . ع .+	 G��	ل ا�� .%���53وي ��U2R.*� آ�ن �

 % 88.25ا	�+ ��Gا	���ل وآ�ن��Q�<ا gB8	ل ا����%� %.1.48و�@ � وه	 %P� _R���

R��.	ا F� ����	*�Pر�P���	ا _.

1

Chapter One

Introduction

1.1Preface

Many studies and researches have worked hard to build smart and strong security systems

to protect computer systems from intrusions (Ramakrishnan&Srinivasan, 2009).However,

intrusion uses different ways to infiltrate into computer systems.

Security and trusted communicationof informationover internet and any other networks is

always under threat of intrusions. So Intrusion Detection Systems have become a

necessary component in terms of computer and network security. Generally, an intruder

is defined as a system, program or person who tries to violate an information system or

execute an illegal action,(Hoque, Mukit & Bikas, 2012).

Previous studies concentrated on developingprotection systems that detect the intrusion

attack in early stage, and suggest cautions to the system administrator in order to take

quick protection steps. On the other side, detecting intrusion must be done by using smart

methods based on artificial intelligence techniques to detect the attacks.One of the most

important approaches used to detect and prevent Intrusion is Genetic Algorithm (GA).

Genetic Algorithms usually produce many solutions for the problem and thenselect the

best solution based on two factors: Encoding and Evaluation Function(Jong, Chen, Su &

Horng, 2005). The Genetic Algorithm evaluates each solution and then selects the most

effective one.

2

1.2 Problem Identification

It is necessary to build a security system to protect the computer system against any

attack.Since there is no perfect solution to prevent intrusions from violating system

privacy,it is very important to be able to detect intrusions on time of occurrence and take

actions to minimize the possible damage. Network Intrusion Detection System (NIDS) is

one of the significant components in network security.NIDS must be more efficient to

detect intrusions by enhancing replacement Steady State Genetic Algorithm to produce

optimal IDS with high Detection Rate (DR) and low False Positive Rate (FPR).

1.3 Questions

The proposed system is expected to answer the following questions:

- Can the proposed system detect intrusions?

- Dose the proposed system detect intrusions with high detection rate (DR) and low

False Positive Rate (FPR)?

- Does the proposed algorithm enhance the performance of intrusion detection

system? Does it help to improve the results that are obtained previously?

- Is that optimal to use Steady State Genetic Algorithm (SSGA) with Misuse

Detection?

1.4 Objectives

This research has many objectives that must be achieved to develop a smart and good

intrusion detection system, as the following objectives:

3

- Enhancing Steady State Genetic Algorithm (SSGA) by comparing replacement

methods to build a new system for intrusion detection.

- Increasing DR and decreasing FPR.

- Trying to find a new form for computing fitness function.

- Trying to enhance convergence problem.

- Comparing the results that will be obtained with the previous results produced

from using steady state genetic Algorithm hoping that the proposed model will

enhance the previous results.

1.5 Significance

The importance of this research is to enhance the existing IDSs. It deals with

enhancement Steady State Genetic Algorithm with using Replacement approach.

The proposedmodel canlead to efficientintrusion detection system with high Detection

Rate (DR) and low False Positive Rate (FPR).

1.6 Limitations

• The systems can be used for many actions to deal with intrusions: detection,

prevention or both. This research deal only with detection system, since the

prevention system also need to detection process at the beginning, then attempt to

stop malicious activities.(Al-Rashdan, W.,2011)

• There are two ways to apply detection methodology: Misuse and Anomaly

detection. In this research we performed Intrusion Detection System with misuse

detection.

4

.1.7 Thesis Outline: The thesis is organized as follows:

• ChapterOne: provides the Preface, Problem Identification,Questions,Objectives

and the Significance of this work.

• Chapter Two: providesLiterature Review and Related Workin the field of

intrusion detectionand genetic algorithm.

• Chapter Three:This chapter provides Theoretical Background about Intrusion

Detectionsystem.Itwill be described in details, including the concepts of

computer security and firewall. Intrusion detection system classification and

architecture will be explained. On the other side, this chapter presents knowledge

about Genetic Algorithm by describing its components and operator types.

• Chapter Four:shows the stages of proposed Intrusion Detection System, and the

elements of Steady State Genetic Algorithm. The methodology that has been

followed to find the results will be discussed.

• Chapter Five: contains evaluation and experimental results for the proposed

system, and comparing our method results with previous results.

• Chapter Six:In this chapter, the summarizationof thesis and the future work

related to this thesis domain have been presented.

5

Chapter Two

Literature Review& Related Work

2.1 Overview

This chapter introduces the previous researches related to using Genetic Algorithms for

detecting intrusion. Many researches highlighted the intrusion argument and represented

several detection systems to protect the user systems and programs from harmful

intrusions. These studies also recommended some important methods and techniques for

detecting intrusions that use many differentmethods and malwares. This chapter debates

and highlights these methods and techniques according to the environments of intrusions.

2.2Literature Review related to Intrusion Detection Systems:

Ramakrishnan and Srinivasan, (2009)explained that the intrusion operation forms are the

greatest challenge in the Internet and they cause very difficult problems particularly when

data theft which has been increased and it will never be decreased. The author claimed

that there are several security systems for internet as human immune such as, intrusion

detection which used to protect internal systems from any external attack.

In theirpaper, they used both technologies of intelligent agents and artificial immune

system i.e., Agent Based Artificial Immune System (ABAIS) for security are presented.

However, the intrusion still challenge that faces security administrators who work hardly

to decrease its attacks.

Ghali, (2009) introduced a new hybrid algorithm called Rough Set Neural Network

Algorithm (RSNNA);for reducing the number of computer resources required for

6

detecting an attack. However, they used Knowledge Discovery Database(KDD cup99) in

testing and the result indicated that the model had ability to select features resulting in

83% data reduction and 85%-90% time reduction and 90% reduction in error in detecting

a new attack.She tested her model on Anomaly Intrusion Detection, and did not test it on

Misuse as thisresearch did.

Some intrusions use malwares to infiltrate into user network and then into user systems

and data. Ye, Li&Chen, (2010) proposed a principled cluster ensemble framework for

combining individual clustering solutions based on the consensus partition. The

researchers developed an automatic malware categorization system (AMCS) to group

malware samples automatically. In their research, a hybrid hierarchical clustering

algorithm is proposed to combine the merits of hierarchical clustering and k-medoids

algorithms as a first part and a weighted subspace K-medoids algorithm as a second part

for generating base clustering. The results of categorizations of the proposed system can

be utilized to produce signatures for malware families that are beneficial for detecting

malware. The proposed system was successful in clustering malware as it was concluded

form the results of the practical experiments.

Moreover, Cesare& Xiang, (2010), highlighted that security threats like malware

and intrusion are the most sophisticated. Also, these programs have been increased

quickly because of the good environment for them. The researchers highlighted one of

most important detection types “Signature-based” which is considered as beneficial

system for dealing with malwares. In their research, two methods were used for dealing

with malware (Static and Dynamic Analysis). The static analysis deals with malware at

7

source code level. Dynamic analysis deals with malware by extracting features for

recognizing the malwares.

Chau ,Nachenberg, Wilhelm, Wright & Faloutsos (2010), introduced an approach called

“Polonium” technique for detecting intrusion. However, the researchers claimed that the

proposed technique can detect the malwares in an accurate scale. The proposed system

calculates the file reputation depending on the fast and scalable belief propagation

algorithm. The proposed method attained 85% true positive rate and the true positive rate

further improves 2% in the case of more iterations. The researchers also detailed an

important design for the proposed method that enables its successful application on their

dataset. However, the researchers exploited the fact that some files exist together on a

computer. Besides that, the research introduced a good and robust technique for

classifying malwares. The researchers represented empirical observations on the largest

file submissions dataset ever published which span over 60 terabytes of disk space. They

detailed an important design and implementation features of the proposed method which

enable its successful application on our large dataset.

The proposed polonium algorithm removed one path and took half of the storage. The

proposed system has weaknesses in detecting malware because it depends on the file

reputation. However, this system does not benefit in providing new smart methods and

techniques compared with other researches.

Intrusions always reach to user systems by infiltration; which is considered the most

danger case that may appear in many systems. However, there is no full protection that

can keep user systems from intruders who use malware as one of their tools for reaching

to user data. In the context with this argument the researchers Ashoor, and Gore, (2011)

8

highlighted that the intruder’s activity on the network poses risk attacks user data.

Furthermore, the researchers proposed some techniques and methods that help in

detecting intrusion activity and malware infiltration into network or systems. Neither

intrusion nor malware has a specific form or a regular activity to be identified by users.

However, this article aimed to explain and indicate the stages of the evolution of the IDS

idea and its importance to researchers. On the other side, the researchers categorized IDS

into Host based IDS, Network based IDS and Hybrid based IDS. However, all the

mentioned techniques in this article are familiar and used in many security systems.

Finally, the researchers concluded that the intrusion detection systems and malware

detection systems are not distinguished because they aimed to use the same elements and

techniques of protection.

Modi etal,(2013) represented intrusion detection techniques that are used in cloud to

protect cloud systems from intrusion. They mentioned several types of intrusion used to

violate the cloud systems such as: Insider attacks, Flooding attacks, User to Root attacks,

Port Scanning, attacks on Virtual Machine (VM) and Back door Channel Attacks. These

types are used to violate the weakness points in these situations. For this purpose, the

authors represent the security techniques that used to protect cloud system from these

attacks by detecting the intrusion activity in specific layer. These techniques include:

Firewall which is considered as a common solution for intrusion. Firewall works by

denying or allowing protocols, ports and IP’s addresses. Besides that, there are other

techniques mentioned by authors such as: signature based detection, Anomaly detection,

Artificial Neural Network detection and Genetic Algorithm based Intrusion Detection.

Authors concluded that, Firewall is not enough to solve cloud security issues.

9

2.3 Literature Review related to Genetic Algorithm:

Many researchers studied the Genetic Algorithms (GA) and exploited its

capabilities in designing smart systems and solving problems.

 Haupt and Haupt,(2004) explained practical GA in four chapters and indicated the

concept of finding the best solution by optimizing GA. The author explained that GA can

be used for many purposes and objectives in solving different problems. Also, the authors

indicated the concept of parallel GA which is an important and advanced way in solving

a problem, but it needs more work as the author mentioned. Also, the study explained the

encoding and decoding processes that are used in GA to select the best chromosomes.

There are many advanced applications represented in the study that depend on GA such

as: Decoding and Secret Message, Stealth design and Repot Trajectory planning.

Al-Sabbah, (2012),presenteda model for enhancing the color image using the steady state

genetic algorithm (SSGA), andused modified fitness function to achieve more accurate

results with less noise. The main objective of this research is to process the image so that

the result is more suitable than the original image.The researcher developed three models

for enhancing the colourful of the image with variety types of input - output and different

type of parameter. The advantage of this research is combining the chromaity

components of the image; the image that has been enhanced from three perspectives.

10

2.4Literature Review related to Intrusion Detection Systems (IDS) based

on Genetic Algorithm (GA):

Some studies involved GA in their proposed systems in order to get the best solution for

intrusion detection.

Selvakani, Rajesh, (2007) executed GA-based approach for Network Misuse Detection.

Also, they used a technique for generating rules for R2L and DoS attacks. Besides that,

they used KDD Cup 99 data set for finding the probability of Detection as well as they

found the overall performance = 59% Detection Rate and False Alarm Rate=0.1%. In

details, they used GA-based approach for Network Misuse Detection for framing the

rules required. They worked just with R2L and DoS attacks, they have Low DR. But in

our research, we deal with four types of attacks: R2L, DoS, U2R and Probe with

Detection Rate 88.25%.

Goyal and Kumar, (2009) studied current intrusion types that attack user systems and

they proposed machine learning approach based on using GA. Their algorithm takes into

consideration the network protocol and IP’s types. Besides that, the proposed algorithm

depends on the type of network service on the destination and the connection status. They

implanted their algorithm on KDD 99 datasets in order to produce a rule set that can be

applied on IDS. Authors claimed that they succeeded in applying their algorithm and

generated the rule that classify all Smurf type of attack connections. The rule set

classifies Probe attacks into 52 attack connections. To check the algorithm efficiency,

positive false rate which gives result about 0.2% and they calculated accuracy that gives

result about 100%. They used simple genetic algorithm, but in this research we used

Steady State Genetic Algorithm.

11

On the other hand, Al-Sharafat, (2009) highlighted the techniques used for detecting

intrusion using Genetic Algorithm (GA). The author represented the intrusions that attack

the network, so the security must be placed on specific situations on the network.

However, the author used Steady State Genetic Algorithm (SSGA) with Anomaly based

IDS. While our research used SSGA with Misuse IDS, depending on another fitness

function.

The author got detection rate (DR) reaches to (97.45)%. She also compared

between the algorithms that usually used for detecting intrusion using DR parameter. On

the other side, the author concluded that SSGA needs more modifications by using binary

encoding to find out its impacts.

Stewart, (2009) modified GA and NN in order to propose a newcombination of GA and

NN to be able of tuning not only the weighting of a NN, but also its size and connection.

The enhanced GA was reduced user interface, and improved acceptance probability. He

used modified Genetic Algorithm and got 75.25 DR and 3.412 FPR, he also improved

GA and got 79.672 DR and 2.69 FPR.

Agravat&Rao, (2011) explained two objectives of fuzzy Genetic-based learning

algorithms and debated its usage for detecting intrusion in a computer network. However,

the objectives aim for minimizing the number of fuzzy rules and maximizing the

classification rate. The researchers used 10% labeled data for training and testing the GA,

and they used 20 features instead of 41 from the KDD Cup 99 dataset. But in our research

we used 5 features instead of 41 from the same dataset.

12

Hoque,Mukit & Bikas, (2012) proposed detection system using GA and applying their

algorithm on specific datasets of intrusions detection (KDD’99) which is based on 1998

DARPA. Their implementation is based on defining datasets as chromosomes and then

making GA produces the parents and children to select the best chromosome. However,

they chose range value about 0.125 for selection purpose, and they conducted crossover

and mutation in next stages. They gotthe following Detection Rate results (Probe:

71.1%), (DoS: 99.4%), (U2R: 18.9%) and (R2L: 5.4%), but in this thesis we got new

results.

In addition to that,Naoum, Abid& Al-Sultani, (2012), classified intrusions by using an

enhanced Resilience Back Propagation Neural Network. After they had completed their

system and testing the proposed system, they got 94.7% average Detection Rate, and

15.7% False Positive Rate.But our thesis used Genetic Algorithm instead ofResilience

Back Propagation Neural Network, and got another results.

Kshirsagar, Tidke& Vishnu, (2012) used GA with Data mining technique to develop

intrusion detection system. The proposed system depended on data mining methods and

they proposed their system in a model called “Data Mining Hybrid IDS”. The model

contained three sensors located at network sensor manager that is connected with data

“warehouse unit”. The data is transferred between warehouse and network sensors and

pattern mining. The proposed system enabled the administrator to prevent the intruder

activity by data mining techniques and sensor snort located on the network.

Mostaque, (2013)designed an Intrusion Detection System (IDS), by applying

geneticalgorithm (GA) and fuzzy logic to detect different types of attacks within a

networkefficiently. The proposed fuzzy logic-based system could be able to detect the

13

intrusive activities of the computer networks as the rule base holds a better set of rules.

The environment of his proposed system was KDD Cup 99 dataset. He used Simple

Genetic Algorithm (SGA) with Anomaly detection, but in this research we used Steady

State genetic Algorithm (SSGA) with Misuse detection. The experimental results

illustrated that the proposed system got higher accuracy in determining whether the

action are normal or attack, andgota good detection rate.

14

Chapter Three

Theoretical Background

Intrusion Detection&Genetic Algorithm

3.1 Overview

This chapter introduces the knowledge aboutIntrusion Detection system and its

components, Intrusion Detection taxonomy and evaluation.On the other side, this chapter

explains the elements of Steady State Genetic Algorithm, and its working mechanism.

Finally, it will explain the population that will be used in this research.

3.2 Intrusion Detection

It is important to build a system that has the ability to protect user system and data from

intruders.

Intrusioncan be denoted as any set of actions that try to compromise the integrity,

confidentiality or availability of a computer resource. This act can be referred as intrusion

detection, (Hoque, Mukit & Bikas, 2012).

Intrusion detection (ID) is a process of discovering the intrusion activity. It can be

classified into two types Anomaly and Misuse intrusion detection (Ramakrishn&

Srinivasan, 2009). In our research we used Misuse Detection.

15

3.2.1Computer Security

The security is a process where management must apply a security program which

includes attention, prevention, detection and management to minimize the dangers. It is a

process that cannot be perfect, but it helps to reduce attacks and manage the risks. The

aim is to make controls that are used and put into a place to defend against various

attacks. To implement network security there must be a security policy which is the basic

of that process. (Siva, Vinay & Babu, 2013)

Computer System Security can be defined as a process ofprotecting main aspects for any

computer system security. Those aspects are: confidentiality, integrity and availability,

which are referred in the abbreviation CIA. (Bishop, 2005)

These three aspects are defined as follows:-

Confidentiality is the hiding of information or resources. The need for keeping

information secret comes from the use of computers in sensitive fields such as

government, the military field and all the types of originationsthat keep personnel

information secret. Confidentiality also implements to the existence data as well as hiding

resources.

Integrity refers to the trustiness of data or resources, and it is usually formulated in terms

of wrong preventing or unauthorized change. Integrity includes data integrity (the content

of the information) and origin integrity (the source of the data). The source of the

information may relate its accuracy and believability.

16

 Working with integrity is very different from working with confidentiality. With

confidentiality, the data are either corrected or not, but integrity includes both the

correctness and the trustiness of the data.

Availability refers to the ability of using the information or resource required.

Availability is a significant aspect of credibility as well as of system design because an

unavailable system is as least bad as no system at all. The aspect of availability that is

appropriate to security is that someone may try to prevent access to data or to a service by

making it unavailable. Attempts to obstruct availability, called Denial of Service attacks

(DoS). (Bishop, 2005)

Importance of those properties varied andconnected to the company’s business.

3.2.2Firewall

Firewall is a combination ofhardware and software that separates an organization’s

internal network from the Internet; and it is a protective system. (Kurose & Ross, 2010)

Firewalls play a significant role on any network as they supply a protective block against

most forms of attack coming from the outside.

The function of a firewall is to traffic from outside to inside, and vice versa, passes

through the firewall.

Only authorized traffic, as defined by a local security policy, will be allowed to pass the

firewall itself should be secure against permeation. The firewall itself is a device

connected to the network, If not designed or installed properly, it could be vulnerable.

(Kurose & Ross, 2010)

17

3.2.3Intrusion Detection Systems (IDS)

In latest years, Intrusion Detection System (IDS) has become one of the hottest research

areas in Computer Security. It is a significant detection technology and it is used to

maintain data integrity and system availability during an intrusion, (Li, 2004).

An Intrusion Detection System (IDS) is defined as a security system that monitors

computer systems and analyzes that traffic for possible attacks coming from outside the

organization and also for system misuse or attacks from inside the organization, (SANS,

2001).

The authors define an Intrusion Detection System (IDS) as a software or hardware or

combination of software and hardware that are used to detect the intruder activity

(Rehman, 2003).

That is IDS produces an alert to the security administrators, to notify about the attack

(Scarfone &Mell, 2007).

Bishop, (2005) mentioned Intrusion Detection System goals as follows:

1. Detect a wide variety of intrusions: Intrusions from within the site, as well as those

from outside the site, are of concern. In addition, both known and unknown violations

should be detected. This suggests a mechanism for learning or adapting new kinds of

attacks.

2. Detect intrusions in a timely manner: "Timely" here is to distinguish the intrusion

within a short period of time not exactly in real time.

3. Present the analysis in a simple, easy- to- understand format: This should alert the

system green if there is no detection and red when an attack is detected.

18

So intrusion detection mechanisms must present more complex data to a site security

officer.

4. Accurate: A false positive happens when an intrusion detection system discovers an

attack, but no attack is underway. False positives reduce the trustin the correctness of the

results and increase the quantityof work involved.

False negative is worse because it happens when an intrusion detection system fails to

discover an ongoing attack, where the purpose of these systems is to report attacks. The

object of an intrusion detection system is to decrease both types of errors.

3.2.4Components of intrusion detection system

An intrusion detection system usually consists of three functional elements. The first

element of an intrusion detection system is a data source. Data sources can be classified

into four categories: Host-based monitors, Network-based monitors, Application-based

monitors and Target-based monitors. The second element of an intrusion detection

system is known as the analysis engine. This element takes data from data source and

analyses the data to attacks. The analysis engine can use Misuse or Anomaly detection.

The third element of an intrusion detection system is the response manager. In basic

terms, the response manager will only act when lacking of precision (possible intrusion

attacks) is exist on the system, by informing someone or something in the form of a

response. (Mostaque, 2013)

19

3.2.5Intrusion Detection Classification

Intrusion Detection can be classified into two categories: misuse intrusion detection and

anomaly intrusion detection. (Li, 2004), (Ramakrishn& Srinivasan, 2009)

-Misuse (signature) intrusion detection: refers to the techniques that recognize known

violations as ‘pattern’ or ‘signature’, and compared them with the observed events to

detect unknown threat.

Figure (3.1) Misuse Intrusion Detection System (Gadbois, 2011)

-Anomaly Intrusion Detection System:(behavior detection)refers to the techniques that

characterize normal actions of the system;actions that deviate from the expected normal

action are considered intrusions.

20

Figure (3.2) Anomaly Intrusion Detection System (Gadbois, 2011)

3.2.6.Intrusion Detection Systems Taxonomy

a. Knowledge based system vs. behavior based system:

Knowledge based intrusion detection technique accumulates knowledge explicitly from

specific attack and possible vulnerabilities to exploit at different attacking attempts. The

knowledge accumulated in advance which means that the system will have very low false

alarm rates. Another strength point for knowledge based approach is that the system will

analyze the problem in order to understand it, and take an appropriate action. However,

this method has many disadvantages .The first one is that the information must be up to

date to have a good and an effective knowledge based IDS. The second one is that the

information must be gathered after a detailed analytical process over each attack.So there

is difficulty in gathering information. This method faces a generalization issue. Misuse

IDS, sometimes called signature,its considered as knowledge based IDS, (Al-Sharafat,

2009)

21

b.Host based System vs. Network based System

For recognizing and catching the attack and infiltration, IDS usually uses Network based

IDS or Host based IDS. However, both of them look for specific pattern which

considered as signature to explain malicious activities or policy violations. If the

recognition and indication are conducted by using IDS over network traffic, such as

traffic volume, protocol usage..etc, then it will be called Network based IDS,

Also, Haupt,& Haupt (2004) indicated that these two technologies are similar in the root,

but they are different in their operational use. However, Network Intrusion Detection is

used for analyzing network packets and examines events as information packets, so it

demonstrates the abuse of vulnerabilities, but the detection engine in this technology

cannot detect encrypted.The current trend in intrusion detection is to combine both host

based and network based information to develop hybrid systems that have more

efficiency in security level. (Jaiganesh, Mangayarkarasi& Dr. Sumathi, 2013)

3.2.7Network Attacks:

Attacks types are classified according to the following categories: (Tavallaee, Bagheri, &

Ghorbani, 2009)

1) Denial of Service Attack (DoS): Is an attack in which the attacker makes some

computing or memory resources too busy or too full to prevent legitimate users

access to system. DoS attacks are classified based on the services which an

attacker renders unavailable to legitimate users.

2) User to Root Attack (U2R): occurs when anattacker starts out withaccess to a

normaluser account on the systemand is able to exploit some vulnerability to gain

rootaccess to the system.

22

3) Remote to Local Attack (R2L): occurs when anattacker has the ability to send

packets to amachine over a network, and then exploits the machine’s vulnerability to

lawlessly gain local access as a user.

4) Probing Attack: Is an attempt to learn informationabout a network of computers to

look for exploitation.Probing is a class of attacks where an attacker scans a network to

gather information or to find known vulnerabilities. There are different types of probes.

Some of them exploit the computer’s legitimate features and some of them use social

engineering techniques. This class of attacks is the most commonly used and requires a

little technical expertise. Lahre, Diwan, Kumar and Agrawal, (2013), displayed a table

about classification of the main categories of attacks into sub attacks types as the

following table:

Attack type Sub attacks types

Normal Normal

DoS smurf, teardrop, pod, back, land,

apache2, udpstrom, mailbomb,

processtable, Neptune

Probe ipsweep, portsweep, nmap, satan,

saint, mscan

R2L dictionary, ftp_write, guess_password,

imap, named, sendmail, spy, xlock,

xsnoop, snmpgetattack, httptunnel,

worm, snmpguess, multihop, phf,

wraezclient, wrazemaster

U2R

perl, ps, xterm, loadmodule, eject,

buffer_overflow, sqlattack

Table (3.1): the classification of main attacks categories

23

3.2.8Signature and Signature Alarms:

A signature is a set of rules that an IDS uses to detect intruder action, such as

U2Rattacks.

Sensors scan network packets, using signatures to detect known violations and compare

with predefined actions. A virulent packet flow has a specific type of actionand signature,

and an IDS sensor analyzes the data flow using many variant signatures.

Signature Alarms:

The efficiency of IDS sensors to detect an attack in accurate manner and generatean

alarm is critical to the role of the sensors. Attacks can generatethe following types of

alarms:

• False positive: A false positive is an alarm occurred by normal traffic or non-malignant

action. For example a wrong password entered mistakenly by a real user may result in

false positive. The sensor cannot distinguish between a hustler user and a mistaken

user;false positives can be minimized by regulating the sensors.

• False negative: A false negative occurs when a signature is not fired, when disturbing

traffic is detected. A false negative should be regarded a software bug only if the IDS has

a signature that has been designed to detect the disturbing traffic.

• True positive: A true positive occurs when an IDS signature is correctly fired, and an

alarm is generated, when disturbing traffic is detected.

• True negative: A true negative occurs when a signature is not fired. when benigntraffic

is captured and examined. In other words, the sensor does not fire an alarm when it

captures and examines “normal” network traffic. (Singh, 2013)

24

3.2.9Intrusion Detection Evaluation:

Network Intrusion Detection System must be accurate to increase the trust of the system.

Thus we must increase Detection Rate DR and decrease False Positive Rate FPR.Kuang,

(2007) defined (DR) and (FPR) as following:

Detection Rate (DR) is “the ratio of correctly classified intrusive examples to the total

number of intrusive examples”.

False Positive Rate (FPR) is “the ratio of incorrectly classified normal examples (false

alarms) to the total number of normal examples”.

 DR=
∑��.�� ��	�
	�� �		�
�
∑��.�� 	�	�� �		�
� (3.1)

 FPR=
∑��.�� ���� �����

∑��.�� 	�	�� ������ ��
���� (3.2)

Agravat&Rao (2011) evaluated the performance of the system by calculating the value of

Precision, Recall and overall accuracy as the following:

Precision = TP/TP+FP (3.3)

Recall = TP/ (TP/FN)(3.4)

Overall Accuracy = TP+TN/ (TP+TN+FP+FN),(3.5)

Where:

TP = True Positive, TN = True Negative

FN = False Negative, FP = False Positive

25

3.3Genetic Algorithm (GA)

GA depends on producing Chromosomes to produce more advanced chromosomes that

considered advanced solutions. At each generation, the best chromosome will be selected

based on computing fitness function of each chromosome, and then chromosomes are

selected according to their fitness values.

Genetic Algorithm is “an adaptive heuristic search method based on population genetics”.

Genetic algorithm is a search method based on the principles of natural selection and

genetics (Kumar, Husian, Upreti& Gupta, 2010).

Genetic Algorithm is based on Darwin’s principles in optimizing the chromosome

population of candidate solutions (Li, W., 2004).

Most of the traditional methods of the problem optimization, for complex problems have

suffered from many problems and difficulties.

Therefore, the researchers try to use Genetic Algorithm properties as a suitable technique.

In addition, genetic algorithm has the following properties: (Goldberg, D., 1989)

1. GA works with the parameters code, not with the parameters themselves.

2. GA searches for a set of points, not for a single point.

3. GA uses available information, not derivative or other auxiliary knowledge.

4. GA uses probabilistic transition rules, not deterministic ones.

These are the reasons which encourage researchers to use GA as a General Search

method depending on natural selection genes principles which are developed by Holland

in 1975 in his book "Adaptation in Natural and Artificial Systems" (Mitchell, M. 1996).

26

3.3.1 Working mechanism of Genetic Algorithm:

The algorithms start with random population of chromosomes (individuals) which have a

determined length, then evaluate fitness of chromosomes by measuring the value of fitness

function for each one, then generate a new generation by applying genetic operators such

as selection, crossover and mutation frequently, until the stopping criterions achieved and

the best chromosome presented.

The flowchart below shows the stages of GA.

Figure (3.3) Genetic Algorithm flowchart(Al-Sharafat,2009)

27

3.3.2 Steady State Genetic Algorithm (SSGA)elements

Steady state genetic algorithm consists of a set of elements:

-Population:

Population is a set of individuals(chromosomes)of a specified size. The size of population

is determined according to the nature of the problem. Generally the population is

generated randomly (Kumar, Husian, Upreti& Gupta, 2010).

The population is the result of a single iteration of genetic algorithm. However, iteration

can create new population which contains a set of chromosomes, and each chromosome

is one complete possible solution to the problem to be solved using genetic algorithms,

and more generations are needed for finding optimal solutions.

-Evaluation:

Each individual has a fitness value used to evaluate the fitness for each one. Fitness value

evaluates the quality of each chromosome, so the high fitness value gives the

chromosome high probability to be selected in the selection stage (Mitchell M., 1996).

 There are many equations used for evaluation such as:

Fitness=1/(1+f(x1, x2… xn))(3.6)

f (…) :objective function

n :number of the variables in the objective function

Al-Sharafat, (2009) developed two new functions, fitness function and strength function

as shown below:

New Fitness Function:

28

Fwi= (
��

∑ ������)*(
��
� � ���

�)(3.7)

New Strength Function:

 Swi= fi * age i (3.8)

Where:

n: number of rules

DR: Detection Rate

FPR: False positive rate

f i : fitness for rule i

age i : age of rule i in classifier

Sw i: The result of new strength of the rule i.

Fw i: The result of new fitness function for the rule i

Alabsi and Naoum, (2012),presented new Reward Penalty Fitness Function as the

following equation:

Fitness= 2+
����
����+

��
� -

�
 (3.9)

The values of A and AB depend on the condition and action parts,when the condition and

action of the selected record equal to the condition and action of the Compared record

then the value of AB of the selected record will increase by one, else the value of A of

the selected record will be increased by one.

X = the maximum value of AB in the population.

Y = the maximum value of A in the population.

29

-Encoding:

Encoding is one of the significant processes in Genetic Algorithm to represent solutions.

The gene in genetic algorithm is considered the problem parameter which can be encoded

as one of the encoding methods.

There are different methods for encoding such as:

• Binary Encoding: is a common encoding method in GA.

This method converts the value of parameters into binary value (0, 1)

e.g., chromosome = 10000101.

• Integer encoding: in this method, Chromosome is represented by using integer

numbers.

• Real encoding: This method uses actual real values of chromosome; we used this

method of encoding in our research.

.

To enhance the efficiency of GA in solving problems, suitable representation method must

be chosen.

-Selection

Selection is a process of choosing individuals (parents) from current population to

implement operations of crossover and mutation on them to generate new individuals,

(Mitchell M., 1996).There are different methods of selection:

• Roulette wheel Selection:

It is a selection method used in SGA for selecting individuals with high fitness value.

30

Roulette wheel selection works by calculating expected probability for each individual

"e
i
" as following:

(3.10)

!" = ΣF
i
/ n

 Where:

F
i
: Individual fitness,

!": Average fitness,

n: number of individuals in generation

In general, there are many problems in this method such as: Premature convergence;

where convergence happens in GA at the beginning the processes. Individuals that have

high fitness value will be dominant on others. In addition, the dominant individuals will

stay in next generation. That means; individuals with low fitness value will be eliminated

early from the population.

Slow finishing; slow finishing happens at the end of GA processes. At the end of the

execution, there will be a large number of individuals with similar fitness values. In this

case, which one will be selected? And we cannot be able to recognize between them.

Finally, there is no guarantee to keep the best individual for next generations. To

improve this problem, we can use Elitist selection method.

31

• Elitist Selection:

This method keeps a finite number of the best individuals in each generation, since these

individuals may not be chosen or disrupted during crossover and mutation.

 • Ranking selection:

 There are many ways to perform this method, but the simplest way is linear ranking

method. This method is proposed by Backer in 1985, where individuals of a population

are ordered descending (from 1 to N
pop

) according to their fitness value. An individual

with the highest fitness value takes the rank=1, the next takes the rank=2 and so on

(Schmidit,& Stidsen 1997).

 F′= max - (max – min) [(rank-1)/ (N
pop

-1)] (3.11)

Where:

 1<max<=2&rank € {1,2,…., n} & min=2- max

• Stochastic Universal Sampling:

In this method, the Roulette Wheel can be spin just once instead of spinning it n times as

it was described in Roulette Wheel selection.

 This method tries to reduce the difference between the actual value and the expected one.

 According to the following relation, probability of selected individuals must be within

the expected and actual value of that individual (Mitchell, M. 1996).

32

ei>= probability of i>= ei(3.12)

 Where:

ei: actual value for i

ei: expected value for i

This method still suffers from premature convergence and slow finishing problem such as

roulette method.

• Tournament selection:

There are many ways to perform this method; the simplest and the most common one is

Binary Tournament Selection.

 We can formulize this method as shown:

Select
n

= # indi if F)indi* + !),-.j* indj otherwise
7(3.13)

For n= {1,2}, random i,j €{1,2,…,N
pop

}, i≠j

Where:

Select
n
: selected individual that has number n,

F (ind
i
): fitness of individual i,

F (ind
j
): fitness of individual j.

-GA Operator

There are two main types of operator which are used to reproduce new individuals in the next

generations: Crossover and Mutation.

Crossover: itis the process of convert of genes between two individuals to reproduce

new individuals(offspring’s) which inherent their parent's behavior.

33

There are many types of crossover:

 • Single-point crossover (1x)

Single Point method aims to select crossover point and interchange the two parent’s

chromosomes after this point for producing two new offspring’s.

 • Two-point crossover (2x)

Two Points method aims to select two crossover points and interchange the two parents

chromosomes between these points.

• Uniform crossover (UX)

Uniform method differs from other methods where genes are randomly exchanged,in

order to gain a high diversity in populations.

Mutation is a randomly changing of genes in chromosome. One of the strong features of

mutation is creating new individuals different from the existing ones, the probability of

the occurrence of mutation is assumed (0≤ Pm ≤1). However, mutation has many types:

Flip bit, Boundary and Uniform.

 -Replacement

It is a process performed on the worst individuals to be replaced by new better

individuals. There are two methods of replacement:

 • Binary Tournament Replacement (BTR)

It will choose the best chromosome from two according to their fitness values.

Replace(n) # ,-. 8 ,9 !),-. 8* : !),-. ;*,-. ; <=>?@A,B? 7(3.14)

34

For n= {1,2},random numbers i,j ∈{1,2,…,NᴘDᴘ},i≠j

Where:

Replace(n): individual n that will be replaced

F(ind8): fitness of individual i

F(ind;): fitness of individual j

• Triple Tournament Replacement (TTR)

It will replace the worst two chromosomes between three chromosomes by the

chromosome with the highest fitness value.

Replace(n)E ,-. 8 ,9 !),-. 8* : !),-. ;* F-. !),-. 8* : !),-. G*,-. ; ,9 !),-. ;* : !),-. 8* F-. !),-. ;* : !),-. G* ,-. G <=>?@A,B?
7 (3.15)

For n= {1,2},random numbers i,j, k∈{1,2,…,NᴘDᴘ},i≠j, i≠k, j≠k

Where:

F(ind8): fitness of individual i

F(ind;): fitness of individual j

-Stopping criteria

There is repeating in the evolution process of GA, until satisfaction of the Stopping

condition.There are numbers of criteria such as: On-line performance

On-line (T) =
I
J∑ !)=*K	LI (3.16)

Where

T: number of times to find fitness,

F (t): binary evaluation for fitness values.

35

(Kumar, Husian, Upreti& Gupta 2010) cited common Stopping condition such as:

• A solution is found that satisfies minimum criteria.

• Reaching to the fixed number of generations.

• Allocating budget (time, money) reached.

• Sequential iterations no longer produce better results.

3.3.3 GA Forms

There are many forms of GA such as: Simple Genetic Algorithm (SGA), Steady State

Genetic Algorithm (SSGA) and Recurrent Genetic Algorithm (RGA).

1. Simple Genetic Algorithm (SGA)

This form of GA focuses on the reproduction of a new generation with whole replacement of

the previous one. So, there is no intersection between them.SGA works as follows: (Mitchell

M., 1996)

Algorithm of SGA:

Begin

t=0

Initialize P (t) // P(t) = Population

Evaluate P (t)

While (Termination condition is not satisfied) do

 Selection P(t+1) from P(t)

 Perform Crossover on P(t+1)

 Perform Mutation on P(t+1)

 Evaluate P(t+1)

 t=t+1

 End

36

2. Steady State Genetic Algorithm (SSGA)

 In SSGA, generation is changing gradually by replacing unwanted individuals partially; a

part of the population is transferred to the next generation without any changes. So, there are

intersected generations where a set of individuals are replaced by new set.

Algorithm of SSGA:

 Begin

 t=0

 Initialize P (t) // P(t) = Population

 Evaluate P (t)

 While (Termination condition is not satisfied) do

 Selection P(t+1) from P(t)

 Perform Crossover on P(t+1)

 Perform Mutation on P (t+1)

 Evaluate P (t+1)

 Replacement (P(t), P(t+1))

 t=t+1

End

SSGA has a set of characteristics which excels SGA such as:

• The ability to find solutions by using small samples contrary to SGA, whereas SSGA

can select a new good individual as soon as they are generated , while SGA must

examine all population to select good individuals.

• SSGA avoids repeating the same individual in population, so generation will contain

plenty of different solution.

• SSGA has more steadiness against genetic divergence). For example, if we suppose that

an individual is constructed from good genes, this individual has a high fitness value.

These individual genes will be torn up by using crossover operator to produce new

37

individuals. The original individual (the parent) will still be a part of a current generation

and can be selected to cross over again unlike SGA.

3. Recurrent Genetic Algorithm (RGA)

It is a new strategy that enhances the GA; this strategy concentrated on Crossover

and Mutations stages. In Fakeih, A., Kattan, A., (2012) Authors supposed =�M as an

intermediate population located between =� and =��I to be feedback population. However,

the algorithm uses fitness to reward parents in population=�. They also provided equations

of Fitness Reward Function (FRF) for crossover and mutation stages in order to

determine the process of iteration on these stages.

For each crossover operator that parents Px and Pyjoined, where x, y ∈ {1, 2, . .

,population size}, we use the following FRF:

FRF(ParentxFitness) = Offspring Fitness × Parentx contribution

FRF(ParentyFitness) = Offspring Fitness × Parenty contribution

Where, Offspring Fitness is the fitness value of the generated offspring, Parent x

contribution and Parenty contribution are real numbers from the interval(0, 1) to

represent the proportion of genetic materials that each parent contributedwhen generating

the offspring. Note that Parentx contribution + Parenty contribution = 1.

For each mutation operator that parent Pxjoined, we use the following FRF:

 FRF(ParentxFitness) = (Offspring Fitness × Parent contributionx)

Here, because the mutation operator is based on single parent, Parentx contribution is

calculated as the amount of genetic materials that passed fromthe parent into the

offspring.

38

3.4 KDD Cup 99 Dataset

In 1998, an “Intrusion Detection Evaluation Program (IDEP)” managed by the Lincoln

Laboratory at the Massachusetts Institute of Technology. This program was achieved to

build a data set that would help evaluate different intrusion detection systems (IDS) in

order to evaluate their strengths and weaknesses.This data set is popularly known as

DARPA 1998 data set. (Darpa, 1998)

This data set named in the literature asThe Knowledge Discovery in Databases(KDD)

and later used in KDD Cup 1999data set,which was introduced for the development of

intrusion detection systems through a suite of pattern recognition and machine learning

algorithms for main attack categories: namely Probing, Denial of Service (DoS), User-to-

Root (U2R) and Remote-to-Local (R2L). (Sabhnani and Serpen, 2004)

Many studies are interested in KDD Cup 99 dataset because of its role in the field of

intrusion detection systems and benchmarking analysis of attack over the networkin the

last decade. Many researchers contributed their efforts in analyzing the dataset using

several techniques. (Siddiqui &Naahid, 2013)

KDD CUP 99 dataset consists of 4,940,210 records; each record has 41 features labeled

as either normal or an attack, with feature number 42 which determines the type of attack.

Sathya, Ramani, and Sivaselvi, (2011) displayed the 41 features and their description as

the following table:

39

Feature No. Feature Name Description

1 Count Number of connections to the same host as the

current connection in the past two seconds

2 Destination bytes Bytes sent from destination to source

3 Diff srvrate % of connections to different services

4 Dst host count Count of connections having the same

destination host

5 Dsthost diff srv rate % of different services on the current host

6 Dst host rerror rate % of connections to the current host that have

an RST error

7 Dsthost same src port rate % of connections to the current host having the

same src port

8 Dsthost same srv rate % of connections having the same destination

host and using the same service

9 Dsthost serror rate % of connections to the current host that have

an S0 error

10 Dsthost srv count Count of connections having the same

destination host and using the same service

11 Dsthost srv diff host rate % of connections to the same service coming

from different hosts

12 Dsthost srv rerror rate % of connections to the current host and

specified service that have an RST error

13 Dst host srv serror rate % of connections to the current host and

specified service that have an S0 error

14 Duration Duration of the connection.

15 Flag Status flag of the connection

16 Hot Number of "hot" indicators

17 Isguest login 1 if the login is a "guest'' login; 0 Otherwise

18 Ishost login 1 if the login belongs to the "host''

19 Land 1 if connection is from/to the samehost/port; 0

otherwise

20 logged in 1 if successfully logged in; 0 otherwise

21 Numaccess files Number of operations on access control files

22 Numcompromised Number of "compromised'' conditions

23 Numfailed logins Number of failed logins

24 Numfile creations Number of file creation operations

25 Num outbound cmds Number of outbound commands in an ftp session

26 Num root Number of "root'' accesses

27 Num shells Number of shell prompts

28 Protocol type Protocol type

29 Rerror rate % of connections that have “REJ'' Errors

30 Root shell 1 if root shell is obtained; 0 otherwise

40

31 Same srv rate % of connections to the same service

32 Serror rate % of connections that have “SYN'' Errors

33 Service Destination service (e.g. telnet, ftp)

34 Src bytes Bytes sent from source todestination

35 Srv count Number of connections to the same service as

the current connection in the past two seconds

36 Srv_ diff host rate % of connections to different hosts

37 Srv rerror rate % of connections that have “REJ'' errors

38 Srv serror rate % of connections that have “SYN'' Errors

39 Su attempted 1 if "su root'' command attempted; 0 otherwise

40 Urgent Number of urgent packets

41 Wrong_ fragment Number of wrong fragments

Table (3.2): KDD’99 Features Description. (Sathya, Ramani, and Sivaselvi, 2011)

41

Chapter Four

Proposed Model & Methodology

4.1 Overview

This chapter will clarify the methodology of this research and the proposed model

structure in details. It will also clarify how to implement the system and how to get the

results.

4.2 Methodology

This thesis deals with the enhanced Steady State Genetic Algorithm (SSGA) for Intrusion

Detection (ID), through applying the best method of replacement by comparing

replacement methods: Binary Tournament Replacement and Triple Tournament

Replacement, then choose the best one,we was hopping to improve the previous results.

The environment will be the KDD Cup 99 dataset and we will use 10% of the

environment as a population sample. The system uses two datasets; training dataset

which is 9% and testing dataset which is 1% of KDD Cup 99.

The proposed model contains three phases: classification phase, steady state Genetic

Algorithm phase and Matching phase.

After using (SSGA),the resulted rules will be stored in the rules pool, to be used at the

Matching phase to examine the testing dataset.

Finally, evaluating the system success, strength and trustworthy by calculating Detection

Rate (DR) and False Positive Rate (FPR).The effective IDS must have high Detection

Rate (DR) and low False Positive Rate (FPR).

42

4.3 Proposed Model

The following figure displays our own proposed model:

Phase 1 classifier

Phase 1 Detector

Phase2 SSGAYes

No

Phase 3

Figure (4.1)

Enhanced Steady State Genetic Algorithm Model for IntrusionDetection System

Receive

message

Represent the message

using real representation

Determine rule

condition and

action part

Filter the rule with the best

features

Represent rule with the

most significant features

Distinct rules

Selection

Crossover

Mutation

Replacement

Evaluation

Environment Environment

Training Data Set Testing Data Set

Evaluate

rule

Stop

Rule Pool

Stop

condition

Yes

Matching

Intrusion Alert

End

43

4.4 The algorithm of Steady State Genetic Algorithm

Start a new Generation:

Step (1): Determine a population size.

Step (2): Represent data using real representation.

For each population in the rule pool, do:

Step (3): Select the chromosome using Elitist Selection.

Step (4): Apply Uniform Crossover.

Step (5): Apply Flip Bit Mutation.

Step (6): Evaluate the chromosomes.

Step (7): Apply Binary and Triple Tournament Replacement.

Step (8): Save the created rules in the Rules Pool.

Step (9): Go to the next population.

Step (10): Check the stop criteria, if not satisfied then go to start a new Generation.

4.5Proposed Model Structure:

The structure of the proposed IDS is described as the following:

4.5.1 Environment:

The KDD CUP 99 datasets will be the environment forimplementing the proposed

model. KDD CUP 99 has been built based on the data captured in DARPA'98 IDS

evaluation program.

In this research 10% of original dataset will be used as a samplefor training and

testing,that is approximately 494,021records.

44

4.5.1.1 Training Dataset:

 The system will start receiving datafrom KDD Cup 99, in this research we used 9% as a

training dataset, which is approximately 444618 records.

4.5.1.2 Testing Dataset:

Part of the dataset will be used to examine the matching between packet and the rules

stored in the rule pool;KDD Cup 99 will be the environment for testing dataset, the

researcher will use 1% as testing dataset, which is approximately 49403records.

4.5.2 Classifier:

Classifier used for classifying the data; in this phase, the message that comes from

training dataset will be received and then represent the message by using real

representationto produce the rule as a chromosome which will be used later in

determining the most significant features. The values of the most significant features are

varied between binary and real numbers, so the real representation is the best, because it

includes both types: binary and real numbers.

Also, the classifier will use a message to determine the condition and action part of the

rule. The condition part of the rule has a combination of values related to set of features,

those values of that features made the condition to cause such attack.

The relation between the condition values and the type of attack represents the action

part, which means if those features have those values then the type of attack will be as it

is in the feature number 42.

To represent a rule with the most significant features, there are many researches for

finding the most significant features that are sufficient to recognize the type of attack, as

mentioned in table (4.1).

45

The last part of classifier is to filter the message from redundancy.

4.5.3 Distinct Rules:

This database will be producedafter the following operations:

-Classifying data to four classes (DoS, Probe, R2L and U2R).

- Creating the rules as Condition-Action form.

-Determining the rules with the most significant features.

- Removing the redundant rules from the rules dataset.

4.5.4 Steady state Genetic Algorithm Unit:

In this unit, genetic algorithm will be used to generate new chromosomes from the

existing data. This phase will help in selecting the rules by replacing the poorest one, so

the rules pool should contain the best elitist rules.

-Evaluation:

The chromosomes will be evaluated by computingFitness value for each chromosome in

order to be selected in the next stage.

This research will use Reward Penalty Fitness Function(3.9) proposed by (Alabsi and

Naoum, 2012).

-Selection:

Selecting the appropriate individual can be done by using ElitistSelection.

Elitist Selection gets the best results when it used together withUniform Crossover within

Steady State Genetic Algorithm, depending on (Alabsi, 2012).

46

-Crossover:

At this stage, Uniform Crossover (UX) will be used, where genes are randomlyexchanged

at random points within a chromosome to produce two new offsprings.

-Mutation:

Applying mutation for each child produced from the last stage, Mutation will use flip bit,

by flipping the value of a gene that was chosen randomly, to be equal to a random

number of specific range.

-Evaluation:

This stage will be used toevaluate the generated chromosomes by using Reward Penalty

Fitness Function. Evaluating the chromosomes at this stage helps in applying

Replacement stage.

-Replacement:

ApplyingReplacement by comparing the Replacement methods, and then decide which

one gives the best result.

-Check the Stopping Criteria:

Checking the stopping criteria can be done if there are no additional new rules to be

produced, then the Genetic Algorithm will be stopped; otherwise,the Genetic Algorithm

creates additional generation.

4.5.5 Rules Pool:

It will contain the rules that are collected from the training data and steady state Genetic

Algorithm unit in order to be used in the testing phase.

47

4.5.6 Testing (Matching):

In this phase, the proposed system will try to match the received data with the existent

rules in the rules pool,in order to recognize the data and detect the intrusions.

 If it satisfied the matching condition, then the alarm of intrusion detection will be

appeared, otherwise it is normal behavior.

4.5.7 System Evaluation:

Evaluating the proposed system will be done by calculating Detection Rate (DR) and

False Positive Rate (FPR) then comparingthe results with others.

4.6. Attack types and Features selection:

Attacks types are classified according to the following categories: (Tavallaee,Bagheri,&

Ghorbani 2009)

1. Denial of Service (DoS)

2. User to Root (U2R)

3. Remote to Local (R2L)

4. Probing

To determine each type of attacks, the feature selection issue must be takenin

consideration.

48

There are many papers determined the most significant features responsible for

identifying the type of attack. The following table presents the papers and the most

significant features for each attack:

Attacks

Papers

DoS

Probe

U2R

R2L

Mukkamala and

Sung, (2003)

f1,f5,f6,f23,f24,f25

f26,f32,f36,f38,f39

f1,f2,f3,f4,f5,f6,

f23,f24,f29,f32,f33

f1,f2,f3,f5,f6,f12,

f23,f24,f32,f33

f1,f3,f5,f6,f32,

f33

Chou, Yen, and

Luo, (2008)

f1,f2,f3,f4,f5,f6,f12,

f23,f24,f31,f32,f37

f1,f2,f3,f4,f12,f16,

f25,f27,f28,f29,f30,

f40

f1,f2,f3,f10,f16 f1,f2,f3,f4,f5,f10,

f22

Zainal, Maarof,

Shamsuddin, and

Abraham, (2008)

f5,f10,f24,f29,f33,

f34,f38,f40

f2,f3,f23,f34,

f36,f40

f3,f4,f6,f14,

f17,f22

f3,f4,f10,f23,

f33,f36

Mukkamala,

Sung and

Abraham,(2004)
f7,f8,f12,f13,f23 f3,f12,f27,f31,f35 f14,f17,f25,f36,f38 f6,f11,f12,f19,f22

Table (4.1):Researches to determine the most significant features for each attack

In this research, the results ofMukkamala, Sung and Abraham,(2004)will be adopted in

the stage of representing rules with the most significant features, because this research

has been tested in many previous studies such as (Al-Sharafat, 2009) and (Alabsi, 2012),

and it gives good results.

49

Chapter Five

Experimental Results

5.1 Overview

In this chapter, we present the experimental results through the execution of proposed

Intrusion Detection System, which has been supported by Steady State Genetic

Algorithm.

5.2 Dataset

All experiments and evaluations will be done over Knowledge Discovery in databases

KDD Cup 99 dataset, by using Vb.Net 2010 and SQL server 2008. KDD Cup 99 includes

a wide variety of intrusions, so it is described as the most widely used dataset in the field

of IDSs evaluation.

The whole data of KDD Cup 99 is 4940210 records; it’s available on the KDD official

website. This research used 10% of the whole data as training and testing dataset, which

means 494021 records were used in this research.

10% of the whole data have been divided into two groups 9% as training dataset which

contains 444618 records (including 78416 normal and 366202 attacks) and 1% as testing

dataset which contains 49403records. Table (5.1) presents the distribution of attacks in

the training dataset:

50

Attack No. of Rows Percentage

DoS 361243 98.64%

R2L 1125 0.31%

U2R 37 0.01%

Probe 3797 1.04%

Total 366202 100%

Table (5.1):Distribution of Attacks withinTraining Dataset

5.3 Classification:

We have been dealing with data by classifying them into four databases: DoS, R2L, U2R

and Probe. Each database contains many tables of sub attack types, and then we have

classified training dataset according to the attack type and sub attack types.

The training dataset is made up of 22 different sub attack types for the known attack

categories .The following tableshows the sub attack types that have been found

within(9%) training dataset:

attack Sub attack types

DoS Back, land, Neptune, pod, smurf, teardrop

R2L ftp_write, guess_passwd, imap, multihop, phf, spy, warezclient,

warezmaster

U2R Buffer_overflow, loadmodule, perl, rootkit

Probe Ipsweep, nmap, portsweep, satan

Table (5.2):Sub attack typesin training dataset

51

5.4Features selection:

The training dataset contains 444618 records. Each record has 41 features with feature

number 42 which determines the type of attack.

To judge that the record of testing dataset belongs to a particular classification of attack,

the tested record must have the same features values as at least one record of the training

dataset.The process of testing record with the whole data in the training dataset is

achieved by comparing 41features.To make this process easier with less time; we depend

on the most significant features that determine the type of attack without needing to the

other features.

In this stage,Mukkamala, Sung and Abraham, (2004)have been adopted to represent

record with the most significant features; they tried to remove the useless features to

increase the accuracy until they got five significant features for each record, as the

following table:

Attack Features

DoS F7,F8,F12,F13,F23

Probe F3,F12,F27,F31,F35

U2R F14,F17,F25,F36,F38

R2L F6,F11,F12,F19,F22

Table (5.3): Selected Features by Mukkamala, Sung and Abraham

52

After selecting five features for each record,many duplicate records will be appeared;no

needto use the duplicate records.So wetried tofilter data and eliminatethe duplicate

records.

In the following tables, we show the number of records before and after filtering for each

category of attack:

Sub attack types No. of records

before filtering

No. of records

after filtering

No. of repeated

records

Back 2103 22 2081

Land 18 2 16

Neptune 86031 302 85729

Pod 242 22 220

Smurf 271970 351 271619

Teardrop 879 202 677

Total records 361243 901 360342

Table (5.4): Number of records before and after filtering for DoS attack

Sub attack types No. of records

before filtering

No. of records

after filtering

No. of repeated

records

ftp_write 8 8 0

Guess_passwd 53 3 50

Imap 12 4 8

Multihop 7 7 0

Phf 3 1 2

Spy 2 2 0

Warezclient 1020 26 994

Warezmaster 20 20 0

Total records 1125 71 1054

Table (5.5): Number of records before and after filtering for R2L attack

53

Sub attack types No. of records

before filtering

No. of records

after filtering

No. of repeated

records

Buffer_overflow 17 8 9

Loadmodule 9 6 3

Perl 3 2 1

Rootkit 8 4 4

Total records 37 20 17

Table (5.6): Number of records before and after filtering for U2R attack

Sub attack types No. of records

before filtering

No. of records

after filtering

No. of repeated

records

Ipsweep 1118 24 1094

Nmap 231 33 198

Portsweep 860 183 677

Satan 1588 256 1332

Total records 3797 496 3301

Table (5.7): Number of records before and after filtering for Probe attack

5.5 Fitness Function:

To apply steady state genetic algorithm eachchromosome must be evaluated by

computing its Fitness value.Fitness value evaluates the quality of each chromosome, so

the high fitness value will give chromosome high probability to be selected in the

selection stage.Reward Penalty Fitness Functionhas been used to determine fitness

valuefor each recordas the following equation:

Fitness= 2+
����
����+

��
� -

�

54

The values of A and AB depend on the condition and action parts,when the condition and

action of the selected record are equal to the condition and action of the Compared record

then the value of AB of the selected record will be increased by one, else the value of A

of the selected record will be increased by one.

X = the maximum value of AB in the population.

Y = the maximum value of A in the population.

5.5.1Why Fitness Function after using SSGA is equal to A:

Reward Penalty based Fitness Function has been built to evaluate each chromosome in

the population depending on four different values (A value, AB value, Maximum A value

in the population and Maximum AB value in the population). So, the chromosome will be

strong if it has a high value of AB,and it will be stronger if its AB value is more close to

the maximum AB value in the population and it will be the strongest chromosome if it

has the maximum AB value in the population.

On the other side, the chromosome will be weak if it has a high value of A, it will be

more weakness if itsA value is more close to the maximum A value in the population

and it will be the weakest chromosome if it has the maximum A value in the population.

As mentioned before, we depend on the value of AB which means if there is a

chromosome with a set of genes value, how much this chromosome has the same action

in a set of data which is called Training dataset.

But after using Genetic Algorithm, there are a huge number of chromosomes that is

created but its AB value is equal to Zero. So, we have some cases that Fitness Value is

equal to (NULL) that means the value is not accepted mathematically.

55

So, this Fitness Function does not fit to be used in evaluating a chromosome created by

GA and reapplying GA over it, but it will be fit if we apply GA many times on the same

original population, without creating a new chromosome by applying GA on a created

chromosome.

This problem must be solved in our case, because we must evaluate created chromosomes

before applying the Replacement phase.

The problem has been solved by just depending on A value. If it is equal to zero, that

means the generated chromosome is completely new but if there is A value which is more

than 0, this will mean there are two cases, the first case is that the created chromosome is

same to the rules which stored in Rule pool, that means, we don’t need this created

chromosome anymore.

The second case is that the created chromosome is the same to the rule of another attack

which means that this created chromosome will not help us in detection.

After determining A value for each record, the Replacement phase has been applied. By

using Triple Replacement, we compare three generations and take just the chromosome

with A values equal zero or approach to zero. For example, if we have a population with

size = 300, we have three generations, each one generates another 300 chromosomes and

the result is 900 chromosomes, we just take the best 300 chromosomes of 900

chromosomes.

56

5.6Tracking the genetic algorithm by values:

We try to track genetic algorithm processes with values as an example. Since there are a

large number of records in each type of attack, we will track GA processes on U2R attack

which contains the least number of record (20 records) as mentioned in tables (5.6).

After determining the fitness value by using Reward Penalty Fitness Function for each

record with the first generation,we get the following values:

ID Fitness value ID Fitness value

1 0.75 11 3.33

2 1.917 12 3.33

3 1.75 13 1.667

4 3.5 14 2.667

5 3.25 15 4

6 3.33 16 3

7 3.75 17 1.9

8 3.5 18 0.25

9 1.33 19 1.368

10 1 20 3.5

Table (5.8):fitness value for each record in U2R

Notice from the table above that the highest value for fitness is 4 of the record number

15, and the lowest value for fitness is 0.25 of the record number 18. We will use these

values in the selection stage.

57

After elitist selection process, we get the following table:

ID Fitness value ID Fitness value

15 4 14 2.66

7 3.75 2 1.917

4 3.5 17 1.901

8 3.5 3 1.75

20 3.5 13 1.667

6 3.33 19 1.368

11 3.33 9 1.33

12 3.33 10 1

5 3.25 1 0.75

16 3 18 0.25

 Table (5.9): the values after selection process in U2R

Now, uniform crossover will be applied, where features are randomly exchanged at

random points within a chromosome to produce two new records.

The features of each record after crossover as the following values:

No. Features values No. Features values

1 1 2 0 0.5 0 11 1 1 0 1 0

2 1 1 0 0 0 12 0 4 0 0.5 0

3 0 4 0 1 0 13 0 1 0 0 0

4 1 1 0 1 0 14 0 0 0 1 0

5 1 1 0 0 0 15 1 1 0 1 0

6 1 0 0 1 0 16 0 0 0 0 0

7 0 1 0 0.2 0 17 0 0 0 0.17 0

8 0 4 0 0.25 0 18 0 0 0 1 0

9 1 2 0 0.5 0 19 0 0 0 1 0

10 1 0 0 0.01 0 20 0 0 0 1 0

 Table (5.10): records form of U2R after crossover

58

On the next stage, mutation has been applied on the first chromosome with feature

number three. But the chromosome stayed with the same form because all the values of

the feature number three are the same and equal to zero.

Another mutation has been applied on the chromosome number eleven with feature

number two. The form of the chromosome before mutation was 1 1 0 1 0, after

mutation became 1 2 0 1 0.

Now, we need to evaluate each chromosome before replacement processdepending on the

value of A. The following table shows the value of A for each record:

No. A value No. A value

1 0 11 0

2 2 12 0

3 2 13 17

4 2 14 277273

5 2 15 2

6 6 16 27424

7 1 17 891

8 1 18 277273

9 0 19 277273

10 4 20 277273

Table (5.11): the values of A for each record after mutation

From the table above, notice that there is a difference between the values of A.

 The record with the value of A equal to zero, is stronger than others, and vice versa, the

record with high value of A is weaker than others.

Now, in the second generation after applying crossover operation, we get the following

values:

59

No. Features values No. Features values

1 1 1 0 0 0 11 1 1 0 0.5 0

2 1 2 0 0.5 0 12 0 4 0 1 0

3 0 4 0 1 0 13 0 0 0 0 0

4 1 1 0 1 0 14 0 1 0 1 0

5 1 0 0 0 0 15 1 0 0 0 0

6 1 1 0 1 0 16 0 1 0 1 0

7 0 1 0 0.2 0 17 0 0 0 1 0

8 0 4 0 0.25 0 18 0 0 0 0.17 0

9 1 0 0 0.01 0 19 0 0 0 1 0

10 1 2 0 0.5 0 20 0 0 0 1 0

Table (5.12): Features values of U2R after crossover on the second generation

Mutation has been applied on the first chromosome with feature number two.The form of

chromosome before mutation was 1 1 0 0 0, after mutation became 1 2 0 0 0. Another

mutation has been applied on the chromosome number eleven on the first feature.The

form of chromosome before mutation was 1 1 0 0.5 0, after mutation became 0 1 0 0.5 0.

Evaluating each chromosome depending on the value of A, as the following table:

No. A value No. A value

1 2 11 3

2 0 12 2

3 2 13 27424

4 2 14 4

5 8 15 8

6 2 16 4

7 1 17 277273

8 1 18 891

9 4 19 277273

10 0 20 277273

Table (5.13): the values of A for each record after mutation in the second generation

Now, in the third generation after crossover operation, we get the following values:

60

No. Features values No. Features values

1 1 2 0 0.5 0 11 1 1 0 0.5 0

2 1 10 00 12 0 4 0 1 0

3 0 4 0 1 0 13 0 1 0 0 0

4 1 1 0 1 0 14 0 0 0 1 0

5 1 1 0 0 0 15 1 0 0 0 0

6 1 0 0 1 0 16 0 1 0 1 0

7 0 1 0 0.2 0 17 0 0 0 0.17 0

8 0 4 0 0.25 0 18 0 0 0 10

9 1 2 0 0.5 0 19 0 0 0 1 0

10 1 0 0 0.01 0 20 0 0 0 1 0

 Table (5.14): Features values of U2R after crossover on the third generation

Mutation has been applied on the first chromosome with feature number five,but there is

no change on the feature values;because all the values of this feature equal zero. Another

mutation has been applied on the chromosome number eleven on the feature number

four.The form of the chromosome before mutation was 1 1 0 0.5 0, after mutation became

1 1 0 0.2 0.

Evaluating each chromosome depending on the value of A, The following table shows

the values of A of each record:

No. A value No. A value

1 0 11 0

2 2 12 2

3 2 13 17

4 2 14 277273

5 2 15 8

6 6 16 4

7 1 17 891

8 1 18 277273

9 0 19 277273

10 4 20 277273

 Table (5.15): the values of A for each record after mutation in the third generation

61

The last process of GA is the Replacement; triple replacement was applied every three

generations according to the values of A.

So, after triple replacement process we will get the following chromosomes:

No. F1 F2 F3 F4 F5

1 1 2 0 0.5 0

2 1 2 0 0.5 0

3 1 1 0 1 0

4 0 4 0 0.5 0

5 1 2 0 0.5 0

6 1 2 0 0.5 0

7 1 2 0 0.5 0

8 1 2 0 0.5 0

9 1 1 0 0.2 0

10 0 1 0 0.2 0

11 0 4 0 0.25 0

12 0 1 0 0.2 0

13 0 4 0 0.25 0

14 0 1 0 0.2 0

15 0 4 0 0.25 0

16 1 1 0 0 0

17 0 4 0 1 0

18 1 1 0 1 0

19 1 1 0 0 0

20 1 1 0 1 0

Table (5.16): Chromosomes value after triple replacement process

Actually from the replacement results, we got 8 distinct chromosomes after eliminate

repeated records to be saved in the rule pool.

62

This has been done for the first three generations. Other generations will be proceeding

until achieving the stopping criteria.

Stopping criteria of genetic algorithm will be done when there are no additional new

records to be produced.

5.7 The convergence:

The convergence to an accurate solution refers to the procedures that are followed to

access of the solution for specific problem. That means, you may have different solutions

but one of thosesolutions is the optimal, according to specific criterion.

- In this research, we notice that if there are two cases with detection rate equal 100% as

in probe attack type, but the first case with rule pool which has 1000 chromosomes and

the second case with rule pool which has 2000 chromosomes then the first case has a

faster convergence, by comparing the requested time for two cases.

-Stopping Criterion can be considered as an indicator to GA convergence.In our research,

when there are no additional new rules to be produced, then the Genetic Algorithm will

be stopped. Otherwise,the Genetic Algorithm creates an additional generation.

That means,the convergence happenedwhen the difference between the number of

records in generation (n) and the number of records in generation (n+1) approaching to

zero.

63

5.8The Results of Detection Rate (DR) and False Positive Rate (FPR):

As a result of this research, Intrusion Detection System has been built and supported with

Steady State Genetic Algorithm.Detection Rate has been calculated by using equation

(3.1) and False Positive Rate was calculated by using equation (3.2).

The goal is to get high DR and low FPR. After system execution, we get the following

resultsof DR and FPR with Double Replacementfor each type of attack:

 DoS Probe U2R R2L

DR 97% 100% 40% 100%

FPR 0.0232 1.84 1.866 2.195

Table (5.17): Results of DR and FPR with Double Replacement

And the results of DR and FPR with Triple Replacement for each type of attack:

 DoS Probe U2R R2L

DR 100% 100% 53% 100%

FPR 0.0232 1.84 1.866 2.195

Table (5.18): Results of DR and FPR with Triple Replacement

Thus we conclude that:

-Triple replacement method produced more accurate results in DR than double

replacement.

-Both of Double and Triple Replacement have the same values of FPR, but they are

different in the value of DR.

- The increasing in the number of generations leads to increase DR, but the values of FPR

are not affected with this increasing.

64

5.9 Tracking increasing of DR in U2R attack with Double and Triple Replacement:

 Our resultsin tables (5.17) and (5.18) show that the Triple Replacement has an effecton

the SSGA and lead to an optimal solution by comparing it with double replacement, this

comparison is clear with DR of U2R attack.

To explain that, from our results we found that SSGA with double replacement in the first

100 generations produced 240 records, but with triple replacement produced 177 records.

Generation No. of record with

double

No. of record with

triple

10 28 16

20 46 24

30 87 44

40 138 71

50 180 87

60 232 106

70 235 126

80 237 134

90 238 155

100 240 177

Table (5.19): number of records in the first 100 generations of U2R attack

Figure (5.1) the difference between double and triple replacement in the first 100 generation

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10

Double

Triple

65

While, SSGAwithtriple replacement until generation number 600 produced1096 records,

but withdouble replacement produced288 records as shown in the following table:

Table(5.20): number of records afterthe 100 generations of U2R attack

Figure (5.2) the difference between double and triple replacement after the 100 generations

From figures (5.1) and (5.2), we note that X-axes present the generations and Y-axes

present the number of records. Our results showed that at the beginning generations,

SSGA with double replacement produce more chromosomes than SSGA with triple

replacement, and thisis because double replacement saves a new chromosomes at the rule

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10

Double

Triple

generation No. of record with

double

No. of record with

triple

100 260 197

200 267 382

300 273 557

400 281 750

500 285 920

600 288 1096

66

pool just once a time for each two generations and triple replacement saves a new

chromosome at the rule pool just once a time for each three generations.

After 100 generation, double replacement stopped from producing new chromosomes,

buttriple replacement continues to producethem and improve the value of DR in the

system.

5.10 Comparing thesis results with other results:

The first comparing procedure will be between our results when we use Triple

Replacement, and (Alabsi, 2012) results he used double replacementin Genetic Algorithm

with Misuse Intrusion Detection System. But in Alabsi thesis it has been used 5% as a

sample of training dataset, while our research used9% as a sample of training dataset.

The criterion of comparing is DR of each attack, as the following table:

 DoS Probe U2R R2L

Our research 100% 100% 53% 100%

Alabsi 94% 100% 86% 100%

Table (5.21):First comparison

From table (5.21), we note that the DR of U2R attack in our research is very low

comparing with other attacks. To explain the reason of this case, since the number of

records of U2R attack is 20 records in training dataset and 15 records in testing dataset.

The question here: Are the 20 records that distributed on 9% of dataset being able to

67

detect 15 records distributed on 1% of dataset? Then, distribution of the sample leads to

decrease the value of DR of U2R.

While, for example with DoS attack there are multiple numbers of records distributed on

training dataset that be able to detect small number ofrecords distributed on testing

dataset. Then, the value of DR of DoS was high.

The second comparing procedure will be between our results with Stewart and

alsharafat result.The criteria of this comparison will be the average of DR and FPR.

(Stewart, L. 2009)found that theaverage of DR is equal to 79.67%, and FPR is2.69%,

which is worse than the results of our research.

(Al-Sharafat, 2009) got the average of DR equal to 98.9%, and the average of FPR equal

to 0.094% which is better than the results of this research.

The following table shows these results:

 Average of DR Average of FPR

Our result 88.25% 1.48%

Alsharafat 98.9% 0.094%

Stewart 79.67% 2.69%

Table (5.22): Second comparison

Stewart used hybrid system of Genetic Algorithm with Neural Networks for Intrusion

Detection System. WhileAl-Sharafat used Steady State Genetic Algorithm with Anomaly

based IDS.

From this comparison we note that this research achieved better results than

(stewart,2009), but worse results than (alsharafat, 2009).

68

Chapter six

Conclusion and Future Work

6.1 Conclusion:

In this thesis an intrusion detection system was built and we focus on enhancing the

replacement of steady state genetic algorithm toincrease the detection rate.

The environment of this research was the KDD Cup 99 dataset. Allexperiments and

evaluations are performed by using 10% of the whole dataset.The inputs to the system are

two subsets; training dataset which is 9% and testing dataset which is 1% of KDD Cup 99

dataset.

We conclude from our research that by using the replacement, it enhanced the SSGA by

comparing Replacement methods. Also, we found that triple replacement produced more

accurate results than double replacement, according to the value of DR, number of

generations and the number of new chromosomes.

Also, we found that Triple Replacement produced DR is equal to 100% for the following

attack types (DoS, Probe, and R2L), but U2R attack produced a result of DR equal to

53% which is still better than U2R in Double Replacement which produced DR equal to

40%.

This research improves Fitness Function to be fit for finding a Fitness Value that is

proper for new chromosomes that produced from GA.

Also, we found that Triple Replacement enhanced the convergence to the solution and

improved the efficiency of SSGA for producing new chromosomes.

69

6.2 Future Work:

1. Genetic Algorithm can be applied in two ways: the first way is applying GA on

the main attack types such as DoS, R2L, U2R and Probe.The second one is

applying GA on each sub attack types.To determine which way is the best,

additional studies must be done to know which one is better.

2. Additional researches about selecting the bestrate of mutation. The used mutation

rate is 0.1, thus we need to develop an algorithm to find optimal rate.

3. Need more studies on how to keep higher DR and lower FPR with Misuse

detection.

4. Need further researches to choose the appropriate population size and determine

which is the best size of population, big or small? What is the difference between

them?

5. Additional researches must be done to find the complicity of steady state genetic

algorithm with a different type of replacement such as random replacement.

6. Need more researches and studies about fitness function to reach the formula

gives more accurate results.

7. Using hybrid algorithm which adopt a neural computing with GA as a procedure

for finding optimal solution for Intrusion Detection.

70

References:

• Agravat,M., Rao,U.(2011). Computer intrusion detection by two-objective fuzzy

genetic algorithm. First international conference on computer science engineering

and application (CCSEA). July (15-17), Hyatt regency channai, india. Available

at:http://airccj.org/CSCP/vol1/csit1226.pdf

• Alabsi, F., Naoum, R., (2012), Comparison of Selection Methods and Crossover

Operations using Steady State Genetic Based Intrusion Detection System, Journal

of Emerging Trends in Computing and Information Sciences.VOL. 3, NO.7, ISSN

2079-8407

• Alabsi, F., Naoum, R. (2012),Fitness Function for Genetic Algorithm used in

Intrusion Detection System., International Journal of Applied Science and

Technology, Vol. 2 No. 4.

• Alabsi, F. (2012),An Enhanced Steady State Genetic Algorithm Model for Misuse

Network Intrusion Detection System, (master thesis). Middle East University,

Amman, Jordan.

• Al-Rashdan, W.,(2011). A Hybrid Artificial Neural Network Model for effective

network intrusion detection system,(doctorate dissertation) , The Arab Academy for

banking and financial sciences, Amman, Jordan.

• Al-Sabbah, A. A. (2012). The Color Image Enhancement Using SSGA Steady State

Genetic Algorithm, (master dissertation). Middle East University, Amman, Jordan.

• Al-Sharafat, W.S. (2009). Development of genetic-based machine learning

algorithm for network intrusion detection (gbml-nid), (doctorate dissertation) , The

Arab Academy for banking and financial sciences, Amman, Jordan.

• Ashoor, A., Gore, S., (2011), Importance of Intrusion Detection System (IDS),

International Journal of Scientific & Engineering Research, Vol. 2, Issue 1, ISSN

2229-5518.

• Bishop, M. (2005). Introduction to Computer Security. Boston: Pearson Education.

• Cesare, S. & Xiang, Y., (2010), Classification of Malware Using Structured Control

Flow, Proceeding in Eighth Australasian Symp, Parallel and Distributed

Computing.

• Chau, D., Nachenberg, C., Wilhelm, J., Wright, A., Faloutsos, C., (2010),

Polonium: Tera-Scale Graph Mining for Malware Detection,Journal of ACM

digital library.

71

• Chou,T.S. Yen,K.K. Luo,J. (2008). "Network Intrusion Detection Design Using

Feature Selection of Soft Computing Paradigms". World Academy of

Science,Engineering and Technology. No (47).Page (529).

• DARPA 1998 data set,

http://www.ll.mit.edu/IST/ideval/data/1998/1998_data_index.html, cited August

2003.

• Fakeih, A. & Kattan, A. (2012). Recurrent Genetic Algorithm Sustaining

Evolvability. Journal of Springer Link, (230-242).

• Gadbois, P., (2011)."Train Signal's CompTIA Security+ Intrusion Detectio",
YouTube, (On Line) , available: http://www.youtube.com/watch?v=O2Gz-

v8WswQ

• Ghali, N., (2009), Feature selection for effective anomaly based intrusion detection,

International Journal for Computer Science and Network Security IJCSNS,

Vol.(9) ,No(3), pages 285-289. Available at:

http://paper.ijcsns.org/07_book/200903/20090339.pdf.

• Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization, and Machine

Learning, Addison-Wesley.

• Goyal, A. & Kumar, C. (2009). GA-NIDS: A Genetic Algorithm based Network

Intrusion Detection System, Journal of Elsevier.

• Haupt, R., Haupt, S., (2004). Practical Genetic Algorithm, published by John

Weily, available at:

https://os.cloudme.com/v1/webshares/12885457505/CloudComputing/Cloud%20C

omputing/Artificial%20Genetic%20Algorithms/Practical%20Genetic%20Algorith

ms%20-%20Randy%20L.%20Haupt,%20Sue%20Ellen%20Haupt.pdf

• Hoque M. S., Mukit A. & Bikas A. (2012). An Implementation of Intrusion

Detection System Using Genetic Algorithm, International Journal of Network

Security and its applications, Vol.4, NO.2, 109-120.

• Jong, G. J., Chen, S. M., Su, T. J., & Horng, G. J. (2005). A combined LMS with

RGA algorithm of the co-channel separation system. In Proceedings of 2005

International Symposium onIntelligent Signal Processing and Communication

Systems. ISPACS 2005, 285-288, IEEE.

• Kang, D., Fuller, D. &Honavar, V. (2005).Learning classifier for misuse and

anomaly detection using a bag of system calls representation, proceeding of the 6th

IEEE, workshop on information assurance and security, NY, USA. Available at:

http://www.cs.iastate.edu/~honavar/Papers/iaw05.pdf

72

• KDD-CUP 1999 Data, Available at:

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

• Kshirsagar, V. K., Tidke, S. M. & Vishnu, S. (2012). Intrusion Detection System

using Genetic Algorithm and Data Mining: An Overview. International Journal of

Computer Science and InformaticsISSN (PRINT), 2231-5292.

• Kuang, L. (2007). DNIDS: A dependable network intrusion detection system using

the CSI-KNN algorithm.

• Kumar, M., Husian, M., Upreti, N& Gupta, D. (2010). Genetic algorithm: review and

application. International Journal of Information Technology and Knowledge

Management. Vol (2). No (2). Page 451. Available at:

http://www.csjournals.com/IJITKM/PDF%203-1/55.pdf

• Kurose, J. & Ross, K. (2010). Computer Networking A Top-Down Approach

(5thed.). Boston: Pearson Education.

• Lahre, K., Diwan, T., Kumar, S. Agrawal,P., (2013).Analyze Different approaches

for IDS using KDD 99 Data Set. International Journal on Recent and Innovation

Trends in Computing and Communication, Volume: 1 Issue: 8, ISSN 2321 – 8169,

pages 645 – 651.

• Li, W. (2004). Using genetic algorithm for network intrusion detection. Proceedings

of the United States Department of Energy Cyber Security Group, 1-8.

• Mitchell, M. (1996). An introduction to genetic algorithms. MIT Press. Cambridge,

Massachusetts. London, England.

• Modi, C., Patel, D., Borisaniya, B., Patel, H., Patel, A., & Rajarajan, M. (2013). A

survey of intrusion detection techniques in cloud. Journal of Network and Computer

Applications, 36(1), 42-57.

• Mostaque Md.,(2013). Network intrusion detection system using genetic algorithm

and fuzzy logic.International Journal of Innovative Research in Computer and

Communication Engineering.(An ISO 3297: 2007 Certified Organization) Vol. 1,

Issue 7.

• Mukkamala, S. & Sung, A (2003), Feature Selection for Intrusion Detection using

Neural Networks and Support Vector Machines. To appear in Journal of the

Transportation Research Board (of the National Academies). Available at:

http://www.ltrc.lsu.edu/TRB_82/TRB2003-002459.pdf

• Mukkamala, S., Sung, A., Abrham, A., (2004), Modeling Intrusion Detection

System using Linear Genetic Programming Approach, Proceeding IEA/AIE 17th

International Conference on Innovations in Applied Artificial Intelligence, PP 633-

642, ISBN: 3-540-22007-0, From:

http://www.rmltech.com/doclink/LGP%20Based%20IDS.pdf

73

• Naoum, R., Abid, N.& Al-Sultani, Z., (2012), An Enhanced Resilient Back

propagation Artificial Neural Network for Intrusion Detection System, International

Journal of Computer Science and Network Security, Vol(12). No.(3), PP (11-16).

• Ramakrishnan, S. & Srinivasan, S. (2009). Intelligent agent based artificial immune

system for computer security—a review. Artificial Intelligence Review, 32(1-4), 13-

43.

• Reeves, C., (2000), Genetic Algorithms, third chapter, School of Mathematical and

Information Sciences, available at:

http://sci2s.ugr.es/docencia/metah/bibliografia/GeneticAlgorithms.pdf,

• Rehman, R. U. (2003). Intrusion detection systems with Snort: advanced IDS

techniques using Snort, Apache, MySQL, PHP, and ACID. Prentice Hall Professional,

at:

http://ptgmedia.pearsoncmg.com/images/0131407333/downloads/0131407333.pdf.

• Sabhnani, M. and Serpen, G., (2004).Why machine learning algorithms fail in misuse

detection on KDD intrusion detection data set. Journal of Intelligent Data Analysis,

Volume 8 Issue 4, pages 403-415.

• Sathya, S., Ramani, R., Sivaselvi, K., (2011) .Discriminant Analysis based Feature

Selection in KDD Intrusion Dataset, International Journal of Computer

Applications, (0975 – 8887) Volume 31– No.11

• (SysAdmin, Audit, Network, Security) Institute, (2001). Intrusion detection systems;

definition, need and challenge. Available at:

http://www.sans.org/reading_room/whitepapers/detection/intrusion-detection-

systems-definition-challenges_343

• Scarfone, K. & Mell, P. (2007). Guide to intrusion detection and prevention systems

(IDPS). National Institute of Standards and Technology. Special publication 800-

94, Page 2-1. Available at: http://csrc.nist.gov/publications/nistpubs/800-94/SP800-

94.pdf

• Schmidit, M. & Stidsen, T. (1997). Intelligent Hybrid Systems: Fuzzy Logic, Neural

Networks, and Genetic Algorithms. Kluwer Academic Publisher.

• Selvakani, S., Rajesh, R., (2007), Genetic algorithm for framing rules for intrusion

detection.International Journal for Computer Science and Network Security

IJCSNS,Vol.(7),No(11),285-290.Available at:

http://paper.ijcsns.org/07_book/200711/20071144.pdf.

• Siddiqui, M., Naahid, S., (2013). Analysis of KDD CUP 99 Dataset using Clustering

based Data Mining, International Journal of Database Theory and

74

Application,Vol.6 No.5, available at:

http://www.sersc.org/journals/IJDTA/vol6_no5/3.pdf.

• Singh, S. (2013).Intrusion detection system (IDS) and intrusion prevention

system(IPS)for network security: a critical analysis.International Journal of

Research in Engineering & Applied Sciences. Volume 3, Issue 3 ISSN: 2249-3905

• Siva, M. V., Vinay A. B& Babu, K. R.(2013). An intrusion detection system

architecture based on neural networks and genetic algorithms. International

Journal of Computer Science and Management Research. Vol 2 Issue 1, ISSN

2278-733X.

• Stewart, L. (2009). “A Modified Genetic Algorithm and Switch-Based Neural

Network Model Applied To Misuse Based Intrusion Detection”.(master thesis).

Queens University. Ontario. Canada. Available at:

http://qspace.library.queensu.ca/bitstream/1974/1720/1/Stewart_Ian_D_200903_MS

c.pdf

• Tavallaee, M., Bagheri, E., Lu W. & Ghorbani, A. (2009). A detailed analysis of the

KDD CUP 99 data set. Proceedings of the 2009 IEEE symposium on computational

intelligence in security and defense applications (CISDA 2009). Available at:

http://www.tavallaee.com/publications/CISDA.pdf

• Jaiganesh,V., Mangayarkarasi, S. & Dr. Sumathi,P. (2013). Intrusion Detection

Systems: A Survey and Analysis of Classification Techniques.International

Journal of Advanced Research in Computer and Communication Engineering
Vol. 2, Issue 4, ISSN(Online): 2320-9801 ok

• Ye, Y., Li, T., Chen, Y., (2010), Automatic Malware Categorization Using Cluster

Ensemble, Journal of ACM.

• Zainal, A.,Maarof, M., Shamsuddin, S., Abraham, A., (Sept 2008)"Ensemble of

One-class Classifier for Network Intrusion Detection System", Fourth International

Conference on Information Assurance and Security (ISIAS '08). PP (180-185).

Available at: http://www.softcomputing.net/ias08_1.pdf

75

Appendix: Code Listing

Code for calculating A and AB

- Private conTrain AsNewSqlConnection("Data Source=(local);Initial Catalog=KDD;Integrated Security=True")

- Private datrain AsNewSqlDataAdapter("Select * from training", conTrain)

- Private conU2R AsNewSqlConnection("Data Source=(local);Initial Catalog=S_U2R;Integrated Security=True")

- PrivateSub btnbuffer_overflow_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles

btnbuffer_overflow.Click
-

- Dim dabuffer_overflow AsNewSqlDataAdapter("Select * from buffer_overflow", conU2R)

- Dim ds AsNewDataSet

- dabuffer_overflow.Fill(ds, "buffer_overflow")

- datrain.Fill(ds, "training")

-

- Dim f14, f17, f25, f36, f38 AsDouble

- Dim A, AB, id AsInteger

- Dim NoRowsTablekddcup AsInteger

- Dim NoRowsTablebuffer_overflow AsInteger

- Dim Attack AsInteger

- NoRowsTablekddcup = ds.Tables("training").Rows.Count

- NoRowsTablebuffer_overflow = ds.Tables("buffer_overflow").Rows.Count

-

- For Attack = 0 To NoRowsTablebuffer_overflow - 1

- id = ds.Tables("buffer_overflow").Rows(Attack).Item(0)

- f14 = ds.Tables("buffer_overflow").Rows(Attack).Item(1)

- f17 = ds.Tables("buffer_overflow").Rows(Attack).Item(2)
- f25 = ds.Tables("buffer_overflow").Rows(Attack).Item(3)

- f36 = ds.Tables("buffer_overflow").Rows(Attack).Item(4)

- f38 = ds.Tables("buffer_overflow").Rows(Attack).Item(5)

- A = ds.Tables("buffer_overflow").Rows(Attack).Item(6)

- AB = ds.Tables("buffer_overflow").Rows(Attack).Item(7)

-
- For KddCounter = 0 To NoRowsTablekddcup - 1

- If f14 = ds.Tables("training").Rows(KddCounter).Item(9) Then

- If f17 = ds.Tables("training").Rows(KddCounter).Item(10) Then

- If f25 = ds.Tables("training").Rows(KddCounter).Item(14) Then

- If f36 = ds.Tables("training").Rows(KddCounter).Item(18) Then
- If f38 = ds.Tables("training").Rows(KddCounter).Item(19) Then

- Ifds.Tables("training").Rows(KddCounter).Item(21) = buffer_overflow."Then"

- AB = AB + 1

- Else

- A = A + 1

- EndIf
- EndIf

- EndIf

- EndIf

- EndIf

- EndIf

- Next

- Dim Ocmd AsNew Data.SqlClient.SqlCommand

- Ocmd.CommandType = CommandType.StoredProcedure

- Ocmd.Connection = conU2R

- Ocmd.Parameters.AddWithValue("@id", id)

- Ocmd.Parameters.AddWithValue("@A", A)

- Ocmd.Parameters.AddWithValue("@AB", AB)
- Ocmd.CommandText = "updatebuffer_overflow"

- Try

- conU2R.Open()

- Ocmd.ExecuteNonQuery()

- Catch ex AsException

- EndTry
- conU2R.Close()

- Next

76

- txtbuffer_overflow.Text = "Done"
- EndSub

-

- PrivateSub btnloadmodule_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handlesbtnloadmodule.Click

- Dim daloadmodule AsNewSqlDataAdapter("Select * from loadmodule", conU2R)

- Dim ds AsNewDataSet
- daloadmodule.Fill(ds, "loadmodule")

- datrain.Fill(ds, "training")

-

- Dim f14, f17, f25, f36, f38 AsDouble

- Dim A, AB, id AsInteger

- Dim NoRowsTablekddcup AsInteger

- Dim NoRowsTableloadmodule AsInteger

- Dim Attack AsInteger

- NoRowsTablekddcup = ds.Tables("training").Rows.Count

- NoRowsTableloadmodule = ds.Tables("loadmodule").Rows.Count

-

- For Attack = 0 To NoRowsTableloadmodule - 1

- id = ds.Tables("loadmodule").Rows(Attack).Item(0)

- f14 = ds.Tables("loadmodule").Rows(Attack).Item(1)

- f17 = ds.Tables("loadmodule").Rows(Attack).Item(2)

- f25 = ds.Tables("loadmodule").Rows(Attack).Item(3)

- f36 = ds.Tables("loadmodule").Rows(Attack).Item(4)

- f38 = ds.Tables("loadmodule").Rows(Attack).Item(5)

- A = ds.Tables("loadmodule").Rows(Attack).Item(6)

- AB = ds.Tables("loadmodule").Rows(Attack).Item(7)

-

- For KddCounter = 0 To NoRowsTablekddcup - 1

- If f14 = ds.Tables("training").Rows(KddCounter).Item(9) Then

- If f17 = ds.Tables("training").Rows(KddCounter).Item(10) Then

- If f25 = ds.Tables("training").Rows(KddCounter).Item(14) Then

- If f36 = ds.Tables("training").Rows(KddCounter).Item(18) Then

- If f38 = ds.Tables("training").Rows(KddCounter).Item(19) Then

- Ifds.Tables("training").Rows(KddCounter).Item(21) = "loadmodule."Then

- AB = AB + 1
- Else

- A = A + 1

- EndIf

- EndIf

- EndIf

- EndIf
- EndIf

- EndIf

- Next

- Dim Ocmd AsNew Data.SqlClient.SqlCommand

- Ocmd.CommandType = CommandType.StoredProcedure

- Ocmd.Connection = conU2R

- Ocmd.Parameters.AddWithValue("@id", id)

- Ocmd.Parameters.AddWithValue("@A", A)

- Ocmd.Parameters.AddWithValue("@AB", AB)

- Ocmd.CommandText = "updateloadmodule"

- Try

- conU2R.Open()

- Ocmd.ExecuteNonQuery()

- Catch ex AsException

- EndTry

- conU2R.Close()

- Next

- txtloadmodule.Text = "Done"

- EndSub

-

- PrivateSub btnperl_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles btnperl.Click

- Dim daperl AsNewSqlDataAdapter("Select * from perl", conU2R)

- Dim ds AsNewDataSet

77

- daperl.Fill(ds, "perl")
- datrain.Fill(ds, "training")

-

- Dim f14, f17, f25, f36, f38 AsDouble

- Dim A, AB, id AsInteger

- Dim NoRowsTablekddcup AsInteger

- Dim NoRowsTableperl AsInteger
- Dim Attack AsInteger

- NoRowsTablekddcup = ds.Tables("training").Rows.Count

- NoRowsTableperl = ds.Tables("perl").Rows.Count

-

- For Attack = 0 To NoRowsTableperl - 1

- id = ds.Tables("perl").Rows(Attack).Item(0)

- f14 = ds.Tables("perl").Rows(Attack).Item(1)

- f17 = ds.Tables("perl").Rows(Attack).Item(2)

- f25 = ds.Tables("perl").Rows(Attack).Item(3)

- f36 = ds.Tables("perl").Rows(Attack).Item(4)

- f38 = ds.Tables("perl").Rows(Attack).Item(5)

- A = ds.Tables("perl").Rows(Attack).Item(6)

- AB = ds.Tables("perl").Rows(Attack).Item(7)

-

- For KddCounter = 0 To NoRowsTablekddcup - 1

- If f14 = ds.Tables("training").Rows(KddCounter).Item(9) Then

- If f17 = ds.Tables("training").Rows(KddCounter).Item(10) Then

- If f25 = ds.Tables("training").Rows(KddCounter).Item(14) Then

- If f36 = ds.Tables("training").Rows(KddCounter).Item(18) Then

- If f38 = ds.Tables("training").Rows(KddCounter).Item(19) Then

- Ifds.Tables("training").Rows(KddCounter).Item(21) = "perl."Then

- AB = AB + 1

- Else

- A = A + 1

- EndIf

- EndIf

- EndIf

- EndIf

- EndIf
- EndIf

- Next

- Dim Ocmd AsNew Data.SqlClient.SqlCommand

- Ocmd.CommandType = CommandType.StoredProcedure

- Ocmd.Connection = conU2R

- Ocmd.Parameters.AddWithValue("@id", id)
- Ocmd.Parameters.AddWithValue("@A", A)

- Ocmd.Parameters.AddWithValue("@AB", AB)

- Ocmd.CommandText = "updateperl"

- Try

- conU2R.Open()

- Ocmd.ExecuteNonQuery()

- Catch ex AsException

- EndTry

- conU2R.Close()

- Next

- txtperl.Text = "Done"

- EndSub

-

- PrivateSub btnrootkit_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles

btnrootkit.Click

- Dim darootkit AsNewSqlDataAdapter("Select * from rootkit", conU2R)

- Dim ds AsNewDataSet

- darootkit.Fill(ds, "rootkit")

- datrain.Fill(ds, "training")

-

-

- Dim f14, f17, f25, f36, f38 AsDouble

- Dim A, AB, id AsInteger

78

- Dim NoRowsTablekddcup AsInteger
- Dim NoRowsTablerootkit AsInteger

- Dim Attack AsInteger

- NoRowsTablekddcup = ds.Tables("training").Rows.Count

- NoRowsTablerootkit = ds.Tables("rootkit").Rows.Count

-

- For Attack = 0 To NoRowsTablerootkit - 1
- id = ds.Tables("rootkit").Rows(Attack).Item(0)

- f14 = ds.Tables("rootkit").Rows(Attack).Item(1)

- f17 = ds.Tables("rootkit").Rows(Attack).Item(2)

- f25 = ds.Tables("rootkit").Rows(Attack).Item(3)

- f36 = ds.Tables("rootkit").Rows(Attack).Item(4)

- f38 = ds.Tables("rootkit").Rows(Attack).Item(5)

- A = ds.Tables("rootkit").Rows(Attack).Item(6)

- AB = ds.Tables("rootkit").Rows(Attack).Item(7)

-

- For KddCounter = 0 To NoRowsTablekddcup - 1

- If f14 = ds.Tables("training").Rows(KddCounter).Item(9) Then

- If f17 = ds.Tables("training").Rows(KddCounter).Item(10) Then

- If f25 = ds.Tables("training").Rows(KddCounter).Item(14) Then

- If f36 = ds.Tables("training").Rows(KddCounter).Item(18) Then

- If f38 = ds.Tables("training").Rows(KddCounter).Item(19) Then

- Ifds.Tables("training").Rows(KddCounter).Item(21) = "rootkit."Then

- AB = AB + 1

- Else

- A = A + 1

- EndIf

- EndIf

- EndIf

- EndIf

- EndIf

- EndIf

- Next

- Dim Ocmd AsNew Data.SqlClient.SqlCommand

- Ocmd.CommandType = CommandType.StoredProcedure

- Ocmd.Connection = conU2R
- Ocmd.Parameters.AddWithValue("@id", id)

- Ocmd.Parameters.AddWithValue("@A", A)

- Ocmd.Parameters.AddWithValue("@AB", AB)

- Ocmd.CommandText = "updaterootkit"

- Try

- conU2R.Open()
- Ocmd.ExecuteNonQuery()

- Catch ex AsException

- EndTry

- conU2R.Close()

- Next

- txtrootkit.Text = "Done"

- EndSub

-

-

- Code for calculating Fitness Function:

-

- PrivateSub btnbuffer_overflow_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles

btnbuffer_overflow.Click

- Dim dabuffer_overflow AsNewSqlDataAdapter("Select * from buffer_overflow", conU2R)

- Dim ds AsNewDataSet

- dabuffer_overflow.Fill(ds, "buffer_overflow")

- Dim dosA, dosAB, dosid AsInteger

- Dim dosFitnessValue AsDouble

- Dim NoRowsTabledos AsInteger

- NoRowsTabledos = ds.Tables("buffer_overflow").Rows.Count

- Dim FirstPopValue, FinalPopValue, maxA, maxAB AsInteger

- For i = 0 To NoRowsTabledos - 1 Step 400

- maxA = 0

79

- maxAB = 0
- FirstPopValue = i

- FinalPopValue = i + 399

- If NoRowsTabledos < FinalPopValue Then

- FinalPopValue = NoRowsTabledos - 1

- EndIf

- For j = FirstPopValue To FinalPopValue
- If ds.Tables("buffer_overflow").Rows(j).Item(6) > maxA Then

- maxA = ds.Tables("buffer_overflow").Rows(j).Item(6)

- EndIf

- If ds.Tables("buffer_overflow").Rows(j).Item(7) > maxAB Then

- maxAB = ds.Tables("buffer_overflow").Rows(j).Item(7)

- EndIf

- Next

- For y = FirstPopValue To FinalPopValue

- dosA = ds.Tables("buffer_overflow").Rows(y).Item(6)

- dosAB = ds.Tables("buffer_overflow").Rows(y).Item(7)

- dosid = ds.Tables("buffer_overflow").Rows(y).Item(0)

- dosFitnessValue = 2 + ((dosAB - dosA) / (dosA + dosAB)) + dosAB / maxAB - dosA / maxA

- dosFitnessValue = Double.Parse(dosFitnessValue.ToString("#0.000"))

- Dim Ocmd AsNew Data.SqlClient.SqlCommand

- Ocmd.CommandType = CommandType.StoredProcedure

- Ocmd.Connection = conU2R

- Ocmd.Parameters.AddWithValue("@id", dosid)

- Ocmd.Parameters.AddWithValue("@FitnessValue", dosFitnessValue)

- Ocmd.CommandText = "fitnessbuffer_overflow"

- Try

- conU2R.Open()

- Ocmd.ExecuteNonQuery()

- Catch ex AsException

- MsgBox(ex.Message)

- EndTry

- conU2R.Close()

- Next

- Next

-
- txtbuffer_overflow.Text = "Done"

- EndSub

-

- PrivateSub btnloadmodule_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles

btnloadmodule.Click

- Dim daloadmodule AsNewSqlDataAdapter("Select * from loadmodule", conU2R)
-

- Dim ds AsNewDataSet

- daloadmodule.Fill(ds, "loadmodule")

- Dim dosA, dosAB, dosid AsInteger

- Dim dosFitnessValue AsDouble

- Dim NoRowsTabledos AsInteger

- NoRowsTabledos = ds.Tables("loadmodule").Rows.Count

- Dim FirstPopValue, FinalPopValue, maxA, maxAB AsInteger

- For i = 0 To NoRowsTabledos - 1 Step 400

- maxA = 0

- maxAB = 0

- FirstPopValue = i

- FinalPopValue = i + 399

- If NoRowsTabledos < FinalPopValue Then

- FinalPopValue = NoRowsTabledos - 1

- EndIf

- For j = FirstPopValue To FinalPopValue

- If ds.Tables("loadmodule").Rows(j).Item(6) > maxA Then

- maxA = ds.Tables("loadmodule").Rows(j).Item(6)

- EndIf

- If ds.Tables("loadmodule").Rows(j).Item(7) > maxAB Then

- maxAB = ds.Tables("loadmodule").Rows(j).Item(7)

- EndIf

80

- Next
- For y = FirstPopValue To FinalPopValue

- dosA = ds.Tables("loadmodule").Rows(y).Item(6)

- dosAB = ds.Tables("loadmodule").Rows(y).Item(7)

- dosid = ds.Tables("loadmodule").Rows(y).Item(0)

- dosFitnessValue = 2 + ((dosAB - dosA) / (dosA + dosAB)) + dosAB / maxAB - dosA / maxA

- dosFitnessValue = Double.Parse(dosFitnessValue.ToString("#0.000"))
- Dim Ocmd AsNew Data.SqlClient.SqlCommand

- Ocmd.CommandType = CommandType.StoredProcedure

- Ocmd.Connection = conU2R

- Ocmd.Parameters.AddWithValue("@id", dosid)

- Ocmd.Parameters.AddWithValue("@FitnessValue", dosFitnessValue)

- Ocmd.CommandText = "fitnessloadmodule"

- Try

- conU2R.Open()

- Ocmd.ExecuteNonQuery()

- Catch ex AsException

- MsgBox(ex.Message)

- EndTry

- conU2R.Close()

- Next

- Next

- txtloadmodule.Text = "Done"

- EndSub

-

- PrivateSub btnperl_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles btnperl.Click

- Dim daperl AsNewSqlDataAdapter("Select * from perl", conU2R)

-

- Dim ds AsNewDataSet

- daperl.Fill(ds, "perl")

- Dim dosA, dosAB, dosid AsInteger

- Dim dosFitnessValue AsDouble

- Dim NoRowsTabledos AsInteger

- NoRowsTabledos = ds.Tables("perl").Rows.Count

- Dim FirstPopValue, FinalPopValue, maxA, maxAB AsInteger

- For i = 0 To NoRowsTabledos - 1 Step 400
- maxA = 0

- maxAB = 0

- FirstPopValue = i

- FinalPopValue = i + 399

- If NoRowsTabledos < FinalPopValue Then

- FinalPopValue = NoRowsTabledos - 1
- EndIf

- For j = FirstPopValue To FinalPopValue

- If ds.Tables("perl").Rows(j).Item(6) > maxA Then

- maxA = ds.Tables("perl").Rows(j).Item(6)

- EndIf

- If ds.Tables("perl").Rows(j).Item(7) > maxAB Then

- maxAB = ds.Tables("perl").Rows(j).Item(7)

- EndIf

- Next

- For y = FirstPopValue To FinalPopValue

- dosA = ds.Tables("perl").Rows(y).Item(6)

- dosAB = ds.Tables("perl").Rows(y).Item(7)

- dosid = ds.Tables("perl").Rows(y).Item(0)

- dosFitnessValue = 2 + ((dosAB - dosA) / (dosA + dosAB)) + dosAB / maxAB - dosA / maxA

- dosFitnessValue = Double.Parse(dosFitnessValue.ToString("#0.000"))

- Dim Ocmd AsNew Data.SqlClient.SqlCommand

- Ocmd.CommandType = CommandType.StoredProcedure

- Ocmd.Connection = conU2R

- Ocmd.Parameters.AddWithValue("@id", dosid)

- Ocmd.Parameters.AddWithValue("@FitnessValue", dosFitnessValue)

- Ocmd.CommandText = "fitnessperl"

- Try

- conU2R.Open()

81

- Ocmd.ExecuteNonQuery()
- Catch ex AsException

- MsgBox(ex.Message)

- EndTry

- conU2R.Close()

- Next

- Next
- txtperl.Text = "Done"

- EndSub

-

- PrivateSub btnrootkit_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles

btnrootkit.Click

- Dim darootkit AsNewSqlDataAdapter("Select * from rootkit", conU2R)

-

- Dim ds AsNewDataSet

- darootkit.Fill(ds, "rootkit")

- Dim dosA, dosAB, dosid AsInteger

- Dim dosFitnessValue AsDouble

- Dim NoRowsTabledos AsInteger

- NoRowsTabledos = ds.Tables("rootkit").Rows.Count

- Dim FirstPopValue, FinalPopValue, maxA, maxAB AsInteger

- For i = 0 To NoRowsTabledos - 1 Step 400

- maxA = 0

- maxAB = 0

- FirstPopValue = i

- FinalPopValue = i + 399

- If NoRowsTabledos < FinalPopValue Then

- FinalPopValue = NoRowsTabledos - 1

- EndIf

- For j = FirstPopValue To FinalPopValue

- If ds.Tables("rootkit").Rows(j).Item(6) > maxA Then

- maxA = ds.Tables("rootkit").Rows(j).Item(6)

- EndIf

- If ds.Tables("rootkit").Rows(j).Item(7) > maxAB Then

- maxAB = ds.Tables("rootkit").Rows(j).Item(7)

- EndIf
- Next

- For y = FirstPopValue To FinalPopValue

- dosA = ds.Tables("rootkit").Rows(y).Item(6)

- dosAB = ds.Tables("rootkit").Rows(y).Item(7)

- dosid = ds.Tables("rootkit").Rows(y).Item(0)

- dosFitnessValue = 2 + ((dosAB - dosA) / (dosA + dosAB)) + dosAB / maxAB - dosA / maxA
- dosFitnessValue = Double.Parse(dosFitnessValue.ToString("#0.000"))

- Dim Ocmd AsNew Data.SqlClient.SqlCommand

- Ocmd.CommandType = CommandType.StoredProcedure

- Ocmd.Connection = conU2R

- Ocmd.Parameters.AddWithValue("@id", dosid)

- Ocmd.Parameters.AddWithValue("@FitnessValue", dosFitnessValue)

- Ocmd.CommandText = "fitnessrootkit"

- Try

- conU2R.Open()

- Ocmd.ExecuteNonQuery()

- Catch ex AsException

- MsgBox(ex.Message)

- EndTry

- conU2R.Close()

- Next

- Next

- txtrootkit.Text = "Done"

- EndSub

82

Code for using Steady State Genetic Algorithm

Private conTrain AsNewSqlConnection("Data Source=(local);Initial Catalog=KDD;Integrated Security=True")

Private conU2R AsNewSqlConnection("Data Source=(local);Initial Catalog=AllAttacks;Integrated Security=True")

Private datrain AsNewSqlDataAdapter("Select * from training", conTrain)

Dim daU2R AsNewSqlDataAdapter("Select * from U2R", conU2R)

Dim ds AsNewDataSet

Dim FirstPopValue, FinalPopValue AsInteger

Dim steep1, steep2, steep3 AsInteger

PrivateSub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button1.Click

' DataBase Definition

Dim NoRowsTableU2R AsInteger

' Population definitions + parameter of population definition

Dim PopulationIndex AsInteger

Dim icount1, icount2, icount3 AsInteger

Dim TempInt AsInteger

Dim TempDouble AsDouble
Dim RndNum, RndNum1, RndNum2, steepAsInteger

Dim TableNameu2r AsString

 TableNameu2r = "U2R"

 NoRowsTableU2R = ds.Tables(TableNameu2r).Rows.Count

Dim Generation AsInteger

 Generation = 9

Dim Counter AsInteger

 Counter = 0

Dim RepG1 AsDouble(,) = NewDouble(NoRowsTableU2R, 5) {}

Dim RepG2 AsDouble(,) = NewDouble(NoRowsTableU2R, 5) {}
Dim RepG3 AsDouble(,) = NewDouble(NoRowsTableU2R, 5) {}

Dim AfterRep AsDouble(,) = NewDouble(NoRowsTableU2R, 5) {}

Dim AllPopulation_Old AsDouble(,) = NewDouble(NoRowsTableU2R, 1) {}

Dim AllPopulation_New AsDouble(,) = NewDouble(NoRowsTableU2R, 1) {}

Dim CrossedPopulation AsDouble(,) = NewDouble(NoRowsTableU2R, 4) {}

' ##### Start of GENERATION ##

Dim GenerationCounter, LastGenerationCounter AsInteger

DoWhile Counter < NoRowsTableU2R 'And Generation Mod 2 = 0

 GenerationCounter = 0

LastGenerationCounter = ComboBox1.SelectedIndex + 1

For j = GenerationCounter To LastGenerationCounter

ds.Clear()

daU2R.Fill(ds, TableNameu2r)

datrain.Fill(ds, "training")

 NoRowsTableU2R = ds.Tables(TableNameu2r).Rows.Count

For PopulationIndex = 0 To NoRowsTableU2R - 1 Step 250
 FirstPopValue = PopulationIndex

 FinalPopValue = PopulationIndex + 249

If NoRowsTableU2R < FinalPopValue Then

 FinalPopValue = NoRowsTableU2R - 1

EndIf

MsgBox("Generation = "& Generation &" norowstableu2r = "& NoRowsTableU2R)

'Elitist Selection

'**

For icount1 = AllPopulation_New.GetLowerBound(0) To AllPopulation_New.GetUpperBound(0) - 1

 AllPopulation_New(icount1, 0) = ds.Tables("U2R").Rows(icount1).Item(0)
 AllPopulation_New(icount1, 1) = ds.Tables("U2R").Rows(icount1).Item(6)

Next

For icount2 = AllPopulation_New.GetLowerBound(0) To AllPopulation_New.GetUpperBound(0) - 1

For icount3 = AllPopulation_New.GetLowerBound(0) To AllPopulation_New.GetUpperBound(0) - 2

If AllPopulation_New(icount3 + 1, 1) > AllPopulation_New(icount3, 1) Then

83

 TempInt = AllPopulation_New(icount3 + 1, 0)
 TempDouble = AllPopulation_New(icount3 + 1, 1)

 AllPopulation_New(icount3 + 1, 0) = AllPopulation_New(icount3, 0)

 AllPopulation_New(icount3 + 1, 1) = AllPopulation_New(icount3, 1)

 AllPopulation_New(icount3, 0) = TempInt

 AllPopulation_New(icount3, 1) = TempDouble
EndIf

Next

Next

' ##

' Crossover Process

Dim Cross11, Cross21, Cross12, Cross22, Cross13, Cross23, Cross14, Cross24, Cross15, Cross25, Change AsDouble

For icount1 = FirstPopValue To FinalPopValue - 2 Step 2

 RndNum1 = Int((Rnd() * 100)) Mod 5 + 1

 RndNum2 = Int((Rnd() * 100)) Mod 5 + 1

If RndNum1 = 1 Then

 Cross11 = ds.Tables("U2R").Rows(AllPopulation_New(icount1 + 1, 0)).Item(1)

 Cross21 = ds.Tables("U2R").Rows(AllPopulation_New(icount1, 0)).Item(1)

Else

 Cross11 = ds.Tables("U2R").Rows(AllPopulation_New(icount1, 0)).Item(1)

 Cross21 = ds.Tables("U2R").Rows(AllPopulation_New(icount1 + 1, 0)).Item(1)

EndIf

If RndNum1 = 2 Then

 Cross12 = ds.Tables("U2R").Rows(AllPopulation_New(icount1 + 1, 0)).Item(2)

 Cross22 = ds.Tables("U2R").Rows(AllPopulation_New(icount1, 0)).Item(2)

Else

 Cross12 = ds.Tables("U2R").Rows(AllPopulation_New(icount1, 0)).Item(2)

 Cross22 = ds.Tables("U2R").Rows(AllPopulation_New(icount1 + 1, 0)).Item(2)

EndIf

If RndNum1 = 3 Then

 Cross13 = ds.Tables("U2R").Rows(AllPopulation_New(icount1 + 1, 0)).Item(3)

 Cross23 = ds.Tables("U2R").Rows(AllPopulation_New(icount1, 0)).Item(3)

Else
 Cross13 = ds.Tables("U2R").Rows(AllPopulation_New(icount1, 0)).Item(3)

 Cross23 = ds.Tables("U2R").Rows(AllPopulation_New(icount1 + 1, 0)).Item(3)

EndIf

If RndNum1 = 4 Then

 Cross14 = ds.Tables("U2R").Rows(AllPopulation_New(icount1 + 1, 0)).Item(4)

 Cross24 = ds.Tables("U2R").Rows(AllPopulation_New(icount1, 0)).Item(4)
Else

 Cross14 = ds.Tables("U2R").Rows(AllPopulation_New(icount1, 0)).Item(4)

 Cross24 = ds.Tables("U2R").Rows(AllPopulation_New(icount1 + 1, 0)).Item(4)

EndIf

If RndNum1 = 5 Then

 Cross15 = ds.Tables("U2R").Rows(AllPopulation_New(icount1 + 1, 0)).Item(5)

 Cross25 = ds.Tables("U2R").Rows(AllPopulation_New(icount1, 0)).Item(5)

Else

 Cross15 = ds.Tables("U2R").Rows(AllPopulation_New(icount1, 0)).Item(5)

 Cross25 = ds.Tables("U2R").Rows(AllPopulation_New(icount1 + 1, 0)).Item(5)

EndIf

If RndNum2 = 1 Then

 Change = Cross11

 Cross11 = Cross21

 Cross21 = Change

EndIf

If RndNum2 = 2 Then

 Change = Cross12

 Cross12 = Cross22

 Cross22 = Change

EndIf

If RndNum2 = 3 Then

 Change = Cross13

84

 Cross13 = Cross23
 Cross23 = Change

EndIf

If RndNum2 = 4 Then

 Change = Cross14

 Cross14 = Cross24

 Cross24 = Change
EndIf

If RndNum2 = 5 Then

 Change = Cross15

 Cross15 = Cross25

 Cross25 = Change

EndIf

CrossedPopulation(icount1, 0) = Cross11

CrossedPopulation(icount1, 1) = Cross12

CrossedPopulation(icount1, 2) = Cross13

CrossedPopulation(icount1, 3) = Cross14

CrossedPopulation(icount1, 4) = Cross15

CrossedPopulation(icount1 + 1, 0) = Cross21

CrossedPopulation(icount1 + 1, 1) = Cross22

CrossedPopulation(icount1 + 1, 2) = Cross23

CrossedPopulation(icount1 + 1, 3) = Cross24

CrossedPopulation(icount1 + 1, 4) = Cross25

Next

' '' ' ##

' '' ' Mutation Process

For steep = FirstPopValue To FinalPopValue Step 10

 RndNum = Int((Rnd() * 100)) Mod 5 + 1

If RndNum = 1 Then

IfCrossedPopulation(steep, 0) = 0 Then

CrossedPopulation(steep, 0) = 1

Else

CrossedPopulation(steep, 0) = 0

EndIf

EndIf
If RndNum = 2 Then

CrossedPopulation(steep, 1) = Int((Rnd() * 100)) Mod 4 + 1

EndIf

If RndNum = 3 Then

EndIf

If RndNum = 4 Then
CrossedPopulation(steep, 3) = Int(Rnd() * 100) / 100

EndIf

If RndNum = 5 Then

EndIf

Next

' '' ' ##

' '' ' Evaluation

Dim NoRowsTablekddcup AsInteger

Dim dA AsInteger

Dim d14, d17, d25, d36, d38 AsDouble

Dim Attack AsInteger

 NoRowsTablekddcup = ds.Tables("training").Rows.Count

For Attack = FirstPopValue To FinalPopValue

dA = 0

 d14 = CrossedPopulation(Attack, 0)

 d17 = CrossedPopulation(Attack, 1)

 d25 = CrossedPopulation(Attack, 2)

 d36 = CrossedPopulation(Attack, 3)

 d38 = CrossedPopulation(Attack, 4)

For kddcounter = 0 To NoRowsTablekddcup - 1

85

If d14 = ds.Tables("training").Rows(kddcounter).Item(9) Then
If d17 = ds.Tables("training").Rows(kddcounter).Item(10) Then

If d25 = ds.Tables("training").Rows(kddcounter).Item(14) Then

If d36 = ds.Tables("training").Rows(kddcounter).Item(18) Then

If d38 = ds.Tables("training").Rows(kddcounter).Item(19) Then

dA = dA + 1

EndIf
EndIf

EndIf

EndIf

EndIf

Next

If ComboBox1.SelectedIndex = 0 Then

If Generation Mod 2 = 1 Then

' save array1

RepG1(Attack, 0) = d14

RepG1(Attack, 1) = d17

RepG1(Attack, 2) = d25

RepG1(Attack, 3) = d36

RepG1(Attack, 4) = d38

RepG1(Attack, 5) = dA

ElseIf Generation Mod 2 = 0 Then

' save array2

RepG2(Attack, 0) = d14

RepG2(Attack, 1) = d17

RepG2(Attack, 2) = d25

RepG2(Attack, 3) = d36

RepG2(Attack, 4) = d38

RepG2(Attack, 5) = dA

EndIf

ElseIf ComboBox1.SelectedIndex = 1 Then

If Generation Mod 3 = 1 Then

' save array1

RepG1(Attack, 0) = d14
RepG1(Attack, 1) = d17

RepG1(Attack, 2) = d25

RepG1(Attack, 3) = d36

RepG1(Attack, 4) = d38

RepG1(Attack, 5) = dA

ElseIf Generation Mod 3 = 2 Then

' save array2

RepG2(Attack, 0) = d14

RepG2(Attack, 1) = d17

RepG2(Attack, 2) = d25

RepG2(Attack, 3) = d36

RepG2(Attack, 4) = d38

RepG2(Attack, 5) = dA

ElseIf Generation Mod 3 = 0 Then

' save array3

RepG3(Attack, 0) = d14

RepG3(Attack, 1) = d17

RepG3(Attack, 2) = d25

RepG3(Attack, 3) = d36

RepG3(Attack, 4) = d38

RepG3(Attack, 5) = dA

EndIf

EndIf

Next' Values of Fitness Function A's

Dim TempDoubl0, TempDoubl1, TempDoubl2, TempDoubl3, TempDoubl4, TempDoubl5 AsDouble

' arrangement + replacemet + Saving Data

86

If ComboBox1.SelectedIndex = 0 And Generation Mod 2 = 0 Then
'Next

For icount2 = FirstPopValue To FinalPopValue

For icount3 = FirstPopValue To FinalPopValue - 1

IfRepG1(icount3 + 1, 5) < RepG1(icount3, 5) Then

 TempDoubl0 = RepG1(icount3, 0)

 TempDoubl1 = RepG1(icount3, 1)
 TempDoubl2 = RepG1(icount3, 2)

 TempDoubl3 = RepG1(icount3, 3)

 TempDoubl4 = RepG1(icount3, 4)

 TempDoubl5 = RepG1(icount3, 5)

RepG1(icount3, 0) = RepG1(icount3 + 1, 0)

RepG1(icount3, 1) = RepG1(icount3 + 1, 1)

RepG1(icount3, 2) = RepG1(icount3 + 1, 2)

RepG1(icount3, 3) = RepG1(icount3 + 1, 3)

RepG1(icount3, 4) = RepG1(icount3 + 1, 4)

RepG1(icount3, 5) = RepG1(icount3 + 1, 5)

RepG1(icount3 + 1, 0) = TempDoubl0

RepG1(icount3 + 1, 1) = TempDoubl1

RepG1(icount3 + 1, 2) = TempDoubl2

RepG1(icount3 + 1, 3) = TempDoubl3

RepG1(icount3 + 1, 4) = TempDoubl4

RepG1(icount3 + 1, 5) = TempDoubl5

EndIf

Next

Next

For icount2 = FirstPopValue To FinalPopValue

For icount3 = FirstPopValue To FinalPopValue - 1

IfRepG2(icount3 + 1, 5) < RepG2(icount3, 5) Then

 TempDoubl0 = RepG2(icount3, 0)

 TempDoubl1 = RepG2(icount3, 1)

 TempDoubl2 = RepG2(icount3, 2)

 TempDoubl3 = RepG2(icount3, 3)
 TempDoubl4 = RepG2(icount3, 4)

 TempDoubl5 = RepG2(icount3, 5)

RepG2(icount3, 0) = RepG2(icount3 + 1, 0)

RepG2(icount3, 1) = RepG2(icount3 + 1, 1)

RepG2(icount3, 2) = RepG2(icount3 + 1, 2)
RepG2(icount3, 3) = RepG2(icount3 + 1, 3)

RepG2(icount3, 4) = RepG2(icount3 + 1, 4)

RepG2(icount3, 5) = RepG2(icount3 + 1, 5)

RepG2(icount3 + 1, 0) = TempDoubl0

RepG2(icount3 + 1, 1) = TempDoubl1

RepG2(icount3 + 1, 2) = TempDoubl2

RepG2(icount3 + 1, 3) = TempDoubl3

RepG2(icount3 + 1, 4) = TempDoubl4

RepG2(icount3 + 1, 5) = TempDoubl5

EndIf

Next

Next

Dim RepPointer1, RepPointer2, RepPointer3 AsInteger

 RepPointer3 = 0

 RepPointer1 = 0

 RepPointer2 = 0

For RepPointer3 = FirstPopValue To FinalPopValue

IfRepG1(RepPointer1, 5) <= RepG2(RepPointer2, 5) Then

AfterRep(RepPointer3, 0) = RepG1(RepPointer1, 0)

AfterRep(RepPointer3, 1) = RepG1(RepPointer1, 1)

AfterRep(RepPointer3, 2) = RepG1(RepPointer1, 2)

AfterRep(RepPointer3, 3) = RepG1(RepPointer1, 3)

87

AfterRep(RepPointer3, 4) = RepG1(RepPointer1, 4)
AfterRep(RepPointer3, 5) = RepG1(RepPointer1, 5)

 RepPointer1 = RepPointer1 + 1

ElseIfRepG1(RepPointer1, 5) > RepG2(RepPointer2, 5) Then

AfterRep(RepPointer3, 0) = RepG2(RepPointer2, 0)

AfterRep(RepPointer3, 1) = RepG2(RepPointer2, 1)

AfterRep(RepPointer3, 2) = RepG2(RepPointer2, 2)
AfterRep(RepPointer3, 3) = RepG2(RepPointer2, 3)

AfterRep(RepPointer3, 4) = RepG2(RepPointer2, 4)

AfterRep(RepPointer3, 5) = RepG2(RepPointer2, 5)

 RepPointer2 = RepPointer2 + 1

EndIf

Next

Dim CheckCounter AsInteger

Dim Redundant AsInteger

Dim Feature1, Feature2, Feature3, Feature4, Feature5 AsDouble

 NoRowsTableU2R = ds.Tables(TableNameu2r).Rows.Count

For PopIndex = FirstPopValue To FinalPopValue

 Feature1 = AfterRep(PopIndex, 0)

 Feature2 = AfterRep(PopIndex, 1)

 Feature3 = AfterRep(PopIndex, 2)

 Feature4 = AfterRep(PopIndex, 3)

 Feature5 = AfterRep(PopIndex, 4)

 Redundant = 0

For CheckCounter = 0 To NoRowsTableU2R - 1

If Feature1 = ds.Tables(TableNameu2r).Rows(CheckCounter).Item(1) And Feature2 =

ds.Tables(TableNameu2r).Rows(CheckCounter).Item(2) And Feature3 =

ds.Tables(TableNameu2r).Rows(CheckCounter).Item(3) And Feature4 =

ds.Tables(TableNameu2r).Rows(CheckCounter).Item(4) And Feature5 =

ds.Tables(TableNameu2r).Rows(CheckCounter).Item(5) Then

 Redundant = Redundant + 1

Exit For

EndIf

Next

Dim Ocmd AsNewSqlCommand

If Redundant = 0 Then
 Ocmd.CommandType = CommandType.StoredProcedure

 Ocmd.Connection = conU2R

Ocmd.Parameters.AddWithValue("@f14", Feature1)

Ocmd.Parameters.AddWithValue("@f17", Feature2)

Ocmd.Parameters.AddWithValue("@f25", Feature3)

Ocmd.Parameters.AddWithValue("@f36", Feature4)
Ocmd.Parameters.AddWithValue("@f38", Feature5)

Ocmd.Parameters.AddWithValue("@FitnessValue", AfterRep(PopIndex, 5))

Ocmd.Parameters.AddWithValue("@generation", Generation)

 Ocmd.CommandText = "SaveU2RDouble"

Try

conU2R.Open()

Ocmd.ExecuteNonQuery()

Catch ex AsException

MsgBox(ex.Message)

EndTry

conU2R.Close()

EndIf

Next

ElseIf ComboBox1.SelectedIndex = 1 And Generation Mod 3 = 0 Then

For icount2 = FirstPopValue To FinalPopValue

For icount3 = FirstPopValue To FinalPopValue - 1

IfRepG1(icount3 + 1, 5) < RepG1(icount3, 5) Then

 TempDoubl0 = RepG1(icount3, 0)

 TempDoubl1 = RepG1(icount3, 1)

 TempDoubl2 = RepG1(icount3, 2)

 TempDoubl3 = RepG1(icount3, 3)

 TempDoubl4 = RepG1(icount3, 4)

 TempDoubl5 = RepG1(icount3, 5)

88

RepG1(icount3, 0) = RepG1(icount3 + 1, 0)

RepG1(icount3, 1) = RepG1(icount3 + 1, 1)

RepG1(icount3, 2) = RepG1(icount3 + 1, 2)

RepG1(icount3, 3) = RepG1(icount3 + 1, 3)

RepG1(icount3, 4) = RepG1(icount3 + 1, 4)

RepG1(icount3, 5) = RepG1(icount3 + 1, 5)
RepG1(icount3 + 1, 0) = TempDoubl0

RepG1(icount3 + 1, 1) = TempDoubl1

RepG1(icount3 + 1, 2) = TempDoubl2

RepG1(icount3 + 1, 3) = TempDoubl3

RepG1(icount3 + 1, 4) = TempDoubl4

RepG1(icount3 + 1, 5) = TempDoubl5

EndIf

Next

Next

For icount2 = FirstPopValue To FinalPopValue

For icount3 = FirstPopValue To FinalPopValue - 1

IfRepG2(icount3 + 1, 5) < RepG2(icount3, 5) Then

 TempDoubl0 = RepG2(icount3, 0)

 TempDoubl1 = RepG2(icount3, 1)

 TempDoubl2 = RepG2(icount3, 2)

 TempDoubl3 = RepG2(icount3, 3)

 TempDoubl4 = RepG2(icount3, 4)

 TempDoubl5 = RepG2(icount3, 5)

RepG2(icount3, 0) = RepG2(icount3 + 1, 0)

RepG2(icount3, 1) = RepG2(icount3 + 1, 1)

RepG2(icount3, 2) = RepG2(icount3 + 1, 2)

RepG2(icount3, 3) = RepG2(icount3 + 1, 3)

RepG2(icount3, 4) = RepG2(icount3 + 1, 4)

RepG2(icount3, 5) = RepG2(icount3 + 1, 5)

RepG2(icount3 + 1, 0) = TempDoubl0

RepG2(icount3 + 1, 1) = TempDoubl1
RepG2(icount3 + 1, 2) = TempDoubl2

RepG2(icount3 + 1, 3) = TempDoubl3

RepG2(icount3 + 1, 4) = TempDoubl4

RepG2(icount3 + 1, 5) = TempDoubl5

EndIf

Next
Next

For icount2 = FirstPopValue To FinalPopValue

For icount3 = FirstPopValue To FinalPopValue - 1

IfRepG3(icount3 + 1, 5) < RepG3(icount3, 5) Then

 TempDoubl0 = RepG3(icount3, 0)

 TempDoubl1 = RepG3(icount3, 1)

 TempDoubl2 = RepG3(icount3, 2)

 TempDoubl3 = RepG3(icount3, 3)

 TempDoubl4 = RepG3(icount3, 4)

 TempDoubl5 = RepG3(icount3, 5)

RepG3(icount3, 0) = RepG3(icount3 + 1, 0)

RepG3(icount3, 1) = RepG3(icount3 + 1, 1)

RepG3(icount3, 2) = RepG3(icount3 + 1, 2)

RepG3(icount3, 3) = RepG3(icount3 + 1, 3)

RepG3(icount3, 4) = RepG3(icount3 + 1, 4)

RepG3(icount3, 5) = RepG3(icount3 + 1, 5)

RepG3(icount3 + 1, 0) = TempDoubl0

RepG3(icount3 + 1, 1) = TempDoubl1

RepG3(icount3 + 1, 2) = TempDoubl2

RepG3(icount3 + 1, 3) = TempDoubl3

RepG3(icount3 + 1, 4) = TempDoubl4

89

RepG3(icount3 + 1, 5) = TempDoubl5
EndIf

Next

Next

Dim RepPointer1, RepPointer2, RepPointer3, RepPointer4 AsInteger

 RepPointer3 = 0

 RepPointer1 = 0
 RepPointer2 = 0

 RepPointer4 = 0

For RepPointer3 = FirstPopValue To FinalPopValue

IfRepG1(RepPointer1, 5) <= RepG2(RepPointer2, 5) And RepG1(RepPointer1, 5) <= RepG3(RepPointer4, 5) Then

AfterRep(RepPointer3, 0) = RepG1(RepPointer1, 0)

AfterRep(RepPointer3, 1) = RepG1(RepPointer1, 1)

AfterRep(RepPointer3, 2) = RepG1(RepPointer1, 2)

AfterRep(RepPointer3, 3) = RepG1(RepPointer1, 3)

AfterRep(RepPointer3, 4) = RepG1(RepPointer1, 4)

AfterRep(RepPointer3, 5) = RepG1(RepPointer1, 5)

 RepPointer1 = RepPointer1 + 1

ElseIfRepG2(RepPointer2, 5) <= RepG1(RepPointer1, 5) And RepG2(RepPointer2, 5) <= RepG3(RepPointer4, 5) Then

AfterRep(RepPointer3, 0) = RepG2(RepPointer2, 0)

AfterRep(RepPointer3, 1) = RepG2(RepPointer2, 1)

AfterRep(RepPointer3, 2) = RepG2(RepPointer2, 2)

AfterRep(RepPointer3, 3) = RepG2(RepPointer2, 3)

AfterRep(RepPointer3, 4) = RepG2(RepPointer2, 4)

AfterRep(RepPointer3, 5) = RepG2(RepPointer2, 5)

 RepPointer2 = RepPointer2 + 1

ElseIfRepG3(RepPointer4, 5) <= RepG1(RepPointer1, 5) And RepG3(RepPointer4, 5) <= RepG2(RepPointer2, 5) Then

AfterRep(RepPointer3, 0) = RepG3(RepPointer4, 0)

AfterRep(RepPointer3, 1) = RepG3(RepPointer4, 1)

AfterRep(RepPointer3, 2) = RepG3(RepPointer4, 2)

AfterRep(RepPointer3, 3) = RepG3(RepPointer4, 3)

AfterRep(RepPointer3, 4) = RepG3(RepPointer4, 4)

AfterRep(RepPointer3, 5) = RepG3(RepPointer4, 5)

 RepPointer4 = RepPointer4 + 1

EndIf

Next
EndIf

 Generation = Generation + 1

Next' Result of Population

Next

 Counter = NoRowsTableU2R

ds.Clear()
daU2R.Fill(ds, TableNameu2r)

 NoRowsTableU2R = ds.Tables(TableNameu2r).Rows.Count

 NoRowsTableU2R = NoRowsTableU2R + 1

' '' ' ##### END of GENERATION ###

Loop

MsgBox("End")

EndSub

PrivateSub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) HandlesMyBase.Load

daU2R.Fill(ds, "U2R")

datrain.Fill(ds, "training")

EndSub

PrivateSub Button2_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button2.Click

Dim RepG1 AsDouble(,) = NewDouble(5, 8) {}

MsgBox(RepG1.GetLowerBound(1))

MsgBox(RepG1.GetUpperBound(1))

EndSub

EndClass

Code for Testing for R2L

private contest AsNewSqlConnection("Data Source=(local);Initial Catalog=KDD;Integrated Security=True")

Private conU2R AsNewSqlConnection("Data Source=(local);Initial Catalog=AllAttacks;Integrated Security=True")

90

Private datest AsNewSqlDataAdapter("Select * from testing", contest)

Dim daU2R AsNewSqlDataAdapter("Select * from U2R", conU2R)

Dim NoRowsTabler2l AsInteger

Dim NoRowsTableTest AsInteger

Dim ds AsNewDataSet

Dim r2lname AsString

PrivateSub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button1.Click

Try

daU2R.Fill(ds, "U2R")

datest.Fill(ds, "testing")

 r2lname = "U2R"

Dim U2RCounter, TestCounter AsInteger

 NoRowsTabler2l = ds.Tables(r2lname).Rows.Count

 NoRowsTableTest = ds.Tables("testing").Rows.Count

Dim r6, r11, r12, r19, r22 AsDouble

For TestCounter = 0 To NoRowsTableTest – 1

 r6 = ds.Tables("testing").Rows(TestCounter).Item(9)

 r11 = ds.Tables("testing").Rows(TestCounter).Item(10)

 r12 = ds.Tables("testing").Rows(TestCounter).Item(14)

 r19 = ds.Tables("testing").Rows(TestCounter).Item(18)

 r22 = ds.Tables("testing").Rows(TestCounter).Item(19)

For U2RCounter = 0 To NoRowsTabler2l - 1

Ifds.Tables(r2lname).Rows(U2RCounter).Item(1) = r6 Then

Ifds.Tables(r2lname).Rows(U2RCounter).Item(2) = r11 Then

Ifds.Tables(r2lname).Rows(U2RCounter).Item(3) = r12 Then

Ifds.Tables(r2lname).Rows(U2RCounter).Item(4) = r19 Then

Ifds.Tables(r2lname).Rows(U2RCounter).Item(5) = r22 Then

Ifds.Tables("testing").Rows(TestCounter).Item(21) = "buffer_overflow."Ords.Tables("testing").Rows(TestCounter).Item(21)

= "perl."Ords.Tables("testing").Rows(TestCounter).Item(21) =

"loadmodule."Ords.Tables("testing").Rows(TestCounter).Item(21) = "rootkit."Then

 match.Text = Val(match.Text) + 1

ElseIfds.Tables("testing").Rows(TestCounter).Item(21) = "normal."Then
 txtnormal.Text = Val(txtnormal.Text) + 1

Else

 mismatch.Text = Val(mismatch.Text) + 1

EndIf

Exit For

EndIf
EndIf

EndIf

EndIf

EndIf

Next

Next

MsgBox("END")

Catch ex AsException

EndTry

EndSub

PrivateSub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) HandlesMyBase.Load

EndSub

EndClass

