
I

Enhancing the Compression Ratio of the HCDC-Based Text

Compression Scheme

 ����� ���	� �
 HCDCس�ب� �����ما����� ا���ص ن�

By

Ahmed Imad Mohammed Ali

Supervisors

Dr. Hussein Al-Bahadili

This thesis is submitted to the Department of Computer Information Systems, Faculty

of Information Technology, Middle East University in partial fulfillment for the

requirement of the degree of Master of Science in Computer information Systems.

Middle-East University

Faculty of Information Technology

Amman, Jordan

(January, 2013)

II

III

IV

V

Declaration

I do hereby declare the present research work has been carried out by me under the

supervision of Pro. Dr. Hussein Al-Bahadili and this work have not been submitted

elsewhere for any other degree, fellowship or any other similar title.

Signature:

Date:

Ahmed Imad Mohammed Ali

Department of Computer Information system

Faculty of Information Technology

Middle East University

VI

Dedication

I dedicate this work to my family for their, understanding and support, they

were the light in my path, without them, nothing of this would have been

possible.

Thank you for everything, I love you!

VII

Acknowledgment

I would like to specially thank my supervisor Dr. Hussein Al-Bahadili, who taught me

everything that I know about research and the way it should be done. I would like to

thank him for his guidance during all stages of this research, for answering endless

questions, for his great support, professional advice, and profound understanding.

Through this work, Dr. Hussein has shown me how to attack a problem from different

angles, how to approach it, and how to find the most suitable solution.

I also would like to thank all members of staff at MEU University for Graduate

Studies, in particular, the members of staff at the Graduate College of Computing

Studies.

Finally, I should be thankful to my parents, my sisters and friends for their support

and encouragement over the years, as well as to anyone who supported me during my

master study.

VIII

Abstract

Data compression is the process of reducing the size of data so that it requires less

disk space for storage and less bandwidth to be transmitted over data communication

channels. Reducing size of transmitted data compression also reduces the amount of

errors during data transmission over error-prone (noisy) data communication channels

by decreasing the size of information to be exchanged over such noisy channels. An

additional benefit of data compression is in mobile and wireless communication

devices, where it reduces transmission power consumption, because the transmission

power consumption is directly proportional to the size of the transmitted data.

Al-Bahadili (2008) developed a new lossless, bit-level, and a symmetric data

compression. The algorithm is based on the concept of Hamming Codes, and it is

referred to as the Hamming Codes based Data Compression (HCDC) algorithm. Then

the HCDC was used to develop a repeatedly applied adaptive text compression

algorithm, which was referred to as the HCDC(k), where k refers to the number of

repetition loops. The algorithms have taken the attention of many researchers around

the world, due to their tremendous compression ratio and the potential they have. This

encourages us to take step ahead to further improve the performance of the HCDC

algorithm.

This thesis is concerned with the development of an enhanced version of the HCDC

algorithm, namely, the E-HCDC algorithm. The E-HCDC utilizes a new encoding

scheme called the m-encoding scheme, where m represents the maximum length for

the pre-fix bits. The compression ratios achieved by the E-HCDC, over a number of

text files of various sizes and natures from widely-used corpora, are evaluated; and

the enhancement ratio is computed. The E-HCDC demonstrates an enhancement ratio

of about 15% to 20% for the different text files under investigation. The compression

ratios of the E-HCDC are also compared against the compression ratios of various

well-known algorithms. It demonstrates a competitive performance, which waves the

way for further research and development.

IX

 ا�����

����� أ�� ����� ا��	ص ������ وأ��
	ض ا����ق ���� �%$ ا�#��"�ت ���� ���&
+*(ا�#��"�ت ه'

ا��9 �� �%$ ا�#��"�ت ا�&	س�� +*(���� أ��7 �� آ&�� ا5خ��ء . ا��	ددي ����/�
#	 ��'ات ا.�-�ل ا�#��"�ت

 	#
�� �� +*(ا�#��"�ت DA أج/�ة �A@ .)ص�خ#�(����> ��'ات ا.�-�ل ا�&;	+� أ:��ء "�� ا�#��"�ت A�+9ة إ

� أ"F ���� �� ا.�-�.ت ا������ ،��Hس�Iوا� �����J كI/ت اس��"����ل ��، وذ�M 5ن اس�/Iك ا����� ا"�� ا�#

 .����س� J	د�� �O �%$ ا�#��"�ت ا�&��'��

 Dا�#/�د� O+2008(و (������و. Q ا�&��'ى، و+*(ا�#��"�ت ا�&�&�:�� وهD،ةج9�9 ��� R�
 ��9 ا��'ارز�

 R)Hamming Codes based ا��'ارز��� >س$ ، و��Wر إ�)Hamming Codes(ه���V� M/'م ر�'ز

Data Compression (�/��$ اس��9ام. (HCDC)و�	�� ا� $: ���HCDC ()*+ X(خ'ارز�#�� 	�'���

�� DA ج&�O أ"��ء ا�;��$،) HCDC(ا��Yت خ'ارز���ت .)HCDC(k)('ص ا��-Z��#ا"�#�] ا�;9�9 �� ا�

 �#� Mا�7*("�#� ا�وذ���"�Hوإ� ��@�/�/ ��
�R ا���ذ خ�'ة إ�R ا��5م ����دة. ا�;�� ��;%W� اYا�7*(ه �#�"

 .)E-HCDC(و�	�� �/�)HCDC(�� ا��'ارز���) Enhanced("��� ����� هY] اJ5	و�� �W	حو

����9م ���� جE-HCDC R&�� 9�9 خ'ارز��	��)m-encoding("[�م �� ، �Z&�m ل'�� R-�59 ا�ا�

�$ "�� +*(ا�Yي ����F. ا�7*(ا�#��ت �#� ��� $�� E-HCDC ^���� �� ��
�R �9ى
9د �� ا�&��Vت ا��-

 O�� E-HCDCو.
�R "��ق واسOا�&�����9 ا�5%�م وا��#�;� �� ا�&%�� D15'+_ "�#� ز��دة �� �'ا� ٪

 R20إ��V���� ����$ ���ر"� ا���� أ��V�&�� ٪ .)*+ �� �7ت "- E-HCDC ��)*+ ��" 9+

�V���&ا� �Aو	ت ا�&;����� ا F"aA �9ل
�R ا5داء ا����D�A. ا��'ارز��A ����	�X �&��9 �� ا�#�� �/Y] ا��'ارز�

 .وا���'�	

X

Table of Contents

ا��b�'V ا�	ار .. III

AUTHORIZATION STATEMENT ... IV

DECLARATION... V

DEDICATION... VI

ACKNOWLEDGMENT ... VII

ABSTRACT .. VIII

� IX ... ا����

TABLE OF CONTENTS ... X

LIST OF FIGURES ... XII

LIST OF TABLES ... XIII

ABBREVIATIONS .. XV

CHAPTER ONE .. 1

1.1 CATEGORIZATION OF DATA COMPRESSION ALGORITHMS .. 3

1.1.1 Data compression fidelity .. 3

1.1.2 Length of data compression symbols.. 4

1.1.3 Data compression symbol tables .. 4

1.1.4 Data compression cost .. 6

1.2 DATA COMPRESSION MODELS ... 7

1.3 TEXT COMPRESSION .. 8

1.3.1 Syllables and words based text compression .. 8

1.3.2 Bit-level text compression .. 9

1.4 PERFORMANCE MEASURES ... 9

1.4.1 Measuring the amount of compression ... 9

1.4.2 Processing time ... 11

1.5 STATEMENT OF THE PROBLEM ... 12

1.6 OBJECTIVES OF THIS THESIS .. 13

1.7 ORGANIZATION OF THE THESIS .. 13

CHAPTER TWO ... 15

2.1 THE HCDC ALGORITHM .. 16

2.1.1 Description of the HCDC algorithm ... 16

XI

2.1.2 Derivation and analysis of HCDC algorithm compression ratio 19

2.2 ENGLISH TEXT COMPRESSION ... 23

2.2.1 Entropy of English text .. 24

2.3 THE ADAPTIVE CHARACTER CODING FORMAT .. 26

2.4 REVIEW OF BIT-LEVEL TEXT COMPRESSION ALGORITHMS ... 29

2.5 REVIEW OF SYLLABLE/WORD-BASED TEXT COMPRESSION ALGORITHMS 33

CHAPTER THREE ... 38

3.1 LIMITATIONS OF THE HCDC ALGORITHM .. 39

3.2 THE M-ENCODING SCHEME .. 39

3.3 THE E-HCDC ALGORITHM .. 44

3.3.1 The E-HCDC Compressor .. 44

3.3.2 The E-HCDC Decompressor ... 47

3.4 THE E-HCDC HEADER ... 50

CHAPTER FOUR .. 52

4.1 EXPERIMENT #1:COMPARING THE COMPRESSION RATIO OF THE E-HCDC AND HCDC

ALGORITHMS .. 53

4.2 EXPERIMENT #2: COMPARING THE COMPRESSION RATIO OF THE E-HCDC AND A

NUMBER OF STATISTICAL ALGORITHMS ... 56

4.3 EXPERIMENT #3: COMPARING THE COMPRESSION RATIO OF THE E-HCDC AND A

NUMBER OF ADAPTIVE ALGORITHMS .. 58

CHAPTER FIVE ... 61

5.1 CONCLUSIONS ... 61

5.2 RECOMMENDATIONS FOR FUTURE WORK .. 62

REFERENCES ... 63

APPENDIX A ... 70

A.1 CALGARY CORPUS .. 71

A.2 CANTERBURY CORPUS .. 73

A.3 ARTIFICIAL CORPUS .. 73

A.4 LARGE CORPUS .. 74

A.5 MISCELLANEOUS CORPUS .. 74

APPENDIX B ... 76

XII

List of Figures

Figure Title Page

2.1 Locations of data and parity bits in 7-bit codeword 18

2.2 The main steps of the HCDC compressor 19

2.3 The main steps of the HCDC decompressor 19

2.4 Variation of Cmin and Cmax with p 21

2.5 Variation of r1 with p 22

2.6 Variations of C with respect to r for various values of p 23

3.1 The procedure of the E-HCDC compressor 46

3.2 The procedure of the E-HCDC decompressor 49

3.3 The structure of the E-HCDC compressed file header 51

4.1 Comparing CHCDC and CE-HCDC for a number of text files from the

Calgary Corpus

55

4.2 Comparing CHCDC and CE-HCDC for a number of text files from the

Canterbury, Artificial, and Large Corpora

55

4.3 Comparing CE-HCDC of the E-HCDC algorithm against the

compression ratio of various statistical algorithms

58

4.4 Comparing CE-HCDC of the E-HCDC algorithm against the

compression ratio of various adaptive and statistical algorithms

60

XIII

List of Tables

Table Title Page

2.1 Variation of Cmin, Cmax, and r1 with number of parity bits (p) 21

2.2 Variations of C with respect to r for various values of p 22

2.3 Valid 7-bit codewords 24

2.4 Information content of English text using different approaches 25

2.5 Information content of the English text using different standard

software
26

2.6 Lossless compression ratios for text compression Calgary corpus 27

2.7 ASCII and adaptive codes of the 10 most common characters in

paper1 file
28

2.8 Entropies of the binary sequences generated for a number of text files

from the Calgary corpus using different coding formats
29

3.1 The pre-fix bits and the number of bits written to compressed data file 41

3.2 The pre-fix bits and the number of bits written to the compressed data

file
43

3.3 Components of the HCDC field of E-HCDC compressed file header 51

4.1 Experiment #1 Comparing CHCDC and CE-HCDC 54

4.2 Experiment #2 Comparing CE-HCDC of the E-HCDC algorithm against

the compression ratios of various statistical algorithms
57

4.3 Comparing the compression ratio of the E-HCDC algorithm against

various adaptive algorithms
59

A.1 Calgary Corpus 72

XIV

A.2 Canterbury Corpus 73

A.3 Artificial Corpus 74

A.4 Large Corpus 74

A.5 The Miscellaneous Corpus 75

B.1 Filename: alice29.txt 77

B.2 Filename: bib.txt 79

B.3 Filename: bible.txt 81

B.4 Filename: book1.txt 83

B.5 Filename: paper1 85

XV

Abbreviations

ACW: Adaptive Character Word-length.

ASCII: American Standard Code for Information Interchange.

BWT: Burrows-Wheeler Transform.

CIQ: Compressed Index-Query

E-HCDC: Enhanced Hamming Code Data Compression

FLH: Fixed-Length Hamming.

GZIP: GNU zip

HCDC: Hamming Code Data Compression.

HU: Huffman Coding

ICT: Information and Communication Technology

LDPC: Low-Density Parity-Check

 NVC: Non-valid Codeword

RLE: Run Length Encoding

VB: Visual Basic

VC: Valid Codeword

VoIP: Voice over Internet Protocol

1

Chapter One

Introduction

Data compression aims to reduce the size of data so that it requires less disk space for

storage and less bandwidth to be transmitted over data communication channels

(Sayood, 2012). Data compression also reduces the amount of errors during data

transmission over error-prone data communication channels by decreasing the size of

information to be exchanged over such channels (Joaquín Adiego, Navarro, & De la

Fuente, 2007; Freschi & Bogliolo, 2004).

An additional benefit of data compression is in wireless communication devices

where it may add a significant power saving. Power savings is possible by

compressing data prior to transmission power consumption, where the power

consumed is directly proportional to the size of the transmitted data. In fact, in

wireless devices, transmission of a single bit may require over 103 times of more

power than a single 32-bit computation (Sharma, Golubchik, Govindan, & Neely,

2009).

Data compression is usually obtained by substituting a shorter symbol for an original

symbol in source data, containing the same information but with a smaller

representation in length. The symbols may be characters, words, phrases, or any other

units that may be stored in a dictionary of symbols and processed by a computing

system (I.H. Witten, 2004).

Data compression requires efficient algorithmic transformations of a source message

to produce representations (also called codewords) that are more compact. Such

algorithms are known as data compression algorithms or data encoding algorithms.

Each data compression algorithm needs to be complemented by its inverse, which is

known as a data decompression algorithm (or data decoding algorithm), to restore an

exact or an approximate form of the original data.

Data coding techniques have been widely used in developing data compression

algorithms, since coding techniques may lend themselves well to the above concept.

Data coding involves processing an input sequence (L. Rueda & Oommen, 2006).

2

An algorithm or coding function is called distinct if its mapping from source

messages to codewords is one-to-one. Such a code is called uniquely decodable if

every codeword is recognizable even when immersed in a stream of other codewords.

A uniquely decodable code is known as a prefix code if it has the property that no

codeword in the code is a prefix of any other codeword (Sayood, 2012).

Recently, a new lossless, bit-level, and a symmetric data compression was developed.

The algorithm is based on the concept of Hamming Codes, and it is referred to as the

Hamming codes based Data Compression (HCDC) algorithm (Al-Bahadili, 2008). In

the HCDC algorithm, the source data is converted to binary sequence, which is then

divided into n-bit blocks. Each block is considered as a Hamming codeword that

consists of p parity bits and d data bits. In HCDC, as in Hamming codes, the

codewords are classified into 2d valid codewords and 2n-2d non-valid codewords.

During the compression process, each block is tested to find out if it is a valid

codeword or a non-valid codeword. If the block is valid codeword, the d data bits

preceded by 0 (i.e., d+1 bits) are appended to the compressed sequence, while for a

non-valid codeword block, the n-bit block preceded by 1 (i.e., n+1 bits) is appended

to the compressed sequence. These additional redundant 0 and 1 bits are required for

the decompression process.

Then the HCDC algorithm was used to develop an adaptive bit-level text compression

scheme, which was referred to as the HCDC(k) algorithm (Al-Bahadili & Rababa’a,

2010). It showed an excellent performance when it was compared with well-known

data compression algorithm and state of the art-software. The HCDC(k) algorithm

consists of six steps some of which are repetitively applied to achieve higher

compression ratio. The repetition loops continue until inflation is detected and the

accumulated compression ratio is the multiplication of the compression ratios of the

individual loops and therefore it was called HCDC(k), where k refers to the number of

repetition loops.

In order to enhance the compression power of the HCDC(k) scheme, an adaptive

encoding format was proposed in which a character is encoded to binary according to

its probability. This method of encoding reduces the binary sequence entropy so that

it grants higher compression ratio.

3

1.1 Categorization of Data Compression Algorithms

A large number of data compression algorithms have been developed during the last

decades; these algorithms are based of different concepts or principles to utilize the

nature of the data such that reducing the size of the original data. Thus, it has been

realized that it is necessary to categorize these algorithms in a way to help the

researchers and developers understand these algorithms. Consequently, data

compression algorithms are categorized by several characteristics, such as (Salomon,

2004; Sayood, 2012):

• Data compression fidelity

• Length of data compression symbols

• Data compression symbol table

• Data compression cost

In the following a brief definition is given for each of them.

1.1.1 Data compression fidelity

One of the most important characteristics is the data compression fidelity with which

the original and the decompressed data agree with each other. The decompressed

(restored) data can either represent an exact or an approximate form of the original

data set. As a result of those two fundamentally different styles of data compression

can be recognized, depending on the fidelity of the restored data, these are:

(1) Lossless data compression

It involves a transformation of the representation of the original data set so as to make

it possible to reproduce exactly the original data (exact copy). Lossless compression is

used in compressing text files, executable codes, word processing files, database files,

tabulation files, and whenever it is important that original and decompressed files

must be identical. Lossless compression is used in many applications, for example,

the popular ZIP file format and in the UNIX tool gzip. It is also used as a component

within lossy data compression technologies. Lossless compression algorithms can

4

usually achieve a 2 to 8 compression ratio (Brittain & El-Sakka, 2007; L. Rueda &

Oommen, 2006).

(2) Lossy data compression

It involves a transformation of the representation of the original data set whereas it is

impossible to reproduce exactly the original data set, but performing a decompression

transformation reproduces an approximate representation. This type of compression is

used frequently on the Internet and especially in streaming media and telephony

applications. Because some information is discarded, it achieves better data

compression ratios that reach 100 to 200, depending on the type of information being

compressed. In addition, higher compression ratio can be achieved if more errors are

allowed to be introduced into the original data(Brittain & El-Sakka, 2007; I.H.

Witten, 2004).

1.1.2 Length of data compression symbols

Data compression algorithms are characterized by the length of the symbols in

algorithm process, regardless of whether the algorithm uses variable length symbols

in the original data or in the compressed data, or both. For example, Run-Length

Encoding (RLE) uses fixed length symbols in both the original and the compressed

data. Huffman encoding uses variable length compressed symbols to represent fixed-

length original symbols. Other methods compress variable-length original symbols

into fixed-length or variable-length encoded data.

1.1.3 Data compression symbol tables

Another distinguishing feature of the data compression algorithms is the source of the

symbol table. According to this feature, data compression algorithms can be classified

into:

(1) Static or fixed data compression algorithms

Some data compression algorithms operate on a static symbol table, or a fixed

dictionary of compression symbols. Because the dictionary is fixed, it needs not be

combined with the compressed data. Such algorithms are dependent on the format and

content of the data to be compressed. However, a fixed dictionary is usually

5

optimized for a particular data type, while the same dictionary is used for other types

of information the efficiency of the algorithm suffers and provides a lower

compression ratio.

(2) Dynamic or adaptive data compression algorithms

Some data compression algorithms are relatively independent, and some make two

passes at the data. The first pass determines the frequency of the symbols that will be

processed; and builds a symbol table based on that frequency. The custom symbol

table needs to combine the compressed data, and the second pass uses the custom

symbol table to encode and decode data.

Adaptive compression algorithms build a custom symbol table as they compress the

data. Such algorithms encode each character based on the frequency of preceding

characters in the original data file. The decompression algorithm builds an identical

dynamic table as the information is decompressed. Adaptive methods usually start

with a minimal symbol table to bias the compression algorithm toward the type of

data they are expecting.

(3) Semi-adaptive data compression algorithms

In a semi-adaptive algorithm the data to be compressed are first analyzed in their

entirety. An appropriate model is then built, afterwards the data is encoded. The

model is stored as part of the encoded data, as it is required by the decompressor to

reverse the encoding. Static schemes are similar to this, but a representative selection

of data is used to build a fixed model, which is hard-coded into compressors and

decompressors.

This has the advantage that no model must be explicitly stored with the compressed

data, but the disadvantage that poor compression will result if the model is not

representative of data presented for compression. Due to the type of adaptively being

adopted, focus has remained on static and semi-adaptive techniques, and little

attention has been paid to the class of adaptive algorithms (Gilbert & Abrahamson,

2006; Klein, 2000; Xie, Wolf, & Lekatsas, 2003).

6

1.1.4 Data compression cost

The cost of data compression is an important feature that can be used to distinguish

between the different data compression algorithms. Most importantly is that

compression algorithms should be performed in as minimum as possible cost. This

cost is measured in terms of time and storage requirements however, in many

applications, and with the revolutionary advancement in computer technology, the

time is the most important factor. For example, on-the-fly compression algorithms,

such as between application programs and storage devices, the algorithm should

operate as quickly as the storage devices themselves.

Likewise, if a compression algorithm is built into a hardware data communications

component, the algorithm should not prevent the full bandwidth of the

communication media from being continuously utilized.

The data compression cost for a particular algorithm consists of the time required by

the algorithm to compress the original data and the time it takes to decompress the

data back to its original form. In the context of the data compression for minimal

storage applications, the cost of compression can be viewed as a one-time cost and

hence as relatively less significant than the cost of decompression, which must be

incurred every time the data is to be retrieved from storage. In the context of

compression designed for fast data transmission applications, the relative costs of

compression at one end and decompression at the other may be equally significant.

According to the compression-decompression processing time, data compression

algorithms are classified into two classes, as follows:

(1) Symmetric data compression algorithms. In a symmetric data compression

algorithm, the processing times are almost the same for both compression and

decompression processes.

(2) Asymmetric data compression algorithms. In an asymmetric data

compression algorithm the compression processing time is more than the

decompression processing time.

7

1.2 Data Compression Models

Different data compression algorithms have been recommended and used throughout

the years. These data compression algorithms can be classified into four major models

depending on the methodology it uses in replacing the original character sets and how

it initialize the replacement process and at what level; these are (Pandya, 2000;

Sayood, 2012):

(1) Substitution data compression model

(2) Statistical data compression model

(3) Dictionary-based data compression model

(4) Bit-level data compression model

A substitution data compression model involves the swapping of repeating characters

by a shorter representation. Algorithms that are based on this model include: Null

Suppression, Run-Length Encoding (RLE), Bit Mapping and Half Byte

Packing(Pandya, 2000).

A statistical data compression model involves the generation of the shortest average

code length based on an estimated probability of the characters. Examples of

algorithms that are based on this model include: Shannon-Fano coding (Rue 06, Rue

04), static/dynamic Huffman coding (Huffman, 1952; Knuth, 1985; Vitter, 1989), and

arithmetic coding (Howard & Vitter, 1994; Ian H. Witten, Neal, & Cleary, 1987).

A dictionary-based data compression model involves the substitution of substrings by

indices or pointer code, related to a dictionary of the substrings; algorithms that can

be classified as a dictionary-based model include the LZ compression technique and

its variations (Brittain & El-Sakka, 2007; Nelson, 1989; Ziv & Lempel, 1977, 1978).

Finally, since data files could be represented in binary digits, a bit-level processing

can be performed to reduce the size of data. In bit-level data compression algorithms,

the binary sequence is usually divided into groups of bits that are called minterms,

blocks, subsequences, etc. These minterms might be considered as representing a

Boolean function.

8

Then, algebraic simplifications are performed on these Boolean functions to reduce

the size or the number of minterms, and hence, the number of bits representing the

output (compressed) data is reduced as well. Examples of such algorithms include: the

Adaptive Character Wordlength (ACW(n)) algorithm (Al-Bahadili & Hussain, 2008).

The Adaptive Character Wordlength (ACW(n,s)) scheme (Al-Bahadili & Hussain,

2008), the logic-function simplification algorithm (Nofal, 2007), the neural network

based algorithm(Mahoney, 2000).

1.3 Text Compression

There are a number of data compression techniques that have been developed

throughout the years. Some of which are of general use, i.e., can be used to compress

files of different types (e.g., text files, image files, video files, etc.). Others are

developed to efficiently compress a particular type of files. In this work, we are

concerned with text files compression.

Text compression can often derive its benefit from the two views of the textual

content: the content can be seen as a stream of syllables/words or a sequence of bits.

Therefore, text compression algorithms can be categorized into two types:

syllables/words based text compression and bit-level text compression. In this section,

we provide a brief introduction to each of them.

1.3.1 Syllables and words based text compression

The word-based methods are older, so many implementations of classical methods

exist, for instance Huffman coding (Hashemian, 2003; Huffman, 1952; I.H. Witten,

Bell, Emberson, Inglis, & Moffat, 1994),Burrows-Wheeler transformation (Isal &

Moffat, 2001), PPM (J. Adiego & De la Fuente, 2006) or Arithmetic coding (Moffat

& Isal, 2005). The syllable-based methods are rather young with initial

implementations of Huffman coding and LZW (Lánskỳ & Zemlicka, 2005).

Porting of classical character-based methods to syllable or word based is not easy.

The transformation heavily influences almost all inner data structures, because they

must be able to work with undefined number of syllables or words instead of the

original alphabet of 256 characters. Moreover, the large input alphabet also requests

the encoder to export elements of the alphabet to the decoder. This issue is often

9

solved by exporting the alphabet as a part of the encoded document (Lansky &

Zemlicka, 2006)

The confrontation and comparison of the word and syllable based methods depends

on a language of the input document. Accordingly, the languages with a simple

morphology, e.g. English, are better compressed by the word-based algorithms. On

the other hand, the languages with a complex morphology are often compressed better

by the syllable-based methods.

1.3.2 Bit-level text compression

Text files compression can also be performed at bit-level, as each character has its

specific binary representation. However, bit-level data compression algorithms are

even younger than the syllable/word based data compression algorithms, therefore,

there are only few algorithms have been developed to exploit this concept. However,

this type of compression methodology is the core concept of this thesis; the bit-level

data compression model will be discussed in details in Chapter 2 with many

algorithms, and comprehensive literature review.

1.4 Performance Measures

In order to be able to compare the efficiency of the different compression techniques

reliably, and without extreme cases to cloud or bias the technique unfairly, certain

issues need to be considered. The most important ones need to be taken into account

in evaluating the performance of various algorithms including the following:

measuring the amount of compression, and processing time (algorithm complexity).

These issues need to be carefully considered in the context for which the compression

algorithm is used. Practically, things like finite memory, error control, type of data,

and compression style (adaptive/dynamic, semi-adaptive or static) are all factors that

should be considered in comparing the different data compression algorithms(Rico-

Juan, Calera-Rubio, & Carrasco, 2005).

1.4.1 Measuring the amount of compression

Several parameters are used to measure the amount of compression that can be

achieved by a particular data compression algorithm, such as:

10

(1) Compression ratio (C)

The amount of compression is measured by a factor known as compression ratio (C),

which is defined as the ratio between the size of the data before compression and the

size of the data after compression. It is expressed as:

 (1.1)

Where So and Sc are the sizes of the original and the compressed data, respectively.

(2) Reduction ratio (R)

The reduction ratio represents the ratio of difference between the size of the original

data (So) and the size of the compressed data (Sc) related to the size of the original

data, which is referred to as R. It is usually given in percent and it is mathematically

expressed as:

 (1.2)

(3) Coding rate (Cr)

The coding rate expresses the same concept at the compression ratio, but it relates the

ratio to a more tangible quantity. For example, for a text file, the coding rate may be

expressed in “bits/character” (bpc), where in uncompressed text file a coding rate of 7

or 8 bpc is used. In addition, the coding rate of an audio stream may be expressed in

“bits/analogue”, and for still image compression, the coding rate is expressed by

“bits/pixel”. The coding rate is expressed as:

 (1.3)

Where q is the number of bit represents each symbol in the uncompressed file. The

relationship between the coding rate (Cr) and the compression ratio (C), for example,

for text file originally using 7 bpc, can be given by:

o

c

S
C

S
=

100o c

o

S S
R

S

−
= ×

c
r

o

q S
C

S

⋅
=

11

 (1.4)

It is clear from Eqn. (1.4) that a lower coding rate indicates a higher compression

ratio.

1.4.2 Processing time

The processing time (which is an indication of the algorithm complexity) is defined,

as the time required compressing or decompressing the data. These compression and

decompression times have to be evaluated separately. As it has been discussed in

section 1.3, data compression algorithms are classified according to the processing

time into either symmetric or asymmetric algorithms. For a symmetric algorithm, both

the compression and the decompression processing time are almost the same, while

for an asymmetric algorithm, usually, the compression time is much more than the

decompression time.

In this context, data storage applications mainly concern with the amount of

compression that can be achieved and the decompression processing time that is

required to retrieve the data back (asymmetric algorithms).

Data transmission applications focus predominately on reducing the amount of data to

be transmitted over communication channels, and both compression and

decompression processing times are the same at the respective junctions (symmetric

algorithms) (Kui Liu & Žalik, 2005).

For a fair comparison between the different available algorithms, it is important to

consider both the amount of compression and the processing time. Therefore, it would

be useful to be able to parameterize the algorithm so that the compression ratio and

processing time could be optimized for a particular application.

There are extreme cases where data compression works very well or other conditions

where it is inefficient, the type of data that the original data file contains and the upper

limits of the processing time have an appreciable effect on the efficiency of the

technique selected. Therefore, it is important to select the most appropriate technique

for a particular data profile in terms of both data compression and processing time

(Dai, 2008)

7
rC

C
=

12

However, in this thesis, we are mainly concerned with measuring and comparing the

compression ratio of the developed algorithm, and other parameters are either can be

derived by the reader or left for future work.

1.5 Statement of the Problem

The HCDC algorithm and its repetitive version, namely, the HCDC(k) algorithm have

demonstrated an excellent performance and got the attention by many researchers

around the world (Al-Saab, 2011; Amro, Zitar, & Bahadili, 2011; Karpinski &

Nekrich, 2009; SÎRBU & CLEJU, 2011; W. Y. Wang, 2009; Z. H. Wang, Chang,

Chen, & Li, 2009; Wong, Lin, & Chen, 2011) due to the tremendous performance of

the algorithm and the potential it has. This encourages us to take step ahead to further

improve the performance of the HCDC algorithm.

The HCDC algorithm utilizes a simple encoding scheme for the pre-fix bit, where the

character set is divided into two groups only, the first one contains the 16 most

common characters, which are considered as valid Hamming codewords and preceded

by 1-bit of 0 logic, and the second group contains all remaining characters, which are

considered as non-valid Hamming codewords and preceded by 1-bit of 1 logic. For

the valid codewords, the pre-fix bit is followed by 4-bit representing the data bits in

Hamming codeword, and for the non-valid codewords, the prefix bit is followed by

the 7-bit representing the codeword. This appends 5-bit for the valid 16 most common

codewords, and 8-bit for the remaining non-valid codewords, which limits the

compression power of the algorithm.

Therefore, we believe it is necessary to improve the encoding scheme so we can

enlarge the number of valid code words or limit the more redundant bits for the least

common character only, while less redundant characters for the middle common

characters. This is achieved through the development of a new encoding scheme for

the pre-fix bits, namely, the m-encoding scheme, where m represents the maximum

pre-fix bits sequence. In this new m-encoding scheme, after finding the characters

frequencies and sorting out the characters from the most common to the least

common, the characters are split into groups each of 16 characters (in general 2d,

where d is the number of data in the Hamming codeword).

13

Then, different pre-fix bits are used to precede the compressed character binary

representation during the compression process (both the pre-fix bits and the

compressed character binary representation are appended to the compressed binary

sequence). These pre-fix bits starts with 1-bit (usually 0) for the first group and

increase by one bit for following groups until the number of pre-fix bits reaches m bits

(usually all 1’s).

1.6 Objectives of this Thesis

The main objectives of this thesis can be summarized as follows:

(1) Develop a new encoding scheme for the pre-fix bits combination of various

lengths for the valid and non-valid Hamming codewords, which we refer to it

as the m-encoding scheme, where m is the maximum length for the pre-fix

bits.

(2) Develop an enhanced version of the HCDC algorithm, namely, the E-HCDC

algorithm that utilizes the m-encoding scheme.

(3) Evaluate the compression ratio of the E-HCDC algorithm for compressing

text files from well-known to widely-used corpora.

(4) Compare the compression ratio of the E-HCDC algorithm against its

preceding algorithm (i.e., HCDC algorithm) and estimate the enhancement

factor.

(5) Compare the compression ratio of the E-HCDC algorithm against other well-

known and widely-used algorithms.

(6) Discuss the results obtained, draw conclusions and point-out some

recommendations for future work.

1.7 Organization of the Thesis

The thesis is divided into five chapters. This chapter provides an introduction to the

concept of data compression, data compression algorithms classification

methodologies, data compression model, and data compression performance

14

algorithms measures. It also reveals the problems statement and the objectives of this

research. The rest of this thesis is organized as follows.

Chapter 2 presents a literature review that provides a description of the core algorithm

in this work, namely, the HCDC algorithm. Chapter 2 also summarizes the most

recent and related work to lossless (text) compression algorithms. It is presents first a

review on the most recent work that is related to bit-level data compression

algorithms, and second reviews some work related to syllable/word –based data

compression algorithms.

Chapter 3 provides a detail description of the E-HCDC algorithm and its core part, the

m-encoding scheme. Chapter 3 also provides a detailed derivation of a formula for

computing the optimum m value. Chapter 4 presents a number of experiments that are

performed to evaluate the compression ratio of the E-HCDC algorithm over a number

of text file from Standard Corpora, namely, Calgary, Canterbury, Artificial, and Large

Corpora.

Chapter 4 also presents a comparison between the compression ratios achieved by the

E-HCDC algorithm against the compression ratios of a number of well-known

algorithms. In Chapter 5 and based on the results obtained conclusions are drawn and

a number of recommendations for future work are pointed-out.

Finally, the thesis also includes two appendices. Appendix A provides the Standard

data compression corpora (e.g., Calgary, Canterbury, Artificial, Large, and

Miscellaneous Corpora), which are widely used in comparing the performance of the

different data compression algorithms. Appendix B lists some statistical values for a

number of text files from the various corpora.

15

Chapter Two

Literature Review and Previous Work

A large number of data compression algorithms have been developed and used

throughout the years. Some of which are of general use, i.e., can be used to compress

files of different types (e.g., text files, image files, video files, etc.). Others are

developed to compress efficiently a particular type of files (Sayood, 2012; Solomon,

2004; Solomon, 2002; Moffat & Turpin, 2002). In this work, we are concerned with

text compression, which relates to lossless compression so exact form of the original

data can be retrieved back.

It has been realized that text compression algorithms can be broadly classified into

two main classes according to the representation form of the data at which the

compression process is performed; these are:

(1) Bit-level text compression algorithms

(2) Syllable or word based text compression algorithms

This thesis is mainly concerned with the development and performance evaluation of

an enhanced version of the lossless bit-level text compression algorithm, namely, the

Hamming Codes based Data Compression (HCDC) algorithm (Al-Bahadili &

Rabab’a, 2007; Al-Bahadili, 2008).

In Section 2.1, we provide a detail description of the HCDC algorithm and the

analytical analysis of the performance of the algorithm. Section 2.2 discusses the

issues and challenges against English text compression. A new recently proposed

coding technique, namely, the Adaptive Character Coding is described in Section 2.3.

Then, Section 2.4 provides a review on the most recent development and state-of-the-

art in bit-level text compression algorithms, while Section 2.5 reviews some syllable

or word -based text compression algorithms.

16

2.1 The HCDC Algorithm

This section presents a detail description of the HCDC algorithm, which is classified

as a lossless, bit level, and asymmetric data compression algorithm (Al-Bahadili,

2008). Then it provides an analytical analysis of the performance of the algorithm.

However, let us first discuss the concept of bit-level data compression.

In bit-level data compression, first, the data file should be represented in binary digits

(bits). A data file can be represented in bits by concatenating the binary sequences of

the characters within the file using a specific mapping or coding format, such as

ASCII codes, Huffman codes, adaptive codes. Afterwards, a bit-level processing can

be performed to reduce the size of the data files. The coding format has a huge

influence on the entropy of the generated binary sequence and consequently the

compression ratio (C) or the coding rate (Cr) that can be achieved.

Usually, in bit-level data compression algorithms, the binary sequence is subdivided

into groups of bits that are called minterms, blocks, sub sequences, etc. In this thesis,

we shall use the term blocks to refer to each group of bits. These blocks might be

considered as representing a Boolean function. Then, algebraic simplifications for bit-

reduction are performed on these Boolean functions to reduce the size or the number

of blocks, and hence, the number of bits representing the data file is reduced as well.

2.1.1 Description of the HCDC algorithm

The error-correcting Hamming code has been widely used in computer networks and

digital data communication systems as a single bit error correcting code or two bits

errors detection code. It can also be tricked to correct burst errors. The key to

Hamming code is the use of extra parity bits (p) to allow the identification of a single

bit and a detection of two bits (Kimura & Latifi, 2005; Tanenbaum, 2003).

Thus, for a message having d data bits and to be coded using Hamming code, the

coded message (also called codeword) will then have a length of n-bit, which is given

by:

n = d + p (2.1)

17

This would be called a (n,d) Hamming code or simply code. The optimum length of

the codeword (n) depends on p, and it can be calculated as:

 n = 2
p - 1 (2.2)

The data and the parity bits are located at particular locations in the codeword. The

parity bits are located at positions 2
0
, 2

1
, 2

2
, …, 2

p-1
 in the coded message, which has

at most n positions. The remaining positions are reserved for the data bits, as shown in

Figure (2.1). Each parity bit is computed on different subsets of the data bits, so that it

forces the parity of some collection of data bits, including itself, to be even or odd.

A lossless binary data compression algorithm based on the error correcting Hamming

codes, namely the HCDC algorithm, was proposed by (Al-Bahadili, 2008)(Al-

Bahadili, 2008). In this algorithm, the data symbols (characters) of a source file are

converted to binary sequence by concatenating the individual binary codes of the data

symbols.

The binary sequence is, then, subdivided into a number of blocks, each of n-bit length

as shown in Figure (2.1b). The last block is padded with 0s if its length is less than n.

For a binary sequence of So bits length, the number of blocks B (where B is a positive

integer number) is given by:

 (2.3)

The number of padding bits (g), which may be added to the last block is calculated

by:

 g = B · n – So (2.4)

The number of parity bits (p) within each block is given by:

 (2.5)

oS
B

n

=

ln (1)

ln (2)

n
p

 +
=

18

For a block of n-bit length, there are 2
n
 possible binary combinations (codeword)

having decimal values ranging from 0 to 2
n
-1, only 2

d
 of them are valid codewords

and 2
n
-2

d
 are non-valid codewords.

Each block is then tested to find if it is a valid block (valid codeword) or a non-valid

block (non-valid codeword). During the compression process, for each valid block the

parity bits are omitted, in other words, the data bits are extracted and written into a

temporary compressed file. However, these parity bits can be easily retrieved back

during the decompression process using Hamming codes. The non-valid blocks are

stored in the temporary compressed file without change.

In order to be able to distinguish between the valid and the non-valid blocks during

the decompression process, each valid block is preceded by 0, and each non-valid

block is preceded by 1 as shown in Figure (2.1c). Figures (2.2) and (2.3) summarize

the flow of the compressor and the decompressor of the HCDC algorithm.

Figure 2.1. (a) Locations of data and parity bits in 7-bit codeword, (b)

an uncompressed binary sequence of 21-bit length divided into 3

blocks of 7-bit length, where B1 and B3 are valid blocks, and B2 is a

non-valid block, and (c) the compressed binary sequence (18-bit

length).

19

Initialization
Select p

Calculate n = 2
p

 - 1
Calculate d = n - p
Calculate B = ceiling(So/n)
Calculate g = B * n - So
Initialize i = 0
Reading binary data
While (i<B)
{

Read a block of n-bit length
Add 1 to i
Check for block validity

If (block = valid codeword) then
Add 1 to v // v is the number of valid blocks
Extract the data bits (d-bit)
Write 0 followed by the extracted d-bits to the temporary compressed file

Else (block = non-valid codeword)
Add 1 to w // w is the number non-valid blocks
Write 1 followed by all n-bits to the temporary compressed file

End if
}

Figure 2.2. The main steps of the HCDC compressor.

Figure 2.3. The main steps of the HCDC decompressor.

2.1.2 Derivation and analysis of HCDC algorithm compression ratio

This section presents the analytical derivation of a formula that can be used to

compute the compression ratio achievable using the HCDC algorithm. The derived

formula can be used to compute C as a function of two parameters:

Initialization
Select p
Calculate n = 2p

 - 1
Calculate d = n - p
Initialize i = 0

Reading binary data
While (not end of data)
{

Read one bit (h)
Add 1 to i
Check for block validity
If (h = 00 then

Add 1 to v // v is the number of valid blocks
Read the following d data bits
Compute the Hamming codes for these d data bits
Write the coded block the temporary decompressed binary sequence

Else (h = 1) then
Add 1 to w // w is the number of non-valid blocks
Read a block of n bits length
Write n bits block to the temporary decompressed binary sequence

End if
}

20

(1) The block size (n).

(2) The fraction of valid blocks (r).

In the HCDC algorithm, the original binary sequence is divided into B blocks of n-bit

length. These B blocks are either valid or non-valid blocks; therefore, the total number

of blocks is given by:

B = v + w (2.6)

Where v and w are the number of valid and non-valid blocks, respectively. For a valid

block only the d data bits preceded by 0 are appended to the compressed binary

sequence (i.e., d+1 bits for each valid block). So that the length of the compressed

valid blocks (Sv) is given by:

 Sv = v (d + 1) (2.7)

For a non-valid block all bits are appended to compressed binary sequence (i.e., n+1

bits for each non-valid block). The number of bits appended to the compressed binary

sequence is given by:

 Sw = w (n + 1) (2.8)

Thus, the length of the compressed binary sequence (Sc) can be calculated by:

 Sc = Sv + Sw = v (d + 1) + w (n + 1) (2.9)

Using Eqns. (2.6) and (2.7), Eqn. (2.9) can be simplified to

 Sc = Bn + B – v · p (2.10)

Substituting So=nB and Sc as it is given by Eqn. (2.10) into the equation of the

compression ratio (C) yields:

 (2.11)

Where r=v/B, and it represents the fraction of valid blocks. Substitute Eqn. (2.2) into

Eqn. (2.11) gives:

1
o

c

S n
C

S n r p
= =

+ −

21

 (2.12)

It is clear from Eqn. (2.12) that, for a certain value of p, C is inversely proportional to

r, and C is varied between a maximum value (Cmax) when r=1 and a minimum value

(Cmin) when r=0. It can also be seen from Eqn. (2.12) that for each value of p, there is

a value of r at which C=1. This value of r is referred to as r1, and it can be found out

that r1=1/p.

Table (2.1) lists the values of Cmax, Cmin, and r1 for various values of p. These results

are also shown in Figures (2.4) and (2.5), where Figure (2.4) shows the variation of

Cmax and Cmin with p, and Figure (2.5) shows the variation of r1 with p.

Table (2.1) Variation of Cmin, Cmax, and r1 with number of parity bits (p)

p Cmin Cmax r1

2 0.750 1.500 0.500
3 0.875 1.400 0.333
4 0.938 1.250 0.250
5 0.969 1.148 0.200
6 0.984 1.086 0.167
7 0.992 1.050 0.143
8 0.996 1.028 0.125

Figure 2.4. Variation of Cmin and Cmax with p.

2 1

2

p

p
C

r p

−
=

−

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 1 2 3 4 5 6 7 8 9 10

Number of parity bits (p)

C
om

pr
es

si
on

 r
at

io
 (

 C
)

C max

C min

22

Figure (2.5). Variation of r1 with p.

Furthermore, in order to demonstrate the effect of r on C for various p, Table (2.2)

lists the values for C when r varies between 0 and 1 in step of 0.1 and p varies

between 2 to 8 in step of 1. These values are also plotted in Figure (2.6). It can be

deduced from Table (2.2) and Figure (2.6) that satisfactory values of C can be

achieved when p≤4 and r>r1.

Table 2.2 Variations of C with respect to r for various values of p

r
Number of the parity bits (p)

2 3 4 5 6 7 8
0.0 0.750 0.875 0.938 0.969 0.984 0.992 0.996
0.1 0.789 0.909 0.962 0.984 0.994 0.998 0.999
0.2 0.833 0.946 0.987 1.000 1.003 1.003 1.002
0.3 0.882 0.986 1.014 1.016 1.013 1.009 1.006
0.4 0.938 1.029 1.042 1.033 1.023 1.014 1.009
0.5 1.000 1.077 1.071 1.051 1.033 1.020 1.012
0.6 1.071 1.129 1.103 1.069 1.043 1.026 1.015
0.7 1.154 1.186 1.136 1.088 1.054 1.032 1.018
0.8 1.250 1.250 1.172 1.107 1.064 1.038 1.022
0.9 1.364 1.321 1.210 1.127 1.075 1.044 1.025
1.0 1.500 1.40 1.250 1.148 1.086 1.050 1.028

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5 6 7 8 9 10

Number of parity bits (p)

C
ri

tic
al

 f
ra

ct
io

n
of

 v
al

id
 b

lo
ck

s.

r 1

23

Figure (2.6). Variations of C with respect to r for various values of p.

One important feature of the HCDC algorithm is that it can be repeatedly applied to

the binary sequence, and an equation can be derived to compute, what we refer to as

the accumulated compression ratio (Ck):

 (2.13)

Where k is the number of repetitions, Si and Si-1 sizes of the binary file after and

before the ith compression loop, and Ci is the compression ratio of the ith compression

loop. For i=1, So represents the size of the original file.

2.2 English Text Compression

English text characters are usually converted to binary using its equivalent 7-bit

ASCII codes, which means that each character can be considered as a (7,4) codeword.

It has been mentioned earlier that not all 7-bit codewords are valid codewords, in fact

only 16 codewords (2d) are valid, and the remaining 112 codewords (2n-2d) are non-

valid. The ASCII codes of these 16 valid codewords and the characters they represent

are listed in Table (2.3). According to statistics in Standard English text, these valid

codewords can be categorized into three groups:

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Ratio of valid blocks (r)

C
om

pr
es

si
on

 r
at

io
 (

 C
)

 .

 p = 2
 p = 3
 p = 4
 p = 5
 p = 6
 p = 7
 p = 8

1

1 1

k k
i

k i
i i

i

S
C C

S

−

= =

= =∏ ∏

24

(1) Wide-use (their decimal values are equivalent to the ASCII code of the

characters a and f).

(2) Rare-use (their decimal values are equivalent to the ASCII code of the

characters K, L, R, U, x, *, -, 3, and 4).

(3) Not-used (their decimal values are equivalent to the ASCII code of the

unprintable characters of 0, 7, 25, 30, and 127 ASCII code).

Thus, encoding characters to binary using their equivalent ASCII codes and testing

the validity of these characters either yields a very low compression ratio or most

properly yields inflation. This is because a small proportion of the characters within

the text may have valid codewords.

Table (2.3)
Table 3 Valid 7-bit codewords.

ASCII Code Character Category
0 Control Character Not used
7 Control Character Not used

25 Control Character Not used
30 Control Character Not used
42 * Rare-use
45 - Rare-use
51 3 Rare-use
52 4 Rare-use
75 K Rare-use
76 L Rare-use
82 R Rare-use
85 U Rare-use
97 a Frequent –use

102 f Frequent-use
120 x Rare-use
127 Control Character Not-used

2.2.1 Entropy of English text

The entropy is a statistical parameter that can be used to measure how much

information is produced on the average for each letter of a text in the language. If the

language is translated into bits (0 and 1) in the most efficient way, the entropy E, is

the average number of bits required per letter of the original language. The

redundancy, on the other hand, measures the amount of constraint imposed on text in

the language due to its statistical structure (Shannon, 1951).

25

For a set of possible messages M, the entropy is defined as:

 (2.14)

Where p(m) is the probability of message m. i(m) is the notion of the self-information

of a message and it is given by:

 (2.15)

This self-information represents the number of bits of information contained in it and,

roughly speaking, the number of bits that should be used to represent that message.

Larger entropies represent more information, and perhaps counter-intuitively, the

more random a set of messages (the more even the probabilities) the more information

they contain on average. The amount of information that is contained by a text could

be used as a bound to the maximum amount of compression that can be achieved.

As it has been mentioned in Chapter 1, one way to measure the information content is

in terms of the average number of bits per character (bpc), i.e., coding rate (Cr). Table

(2.4) shows a few approaches that can be used to measure the amount of information

contained by an English text in bpc. If all characters are assumed to have equal

probabilities, a separate code is used for each character, and there are 96 printable

characters (the number on a standard keyboard) then a 7-bit character word length (7

bpc) is required. The entropy, assuming even probabilities (p=1/96), is 6.6 bpc.

 Table 2.4 information content of the English text using different
approaches

Approach Bpc
1 Standard text (7 bpc) 6.6
2 Entropy 4.5
3 Huffman code (Average) 4.7
4 Entropy (Group of 8 characters) 2.4
5 Asymptotically approaches 1.3

If a probability distribution (based on a corpus of English text) is given for the

characters the entropy is reduced to about 4.5 bps. If a separate code is used for each

character (for which the Huffman code is optimal), then the number is slightly larger

4.7 bpc.

() () ()
m M

E M p m i m
∈

= ⋅∑

2

1
() lo g ()

()
i m

p m
=

26

It is clear that so far no advantage, of relationships among adjacent or nearby

characters, is considered. If a text is broken into blocks of 8 characters, and the

entropy of those blocks (based on measuring their frequency in an English corpus) is

measured, then entropy of about 19 bits is obtained. Thus, since 8 characters are

coded at a time, the entropy is 2.4 bpc. If groups of larger and larger blocks are

processed, entropy would approach 1.3 (or lower) can be reached. It is impossible to

actually measure this because there are too many possible strings to run statistics on,

and no corpus is large enough.

This value 1.3 bpc is an estimate of the information content of the English text.

Assuming it is approximately correct, this bounds how much can be expected if an

English text is losslessly compressed. Table (2.5) shows the compression rate of

various data compression algorithms implemented by standard software. All these

software, however, are general purpose and not designed specifically for the English

text.

Table 2.5
Information content of the English text using different standard software.

Software Bpc
1 Compress 3.7
2 GZIP 2.7
3 BOA 2.0

The Bayesian Optimization Algorithm (BOA) is the current state-of-the-art for

general-purpose compressors. To reach 1.3 bpc, the compressor would surely have to

know about English grammar, standard idioms, etc. A complete set of compression

ratios for the Calgary corpus for a variety of data compression algorithms is shown in

Table (2.6).

2.3 The Adaptive Character Coding Format

There are different coding formats that can be used in converting a data file into bits.

They usually have enormous effects on the entropy of the generated binary sequence,

and subsequently affect the compression ratio and the coding rate that can be achieved

by a particular data compression algorithm over the compressed data file. A

conventional coding format is the ASCII code, in which each character within the

source file is coded using an 8-bit codeword. However, a text character is usually

coded using 7-bit codeword.

27

Table (2.6)
Lossless compression ratios for text compression Calgary corpus.

Scheme bpc Researcher

1 LZ77 3.94 Ziv and Lempel, 1977

2 LZMW 3.32 Miller and Wegman, 1984

3 LZH 3.30 Brent, 1987

4 MTF 3.24 Moffat, 1987

5 LZB 3.18 Bell, 1987

6 GZIP 2.71 -

7 PPMC 2.48 Moffat, 1988

8 SAKDC 2.47 Williams

9 PPM 2.34 Cleary, Teahan, and Witten, 1994

10 BW 2.29 Burrows and Wheeler, 1995

11 BOA 1.99 Sutton, 1997

12 RK 1.89 Taylor, 1999

Thus, the length of the binary sequence in bits that is generated from encoding a text

file into binary sequence is given by:

 So = 7� Tc (2.16)

Where So is the length of the binary sequence in bits, and Tc is the total number of

character within the text file. Another coding format is the Huffman coding, which is

described in detail in(Al-Bahadili & Hussain, 2008) Using Huffman coding, the

length of the binary sequence may be expressed as:

 (2.17)

Where Nc is the types of character within the source file.

fi frequency or the probability of occurrence of the ith character.

wi number of bits representing the ith character.

Tc total number of characters within the source file (size of file in Bytes).

So is the length of the binary sequence generated in bits.

1

N c

o c i i

i

S T f w

=

= ∑

28

Another coding format was introduced and investigated in (Al-Bahadili & Rababa’a,

2010), namely, the adaptive coding format. In adaptive coding, first, the character

frequencies are calculated and sorted out in descending order from the most common

character to the least, similar to Huffman coding. Second, the most common character

is given a 0 sequence number, while the least common character is given Nc-1

sequence number. Then, each character is coded to binary according to its sequence

number. For example, the equivalent binary codes for the most (first), second, and the

third characters are 0000000, 0000001, and 0000010, respectively.

This form of coding ensures a low entropy binary sequence, therefore, it can provide a

higher compression ratio and so lower bpc is required to represent characters within

the compressed file. In order not to get the data mixed up during the decompression

phase, the number of the sorted characters and the characters themselves should be

included in the compressed file header. This of course will add an overhead of not

more than 129 bytes. It is clear that this overhead is small as compared to the size of

the data file.

Table (2.7) presents the binary codeword of the 10 most common characters in the

paper1 text file from the Calgary corpus using ASCII and adaptive coding formats. It

is clear that the entropy using adaptive coding will be lower than using ASCII coding

as the number of 0s will overwhelm the number of 1s in the binary sequence.

Table (2.7)
ASCII and adaptive codes of the 10 most common characters in paper1 file.

Character Frequency
ASCII coding Adaptive Coding

Decimal Binary Decimal Binary
1 Space 7301 32 0100000 0 0000000
2 e 4689 101 1100101 1 0000001
3 t 3048 116 1110100 2 0000010
4 i 2879 105 1101001 3 0000011
5 o 2568 111 1101111 4 0000100
6 n 2503 110 1101110 5 0000101
7 a 2441 97 1100001 6 0000110
8 s 2374 115 1110011 7 0000111
9 r 2058 114 1110010 8 0001000

10 l 1593 108 1101010 9 0001001

29

The entropies of the binary sequences generated for a number of text files from the

Calgary corpus, using different coding formats (e.g., ASCII coding, Huffman coding,

and adaptive coding) are compared in Table (2.8). The results obtained reveal that the

adaptive coding has the minim entropy as compared to the others, therefore we expect

to achieve higher compression ratio by using this coding format.

Table (2.8)
Entropies of the binary sequences generated for a number of text files from the

Calgary corpus using different coding formats.

File Name Size (Byte) Nc
Entropy

ASCII Huffman Adaptive
1 bib 111261 81 0.999717 0.996537 0.859069
2 book1 768771 82 0.999438 0.995545 0.793412
3 book2 610856 96 0.999078 0.996209 0.818262
4 paper1 53161 95 0.999482 0.996193 0.834678
5 paper2 82199 91 0.998521 0.995549 0.801658
6 paper3 46526 84 0.997612 0.996422 0.810520
7 paper4 13286 80 0.999019 0.995512 0.809544
8 paper5 11954 91 0.999971 0.996128 0.824279
9 paper6 38105 93 1.000000 0.996432 0.835081

2.4 Review of Bit-Level Text Compression Algorithms

(Al-Bahadili, 2008) developed a lossless bit-level data compression algorithm based

on the error correcting Hamming codes, and consequently it was referred to as the

HCDC algorithm, which was early described in details in Section 2.1. The theoretical

analysis of the algorithm indicates that the algorithm reserved a tremendous potential

and as a result of that it has been used by many researchers in many applications.

(Al-Bahadili & Rababa’a, 2010) investigated the performance of the HCDC algorithm

for text compression application. They developed a scheme that utilizes the algorithm,

which consists of six steps, some of which are applied repetitively to enhance the

compression ratio of the algorithm, which is called the HCDC(k) scheme, where k

refers to the number of repetition loops. The repetition loop continues until inflation is

detected. In this scheme, the overall (accumulated) compression ratio is the

multiplication of the compression ratios of the individual loops. The results obtained

for the HCDC(k) scheme demonstrated that the scheme has a higher compression

ratio than most well-known text compression algorithms, and also exhibits a

competitive performance with respect to many widely-used state-of-the-art software.

30

(Al-Bahadili & Al-Saab, 2011; Al-Saab, 2011) used the HCDC algorithm in

developing a novel Web search engine model, namely, the compressed index-query

(CIQ) model. The model incorporates two compression layers both based on the

HCDC algorithm and implemented at the back-end processor (server) side of the Web

search engine, one layer resides after the Web search engine indexer acting as a

second compression layer to generate a double compressed index, and the second

layer be located after the query parser for query compression to enable compressed

index-query search. The test results demonstrated that the new CIQ model achieves

100% agreement with current uncompressed Web search engine models, a

compression ratio of more than 1.3 with compression efficiency of more than 95%

(i.e., a reduction in storage requirement of more than 24%), and a speed up factor of

more than 1.3 providing a reduction in processing time of more than 24%.

(Amro et al., 2011) used the HCDC algorithm for speech compression in Voice over

Internet Protocol (VoIP) applications, in particular, they implemented the HCDC(k)

algorithm with k=4 to achieve a significant compression ratio in the coefficient

codebook without any scarification in the original Code-Excited Linear Prediction

(CELP) signal quality since compression is lossless.

(Al-Bahadili & Hussain, 2008) developed a bit-level data compression algorithm in

which the binary sequence is divided into blocks of n-bit length, which gives each

block possible decimal values between 0 to 2n-1. The decimal values of all blocks are

calculated and if the number of different decimal values (d) is ≤256, then the binary

sequence can be compressed using n-bit character wordlength. Otherwise, the process

continues until finding a value of n that gives d≤256. Thus, a compression ratio of

approximately n/8 can be achieved. They referred to this algorithm as the Adaptive

Character Wordlength (ACW) algorithm, since the compression ratio of the algorithm

is a function of n, and abbreviated as ACW(n) algorithm.

Implementation of the ACW(n) algorithm highlights a number of issues that may

degrade its performance, and need to be carefully resolved, such as: (i) If d is greater

than 256, then the binary sequence cannot be compressed using the associated n-bit

character wordlength, (ii) the probability of being able to compress a binary sequence

using n-bit character wordlength is inversely proportional to n, and (iii) finding the

optimum value of n that provides maximum compression ratio is a time consuming

31

process, especially for large binary sequences. In addition, for text compression,

converting text to binary using the equivalent ASCII code of the characters gives a

high entropy binary sequence, thus only a small compression ratio or sometimes no

compression can be achieved.

Later on, (Al-Bahadili & Rababa’a, 2010) developed an efficient implementation

scheme to enhance the performance of the ACW(n) algorithm, and overcome all

drawbacks that are mentioned above. In this scheme the binary sequence is divided

into a number of subsequences (s), each of them satisfies the condition that d≤256,

and they referred to it as the ACW(n,s) scheme. The scheme achieved compression

ratios of more than 2 on most text files from most widely used corpora.

(Nofal, 2007) proposed a bit-level files compression algorithm. In this algorithm, the

binary sequence is divided into a set of groups of bits, which are considered as

minterms representing Boolean functions. Applying algebraic simplifications on these

functions reduce in turn the number of minterms, and hence, the number of bits of the

file is reduced as well. To make decompression possible one should solve the problem

of dropped Boolean variables in the simplified functions. He investigated one possible

solution and their evaluation shows that future work should find out other solutions to

render this technique useful, as the maximum possible compression ratio they

achieved was not more than 10%.

(Jaradat, Irshid, & Nassar, 2006) proposed a file splitting technique for the reduction

of the nth-order entropy of text files. The technique is based on mapping the original

text file into a non-ASCII binary file using a new codeword assignment method and

then the resulting binary file is split into several sub files each contains one or more

bits from each codeword of the mapped binary file. The statistical properties of the

sub files are studied and it was found that they reflect the statistical properties of the

original text file, which was not the case when the ASCII code is used as a mapper.

The nth-order entropy of these sub files was determined and it was found that the sum

of their entropies was less than that of the original text file for the same values of

extensions. These interesting statistical properties of the resulting sub files can be

used to achieve better compression ratios when conventional compression techniques

were applied to these sub files individually and on a bit-wise basis rather than on

character-wise basis.

32

(Barr & Asanović, 2006) presented a study of the energy savings possible by lossless

compressing data prior to transmission. Because wireless transmission of a single bit

may require over 1000 times more energy than a single 32-bit computation. It can

therefore be beneficial to perform additional computation to reduce the number of bits

transmitted. If the energy required to compress data is less than the energy required to

send it, there is a net energy savings and an increase in battery life for portable

computers. They demonstrated that with several typical compression algorithms, there

was actually a net energy increase when compression was applied before

transmission. Reasons for this increase were explained and suggestions were made to

avoid it. One such energy-aware suggestion was asymmetric compression, the use of

one compression algorithm on the transmit side and a different algorithm for the

receive path. By choosing the lowest-energy compressor and decompressor on the test

platform, overall energy to send and receive data can be reduced by 11% compared

with a well-chosen symmetric pair, or up to 57% over the default symmetric scheme.

 (G. Caire & S. Verdu, 2004) presented a new approach to universal noiseless

compression based on error correcting codes. The scheme was based on the

concatenation of the Burrows-Wheeler block sorting transform (BWT) with the

syndrome former of a Low-Density Parity-Check (LDPC) code. Their scheme has

linear encoding and decoding times and uses a new closed-loop iterative doping

algorithm that works in conjunction with belief-propagation decoding. Unlike the

leading data compression methods, their method is resilient against errors, and lends

itself to joint source-channel encoding/decoding; furthermore their method offers very

competitive data compression performance.

(Sharieh, 2004) introduced a Fixed-Length Hamming (FLH) algorithm as

enhancement to Huffman Coding (HU) to compress text and multimedia files. He

investigated and tested these algorithms on different text and multimedia files. His

results indicated that the FLH following HU and HU following FLH enhance the

compression ratio.

(Irshid, 2001) proposed a very simple and efficient binary run-length compression

technique. The technique is based on mapping the non-binary information source into

an equivalent binary source using a new fixed-length code instead of the ASCII code.

The codes are chosen such that the probability of one of the two binary symbols; say

33

0, at the output of the mapper is made as small as possible. Moreover, the "all 1’s"

code is excluded from the code assignments table to ensure the presence of at least

one 0 in each of the output codewords. Compression is achieved by encoding the

number of 1’s between two consecutive 0’s using either a fixed-length code or a

variable-length code. When applying this simple encoding technique to English text

files, they achieve a compression of 5.44 bpc and 4.6 bpc for the fixed-length code

and the variable length (Huffman) code, respectively.

(Mahoney, 2000) introduced a fast text compression with neural network model that

produces better compression than popular Limpel-Ziv compressors (zip, gzip,

compress), and is competitive in time, space, and compression ratio with PPM and

Burrows-Wheeler algorithms. The compressor, a bit-level predictive arithmetic

encoder using a 2-layer, 4×106 by 1 network, is fast (about 104 characters/second)

because only 4-5 connections are simultaneously active and because it uses a variable

learning rate optimized for one-pass training. He showed that it is practical to use

neural networks for text compression in any application that requires high speed.

2.5 Review of Syllable/Word-Based Text Compression Algorithms

(Joaquín Adiego et al., 2007) described a compression model for semi-structured

documents, called Structural Contexts Model (SCM), which takes advantage of the

context information usually implicit in the structure of the text. The idea is to use a

separate model to compress the text that lies inside each different structure type

(different XML tag). The intuition behind SCM was that the distribution of all the

texts that belong to a given structure type should be similar, and different from that of

other structure types. They mainly focused on semi-static models, and test their idea

using a word-based Huffman method. This was a standard for compressing large

natural language text databases, because random access, partial decompression, and

direct search of the compressed collection were possible. This variant is dubbed as

SCMHuff, and it is retained those features and improved Huffman’s compression

ratios.

(Galambos, 2007) discussed the selection of a suitable compression method, which

would utilize the semantics, and structure of HTML documents. Their guess was that

such a method has the best chance to achieve an optimal level of compression. Three

34

branches of compression algorithms were discussed: textual, special XML, and a mix

of the previous two. Last branch was represented by a XBW algorithm, which

combines textual method with a method for XML compression.

(Conley & Klein, 2006) introduced the notion of multilingual-text compression. The

basis of multilingual-text compression is first the ability to match the corresponding

parts of related texts by identifying semantic correspondences across the various sub-

texts, a task generally referred to as text alignment. Some methods for detailed

alignment use an existing multilingual glossary, but all of them generate their own

probabilistic glossary, which corresponds to the processed text. The idea is to save

storage space by replacing words and phrases with pointers to their translations,

determined by any alignment algorithm. Unaligned words are compressed on their

own using HuffWord encoding. The suggested method was tested on an English-

French corpus of the European Union. They obtained a compression ratio of 22%,

which is similar to the performances of Bzip and HuffWord and better than Gzip.

(Rein, Gühmann, & Fitzek, 2006) proposed a lossless compression method for short

data series (larger than 50 Bytes). The method uses arithmetic coding and context

modeling with a low-complexity data model. A data model that takes 32 KBytes of

RAM already cuts down the data size in half. The compression method just takes a

few pages of source code, is scalable in memory size, and may be useful in sensor or

cellular networks to spare bandwidth. S. Rein et. al demonstrated that their method

allows for battery savings when applied to mobile phones. Further work on very short

text files compression can be found in (Rein, 2006; Lansky & Zemlicka, 2006;

Lansky & Zemlicka, 2005).

(Robert & Nadarajan, 2006) developed a few algorithms for random access text

compression in which there is a direct access to the compressed data, so that it is

possible to start decompression from any place in the compressed file. If any byte

changed during transmission, the remaining data can be retrieved safely. Their work

based on the Byte Pair Encoding (BPE) Scheme. The BPE algorithm based on the fact

that ASCII character set uses only codes from 0 through 127. That frees up codes

from 128 through 255 for use as pair codes. Pair code is a byte, used to replace the

most frequently appearing pair of bytes in the text file. Five algorithms are developed

based on this BPE scheme. These algorithms find the unused bytes at each level and

35

tries to use those bytes for replacing the most frequently used bytes. These algorithms

compresses typical text files approximately half of their original size, but of course,

the actual amount of compression depends on the data being compressed. In these

algorithms, most of the time is spent on searching for the most frequently occurring

pairs. However, decompression is very fast of all these algorithms.

(Brisaboa, Fariña, Navarro, & Paramá, 2005) addressed the problem of adaptive

compression of natural language text, focusing on the case where low bandwidth is

available and the receiver has little processing power, as in mobile applications. Their

technique achieves compression ratios around 32% and requires very little effort from

the receiver. This tradeoff, not previously achieved with alternative techniques, is

obtained by breaking the usual symmetry between sender and receiver dominant in

statistical adaptive compression. Moreover, they showed that their technique could be

adapted to avoid decompression at all cases where the receiver only wants to detect

the presence of some keywords in the document. This is useful in scenarios such as

selective dissemination of information, news clipping, alert systems, text

categorization, and clustering. The asymmetry they introduced, enable the receiver to

search the compressed text much faster than the plain text. This was previously

achieved only in semi-static compression scenarios. They improved the existing

results on word-based adaptive compression, focusing on reducing the effort of the

receiver in order to either uncompressed or search for the compressed text.

(Moffat & Isal, 2005) enhanced the performance of the block-sorting algorithm,

which is an innovative compression mechanism introduced by Burrows and Wheeler.

It involves three steps: permuting the input one block at a time using the Burrows–

Wheeler transform (BWT), applying a move-to-front (MTF) transform to each of the

permuted blocks, and then entropy coding the output with a Huffman or arithmetic

coder. Block-sorting implementations assumed that the input message is a sequence

of characters. They extended the block-sorting mechanism to word-based models.

They also considered other transformations, and were able to show improved

compression results compared to MTF and uniform arithmetic coding. For large files

of text, the combination of word-based modeling, BWT, and MTF-like

transformations allowed excellent compression effectiveness to be attained within

reasonable resource costs.

36

(I.H. Witten, 2004) showed that the text mining is about inferring structure from

sequences representing natural language text, and may be defined as the process of

analyzing text to extract information that is useful for particular purposes. Although

handcrafted heuristics are a common practical approach for extracting information

from text, a general, approach requires adaptive techniques. He studied the way in

which the adaptive techniques to use a text compression approach in text mining. He

developed several examples: extraction of hierarchical phrase structures from text,

identification of key phrases in documents, locating proper names and quantities of

interest in a piece of text, text categorization, word segmentation, acronym extraction,

and structure recognition. He concluded that compression forms a sound unifying

principle that allows many text-mining problems to be tacked adaptively.

Presented a new Huffman coding and decoding technique in which there is no need to

construct a full size Huffman table in this technique; instead, the symbols were

encoded directly from the table of code-lengths. For decoding purposes a new

Condensed Huffman Table (CHT) was also introduced. It was shown that by

employing this technique both encoding and decoding operations became

significantly faster, and the memory consumption became much smaller compared to

the normal Huffman coding/decoding.

(Chu, 2002) presented a new universal lossless data compression algorithm derived

from the popular and widely used LZ77 family. He referred to it as LZAC. The

objective of LZAC was to improve the compression ratios of the LZ77 family while

retaining the family’s key characteristics: simple, universal, fast in decoding, and

economical in memory consumption. LZAC presented two new ideas: composite

fixed-variable-length coding and offset difference coding. A composite fixed-

variable-length coding combined fixed-length coding and variable-length coding into

a single coding scheme.

(L. G. Rueda & Oommen, 2001) present an enhanced version of the static Fano

method, namely Fano+. They formally analyzed Fano+ by presenting some properties

of Fano trees, and the theory of list rearrangements. The enhanced algorithm achieved

compression ratios arbitrarily close to those of Huffman's algorithm. Empirical results

on files of the Canterbury corpus corroborate the almost-optimal efficiency of the

enhanced algorithm and its canonical nature.

37

(Plantinga, 2006) proposed a heuristic for text compression via diagram replacement

and a fast entropy coding method. The resulting compression algorithm is an

asymmetric algorithm, in the sense that compression requires much time and memory,

but decompression is fast and requires little memory. The algorithm is also classified

as a semi-adaptive, since it allows a random access into the compressed file without

decompressing the whole file. Compression ratios achieved are competitive with gzip

for a standard corpus of texts, and better for large files. The algorithm is well suited to

applications for which expensive compression of large files is acceptable but

decompression must be inexpensive and high compression ratios or random access

into the compressed file is required.

38

Chapter Three

The Enhanced HCDC Algorithm

The Hamming Codes Data Compression (HCDC) algorithm (Al-Bahadili, 2008),

which was discussed in details in Chapter 2, has been used successfully in many

lossless bit-level data compression applications, such as: English text compression

(Al-Bahadili & Rababa’a, 2010), high performance Web search engine development

(Al-Bahadili & Al-Saab, 2010), and speech compression for VoIP applications (Amro

et al., 2011).

However, theoretical analysis of the performance of the algorithm also demonstrated

that the algorithm has a maximum compression ratio (Cmax), which a function of the

number of parity bits (p) used the Hamming codewords. For example, Cmax≈1.4 when

the p=3, and p=3 is the most suitable value for text compression (Al-Bahadili &

Rababa’a, 2010), while p=4 for speech compression (Amro et al, 2011).

The main objective of the work is to enhance the compression ratio of the HCDC

algorithm. In particular, in order to enhance the performance (compression ratio) of

the HCDC algorithm, a new pre-fix encoding scheme is developed. The new pre-fix

encoding scheme is referred to as the m-encoding scheme. In this encoding scheme,

different pre-fix bit combinations are used depending on the types of characters

presented in the text file and frequencies of these characters. This is in replacement of

the “0” or ”1” bit pre-fix encoding scheme of the HCDC algorithm. The enhanced

version of the HCDC algorithm is referred to as the Enhanced HCDC (E-HCDC)

algorithm, which is expected to achieve a higher compression than the original HCDC

algorithm.

Section 3.1 discusses the limitations of the HCDC algorithm, in particular the pre-fix

encoding scheme and how its limits the maximum compression ratio. Section 3.2

presents a description of the new pre-fix encoding scheme, namely, the m-encoding

scheme. The E-HCDC algorithm and the structure of the compressed file header are

described in details in Section 3.3. The analytical analysis of the compression ratio of

the E-HCDC algorithm is presented in Section 3.4.

39

3.1 Limitations of the HCDC Algorithm

In the implementation of the HCDC algorithm for English text compression, first, the

text file characters’ frequencies (fi) are calculated and sorted out from the most

common to the least common characters. Then, the first 16 most common characters

(which are usually 7-bit text characters) are replaced with valid Hamming codewords,

while all other characters are considered as a non-valid codewords. The characters are

treated as 7-bit Hamming codewords, in this case, n=7, d=4, p=3, where n is the

length of the Hamming codeword, and d and p are the number of data and parity bits

in the Hamming codeword.

This means that the first 16 most common characters can be replaced with 5-bit

instead of the original uncompressed 7-bit (i.e., d+1 bits, where one bit is added

usually “0” as prefix bit). While all remaining characters are replaced with 8-bit

instead of the original uncompressed 7-bit (i.e., n+1 bits, where one bit is added

usually “1” as prefix bit). These “0” and “1” bits are added to be used during the

decompression process to distinguish the valid from the non-valid codewords.

3.2 The m-encoding Scheme

It can be seen from the above discussion that we can achieve compression only when

the sum of valid codewords for all first 16 most common characters is greater than the

sum of the non-valid codewords for all remaining characters. Furthermore, if the

number of different characters in the text file is less than or equal to 16 characters,

then all characters can be replaced with 5-bit instead of 7-bit and a maximum

compression ratio can be achieved which in this case 1.4 if the size of the compressed

file header is neglected.

Furthermore, in practical English text compression applications, the average number

of text characters within any text file is more than 60 characters, especially for

medium and large size text files (Sayood, 2012; Salomon, 2004). This means it will

be very difficult to achieve compression for files with flat (equal) characters

frequencies or sometimes reduces the compression ratio, as for most characters we

added extra bit (8-bit).

40

Therefore, in order to enhance the compression ratio and also to solve the problem

with relatively flat characters frequencies, we develop a new pre-fix encoding

scheme, which we call the m-encoding scheme. In this scheme, after finding the

characters frequencies and sorting them from the most common to the least common

character, we divide them into groups of 16 characters each starting from the most

common character, which means the last group may contain 16 or less than 16

characters. Since, the maximum number of text character is 96 characters as we

discussed in Chapter 2, the maximum number of groups is 8 numbered from G1 to G8.

The characters for each group are numbered from 0 to 15 and assigned a binary code

from 0000 to 1111.

Then, for each group, we will assign different combination of pre-fix bits. For

example, the pre-fix of G1 is “0” as it was in the original HCDC algorithm. The pre-

fix bit for the other groups are 10, 110, 1110, and so on until the last group which will

have all 1’s. Thus, we will have 7 1’s for G8. For each group we will add 4-bit

representing the sequence number of the character within the group. The pre-fix bits

and the numbers of bits for each group are summarized in Table (3.1).

It can be seen from the above table that we are reducing the number of bits written to

the compressed data file to 6-bit and 7-bit for G2 and G3 in comparison to 8-bit for the

HCDC algorithm. While it remained unchanged with 8-bit for G4, and start increasing

by 1-bit for each of the remaining groups until it reaches 11 for G8.

It is clear from the above discussion that we need more bits to represent the characters

in the last four groups (G5 to G8), but, fortunately, the characters frequencies within

these groups are small in comparison to that in the top four groups (G1 to G4).

Furthermore, most of the time we have the characters span over not more than 6

groups, which means the maximum number of bits required to represent the

compressed characters is 9 bits, because the number of pre-fix bits for the last group

is equal the number of bits for previous one but will pre-fix bits set to 1’s. This form

of pre-fix encoding guarantees a higher compression ratio than for the HCDC

algorithm even for files with flat characters frequencies distribution. However, in this

work, to improve the performance further, we introduce a modification to the above

continuous encoding.

41

 Table 3.1
The pre-fix bits and the number of bits written to the compressed data file.

Group
(G)

Character
(E)

Pre-fix bits
No. of
Pre-fix

bits

Character
Code

Compressed
Bits

No. of Compressed Bits

E-HCDC HCDC

1

1 0

1

0000 00000

5 5
:
:

0 :
:

:
: 0

16 0 1111 01111

2

17 10

2

0000 100000

6 8
:
:

10 :
:

:
: 10

32 10 1111 101111

3

33 110

3

0000 1100000

7 8
:
:

110 :
:

:
: 110

48 110 1111 1101111

4

49 1110

4

0000 11100000

8 8
:
:

1110 :
:

:
: 1110

64 1110 1111 11101111

5

65 11110

5

0000 111100000

9 8
:
:

11110 :
:

:
: 11110

80 11110 1111 111101111

6

81 111110

6

0000 1111100000

10 8
:
:

111110 :
:

:
: 111110

96 111110 1111 1111101111

7

97 1111110

7

0000 11111100000

11 8
:
:

1111110 :
:

:
: 1111110

112 1111110 1111 11111101111

8

113 1111111

7

0000 11111110000

11 8
:
:

1111111 :
:

:
: 1111111

128 1111111 1111 11111111111

In the modified encoding, we limit the number of pre-fix bits to a limited number of

bits (m). Therefore, we call this pre-fix encoding as m-encoding. Before, we proceed

with the description of this new encoding; let us define some parameters. The first one

is the number of groups (G), which is calculated as:

� � ������ (3.1)

Where G is the number groups, Nc is the number of character, and d is the number of

data bits in Hamming codeword.

42

Second, the number of characters within the last group Lg, which can be calculated by

using the following equation:

Lg = Nc – 2d × (G-1) (3.2)

Third, the number of bit (bg) required to represent the characters within the last group

(t), which can be calculated as:

	
 � � ����� ���� � (3.3)

When m is selected to be 4 bits, then the pre-fix combinations are 0 for G1, 10 for G2,

110 for G3, 1110 for G4, and 1111 for the remaining group(s). So that the number of

bits for the last groups is calculated using Eqn. (3.3), with Lt represents the number of

characters in the last group, or it can be calculated by:

Lt = Nc – m × 2d (3.4)

Table (3.2) shows the pre-fix bits combinations, the characters codes, and the

compressed bits written to the compressed file for a file contains 96 characters. It is

clear from the above discussion that the characters in G5 and G6 are merged together

forming a group of 32 characters requiring 5-bit to represent each character from

character 1 (00000) to character 31 (11111).

The pre-fix bits are 4-bits (1111), and then each character will be written as 9-bit

character to the compressed file. However, if Nc≤80 and Nc>64, then 1<Lt≤16, and in

this case bt could be ≤4, which means the number of compressed bits written to the

compressed file is ≤8.

43

 Table 3.2
The pre-fix bits and the number of bits written to the compressed data file.

Group
(G)

Character
(E)

Pre-fix
bits

No. of
Pre-fix

bits
Character Code Compressed Bits

No. of Compressed Bits

E-HCDC HCDC

1

1 0

1

0000 00000

5 5
:
:

0 :
:

:
: 0

16 0 1111 01111

2

17 10

2

0000 100000

6 8
:
:

10 :
:

:
: 10

32 10 1111 101111

3

33 110

3

0000 1100000

7 8
:
:

110 :
:

:
: 110

48 110 1111 1101111

4

49 1110

4

0000 11100000

8 8
:
:

1110 :
:

:
: 1110

64 1110 1111 11101111

5

65 1111

4

00000 111100000

9 8

:
:
:
:

1111

:
:
:
:

:
:
:
:

1111

1111

6

1111

1111

1111

96 1111 11111 111111111

One important feature of the m-encoding scheme is that for m=1, the scheme behaves

exactly the same as in the original HCDC algorithm, where in this case the first 16

most common characters (G1) is preceded by 0, while for all other characters (groups)

are preceded by 1. However, there is only one difference here, which is in the original

HCDC, all 7-bit character is appended to the compressed file, while here, only bt bits

are appended, and bt is calculated depending on the sequence number of the character

excluding the first 16 most common characters. In this case, we may need less than 7-

bit to represent characters in the compressed file, which provides further saving and

increasing the compression ratio.

Finally, in this section, one other important feature of the m-encoding scheme is that

users do not need to specify m, and they can leave the code to calculate the optimum

value of m depending on the characters frequencies or characters counts. Using the m-

encoding scheme, the size of the compressed binary sequence can be calculated as:

44

�� � �� � 1����
��

���
� ��� � �� � �� �

����

������ �����

!

���
�	
 �"� � ��

��

����!���
 (3.5)

Where

 Qb length of the compressed binary sequence in bits.

 d number of data bits in the Hamming codeword.

 Ti counts for character i (i=1 to Nc).

 m maximum length for the pre-fix bits.

 bt number of bits representing the characters of the last group.

 Nc total number of characters within the text file.

So that the code can calculate the values of Qb for all possible values of m, for

example, for 7-bit Hamming codeword, the maximum possible value for m is 7. Then,

the code can select the value of m that gives the minimum Qb to ensure maximum

compression ratio. However, until this moment we have not discussed the overhead

bit added for the compressed file header, which will be discussed in the next section.

3.3 The E-HCDC Algorithm

This Section presents the detail description of the E-HCDC algorithm for text

compression. In order to improve the compression ratio of the HCDC algorithm, we

utilize the concept of the pre-fix m-encoding scheme described in the previous section

instead of the original 0/1 prefix-encoding. The algorithm is developed into two

algorithms, one is the compression algorithm (E-HCDC compressor), and the other

one is the decompression algorithm (E-HCDC decompressor), which are described

below.

3.3.1 The E-HCDC Compressor

The E-HCDC compressor consists of the following steps:

(1) Read-in the input uncompressed text file

45

(2) Find the characters within the uncompressed file (Ui); and calculate the

number of characters within the uncompressed text file (Nc), characters

counts (Ti), and characters frequencies (fi), where i=1 to Nc.

(3) Sort out the characters from the most common to the least common.

(4) Determine the optimum value for m as described in the previous section and

Eqn. (3.5).

(5) Initialize the compressed binary sequence to Null.

(6) Start the compression process by reading in one character at a time until

processing all characters; find the character sequence number, the group it’s

belonging to, and its sequence within the group. According to the value of m

and the group it’s belonging to, append the pre-fix bits to the compressed

binary sequence, find the character’s equivalent binary representation based

on the associated character wordlength (d or bt depending on m and G), and

then append the character binary representation to the compressed binary

sequence.

(7) In order to be able to convert the resultant compressed binary sequence (Qb)

to character sets (8-bit character length), and because Qb may not be a

multiple of 8, then we append padded bits (say a 0’s) at the end of the

compressed binary sequence, and the length of the padded bits (a) need to be

stored at the compressed file header, so these bits can be discarded during

the decompression phase. The number of padded bits (a) can be calculated

as:

a = 8 – Qb Mod 8 (3.6)

(8) Initialize the compressed text sequence to Null.

(9) Construct the compressed file header and append it to the compressed text

sequence, which should contain all information necessary during the

decompression process. The compressed file header will be described in the

next section.

46

(10) Convert the compressed binary sequence to characters by reading-in 8-bit at

a time until converting all compressed binary sequence. For each 8-bit, find

its equivalent ASCII code, and then append the equivalent character to the

compressed text sequence.

(11) Write the compressed text sequence to a file (compressed file).

In this case the size of the compressed file (Sc) is given by:

#$ � % � & �� 8 ((3.6)

Where H is the length of the compressed file header. The compression ratio can be

easily calculated as C=Nc/Sc. Figure (3.1) outlines the procedure for the E-HCDC

compressor.

// The procedure of the E-HCDC compressor.

//
Read-in the input uncompressed text file
Find the uncompressed characters (Ui) within the file; and calculate the number of characters within the

text file (Nc), characters counts (Ti), and characters frequencies (fi), where i=1 to Nc.
Sort the characters from the most common to the least common.
Determine the optimum value for m.
Initialize the compressed binary sequence (Qb) to Null (Qb=Null).
Start the compression process

Read-in one character at a time until processing all characters
Find the character sequence number (s)
Find the group to which the character is belonging to (g)
Find the sequence number of the character within the group (q)
Append the pre-fix bits to the compressed binary sequence according to m and g
Find the character’s equivalent binary representation based on the associated character

wordlength (d or bt depending on m and g)
Append the character binary representation to the compressed binary sequence

Append padding bits to ensure (Qb) is a multiple of 8-bit.
Convert Qb to characters of 8-bit character wordlength
Initialize the compressed text sequence to Null.
Construct the compressed file header and append it to the compressed text sequence
Convert the compressed binary sequence to characters

Read-in 8-bit at a time until converting all compressed binary sequence
Find its equivalent ASCII code
Find equivalent character
Append the character to the compressed text sequence

Write the compressed text sequence to a file (compressed file).

Figure (3.1). The procedure of the E-HCDC compressor.

47

3.3.2 The E-HCDC Decompressor

For each compression algorithm, there should be an associated decompression

algorithm to ensure a pre-specified data original data retrieval, either exact as in

lossless data compression (e.g., text compression) or approximate as in lossy data

compression (e.g., multimedia compression). In this work, we concern with text

compression, thus we are in need of data decompressor to work in association with

the E-HCDC compressor presented above, which will be called the E-HCDC

decompressor.

The E-HCDC decompressor consists of the following steps:

(1) Read-in the input compressed file

(2) Extract the file header, and find-out the number of characters within the

original uncompressed text file (Nc), the uncompressed characters

themselves (Ui) (where i=1 to Nc.), the maximum length of the pre-fix bits

(m), and the number of padded bits (a).

(3) Determine the number of groups (G) as G=m+1, the number of characters in

the last group (Lt), and the number of bits to represent the characters of the

last group (bt).

(4) Initialize the compressed binary sequence (Qb) to Null.

(5) Initialize the decompressed text sequence (Dt) to Null.

(6) Extract the compressed text sequence and read-in it one character at a time,

convert each character to a binary representation according to its ASCII

code, and append the resultant binary representation to the compressed

binary sequence (Qb), until all characters are read-in.

(7) Discard the appended bits (a).

(8) Start the decompression process by reading in 1-bit, if this bit is 0, then the

character belongs to G1 (i.e., g=1), read-in the next 4-bit, find-out the

equivalent decimal value (e) between 0 to 15, which represents the sequence

number of the character (q) within G1 minus 1 (q=e+1), determine the global

48

sequence number (s) as:

s = q + 2d (g - 1) = 1 + e + 2d (g - 1) (3.7)

Then, retrieve the character with sequence number s (Us) from the

uncompressed characters lists and append it Dt.

If the read-in 1-bit is 1 (count the number of 1’s (z)), then reads-in another

bit until a 0 is read-in or read-in a maximum of m 1’s. In this case, the group

number (g) is equal to z+1 as long as z+1<m, otherwise it is equal to m, as

illustrated in the following equation:

) � * + � 1, + � 1 - "
" � 1, ./01234516 (3.8)

If g is not the last group (g<G), then read-in 4-bit, otherwise (g is the last

group g=G) read-in bt-bit, and perform the same steps above and append

another character to Dt. This process continues until reading all compressed

binary sequence.

(9) Write the decompressed text sequence (Dt) to a file (uncompressed file).

Figure (3.2) outlines the procedure for the E-HCDC decompressor.

It can be clearly seen from the above compressor and decompressor procedures of the

E-HCDC algorithm that the E-HCDC algorithm is:

(1) Bit-level. It processes the data at a binary level.

(2) Lossless. An exact form of the source file is retrieved.

(3) Adaptive. The character-binary coding depends on the characters frequencies.

(4) Asymmetric. The compression processing time is higher than the

decompression processing time.

49

// The procedure of the E-HCDC decompressor.
//
Read-in the input compressed file.
Extract the file header and find-out the following:

The number of characters within the original uncompressed text file (Nc)
The uncompressed characters themselves (Ui) (where i=1 to Nc.)
The maximum length of the pre-fix bits (m)
The number of padded bits (a)

Determine the following:
The number of groups (G) as G=m+1
The number of characters in the last group (Lt)
The number of bits to represent the characters of the last group (bt)

Initialize the compressed binary sequence (Qb) to Null.
Initialize the decompressed text sequence (Dt) to Null
Extract the compressed text sequence and read-in it one character at a time until all characters are read-
in

Convert each character to a binary representation according to its ASCII code
Append the resultant binary representation to the compressed binary sequence (Qb)

Discard the appended bits (a)
Start the decompression process
Do

Read in 1-bit
If this bit is 0

The character belongs to G1 (i.e., g=1)
Read-in the next 4-bit
Determine the equivalent decimal value (e) between 0 to 15
Determine the sequence number of the character (q) within G1 (q=e+1)
Determine the global sequence number (s)
Retrieve the character with sequence number s (Us) from the uncompressed characters lists
Append Us to Dt

Else
Count the number of 1’s (z)) (z=z+1) (initially z=0)
Reads-in another bit until a 0 is read-in or read-in a maximum of m 1’s
Set the group number (g) to z+1 as long as z+1<m, otherwise g=m
If g is not the last group (g<G)

Read-in 4-bit
Else (g is the last group g=G)

Read-in bt-bit
End If
Determine the equivalent decimal value (e) between 0 to 15 or 0 to 2bt-1
Determine the sequence number of the character (q) within its group
Determine the global sequence number (s)
Retrieve the character with sequence number s (Us) from the uncompressed characters lists
Append Us to Dt

End If
Until reading-in all compressed binary sequence

Write the decompressed text sequence (Dt) to a file (uncompressed file).

Figure (3.2). The procedure of the E-HCDC decompressor.

50

3.4 The E-HCDC Header

The E-HCDC algorithm compressed file header contains all additional information

that is required by the decompression algorithm. It consists of two main fields; these

are:

(a) HCDC field

(b) Text characters field

These two fields will be followed by the text compressed data. In what follows brief

description is given for these two fields.

(a) HCDC field

The HCDC field of the E-HCDC algorithm is designed to keep the same structure of

original HCDC field for consistency purposes. It is an 8-byte field encloses

information related to the algorithm, such as: algorithm name (HCDC), algorithm

version (V), number of symbols (character) in the original text file (Nc), coding format

(F), number of compression loops (k). It can be seen that some of the data is

redundant, however, they have insignificant effect due their very small (negligible)

size.

The original HCDC algorithm (Al-Bahadili, 2008) was designated as Version-0 (i.e.,

V is set to 0), the HCDC(k) scheme (Al-Bahadili & Rababa’a, 2010) is designated as

Version-1 (i.e., V is set to 1), while the E-HCDC algorithm is designated as Version 3.

A version under development called AQ-HCDC for adaptive-quality image

compression allocated as Version 2. The coding format (F) is set to 0 for ASCII

coding, 1 for Huffman coding, 2 for adaptive coding, etc. Table (3.3) lists the

components of this field and their description.

(b) Text Characters field

The text characters field is designed to include minimum information, it encloses

information related to:

(1) The maximum length for the pre-fix bits (m), which is accommodated at the

left 4-bit of the 9th character.

51

(2) The number of padded bits (a), which is accommodated at the right 4-bit of

the 9th character.

(3) The number of text characters (Nc), which is accommodated at the 10th

character.

(4) The actual text characters (Ui) sorted out from the most common to the least

common, which are accommodated at the 11th character up to the (11+Nc)
th

characters.

Figure (3.3) shows the structure of the E-HCDC compressed file header. It can be

seen that the total length has a maximum size of 138 Bytes, and generally it is given

by:

H = 10 + Nc (3.9)

The 10 Bytes in Eqn. (3.9) is the sum of 8-Byte for the HCDC field, 1-Byte for m and

a, and 1-Byte for Nc, which is stored twice for consistency purposes with previous

versions.

H C D C V Nc F k

m

+

a

Nc U1, U2, U3, …, UNc Compressed Text Data

Figure (3.3). The structure of the E-HCDC compressed file header.

Table (3.3)
Components of the HCDC field of the E-HCDC compressed file header.

Components
Length
(Byte)

Description

HCDC 4 Name of the compression algorithm.

V 1 Version of the HCDC algorithm.

Nc 1
Number of symbols (text characters) within the original text
file.

F 1
Coding format (0 for ASCII coding, 1 for Huffman coding, 2
for adaptive coding, etc.)

k 1 The number of compression loops.

52

Chapter Four

Experimental Results and Discussions

The Enhanced Hamming Codes based Data Compression (E-HCDC) algorithm is

implemented using VB.net programming language. The resultant code allows a wide

range of investigations and experiments to be performed. However, it is only used to

compress a number of text files from standard corpora, namely, Calgary Corpus,

Canterbury Corpus, Artificial Corpus, and Large Corpus (Arnold & Bell, 1997; Bell

& Witten, 1990; Ian H. Witten et al., 1987), which are described in Appendix A.

At this stage, it is important to indicate that little efforts have been made to optimize

the runtime of the compression/decompression prototype code, therefore, in this work,

we only compare and show the results for the compression ratio of the algorithm.

However, this scheme is classified as an asymmetric bit-level data compression

algorithm as the compression processing time is higher than the time required for

decompression.

In this thesis, results of three experiments are presented to evaluate and compare the

compression ratio of the E-HCDC algorithm (CE-HCDC). The first experiment evaluates

CE-HCDC and compares it against the compression ratio of the original HCDC

algorithm (CHCDC) (Al-Bahadili, 2010), and also estimate the enhancement ratio (Er)

achieved by the enhanced version. The other two experiments compare CE-HCDC

against a number of well-known statistical and adaptive algorithms.

The three experiments are summarized below and will be described in the next

sections.

(1) Experiment #1: Comparing the Compression Ratio of the E-HCDC and

HCDC Algorithms.

(2) Experiment #2: Comparing the Compression Ratio of the E-HCDC and a

Number of Statistical Algorithms.

(3) Experiment #3: Comparing the Compression Ratio of the E-HCDC and a

Number of Adaptive Algorithms

53

4.1 Experiment #1:Comparing the Compression Ratio of the E-

HCDC and HCDC Algorithms

This experiment evaluates CE-HCDC of the E-HCDC algorithm, and compares it against

CHCDC of the HCDC algorithm for a number of text files from standard corpora,

namely, Calgary Corpus, Canterbury Corpus, Artificial Corpus, and Large Corpus,

which are briefly described in Appendix A and further details can be found in (Arnold

& Bell, 1997; Bell & Witten, 1990; Ian H. Witten et al., 1987).

The results for CHCDC and CE-HCDC are listed in Table (4.1) and also plotted in Figure

(4.1) for text files from the Calgary Corpus, and in Figure (4.2) for text files from the

Canterbury, Artificial, and Large corpora. Table (4.1) lists the following parameters:

(1) Name and size of the text file.

(2) Number of characters within the text files (Nc).

(3) The compression ratios CHCDC and CE-HCDC.

(4) The number of groups (G) calculated using Eqn. (3.1).

(5) The maximum number of padded bits (m) for the m-encoding scheme.

(6) The compression enhancement ratio (Er), which is calculated by:

78 � 9: ;<=< > 9;<=< 9;<=< � 100 4.1

Where CE-HCDC is the compression ratio of the HCDC algorithm, CHCDC is the

compression ratio of the HCDC algorithm, and Er is the enhancement ratio.

It can be clearly seen from the above results that the E-HCDC algorithm enhances the

performance of the HCDC algorithm by 15% to 20%, which is achieved due to the

implementation of m-encoding.

It is also important to realize that CHCDC and CE-HCDC can be calculated analytically as

described in Chapter 2 for the HCDC algorithm and in Chapter 3 for the E-HCDC

algorithm; after calculating the characters frequencies of the text files. This can be

considered as a validation to the accuracy of the coding process.

54

Table (4.1) – Experiment #1

Comparing CHCDC and CE-HCDC.

File Name
File Size
(Byte)

Nc CHCDC CE-HCDC
G (m)

m=G-1
Er (%)

Calgary corpus

1 bib 111261 81 1.177 1.455 6 (5) 18

2 book1 768771 82 1.269 1.537 6 (5) 19

3 book2 610856 96 1.247 1.509 6 (5) 18

4 paper1 53161 95 1.211 1.484 6 (5) 18

5 paper2 82199 91 1.265 1.531 6 (5) 19

6 paper3 46526 84 1.261 1.525 6 (5) 19

7 paper4 13286 80 1.257 1.52 5 (4) 19

8 paper5 11954 91 1.218 1.486 6 (5) 18

9 paper6 38105 93 1.203 1.477 6 (5) 18

Canterbury corpus

10 alice29.txt 152089 74 1.258 1.529 5 (4) 19

11 asyoulik.txt 125179 68 1.230 1.508 5 (4) 18

12 lcet10.txt 426754 84 1.252 1.520 6 (5) 19

13 plrabn12.txt 481861 81 1.269 1.537 6 (5) 19

Artificial corpus

14 alphabet.txt 100000 26 1.138 1.486 2 (1) 18

15 random.txt 100000 64 0.969 1.236 4 (3) 15

Large corpus

16 bible.txt 4047390 63 1.294 1.551 4 (3) 19

17 world192.txt 2473400 94 1.206 1.471 6 (5) 18

55

Figure (4.1). Comparing CHCDC and CE-HCDC for a number of text files from
the Calgary Corpus.

Figure (4.2). Comparing CHCDC and CE-HCDC for a number of text files from the

Canterbury, Artificial, and Large Corpora.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Bib book1 book2 paper1 paper2 paper3 paper4 paper5 paper6

C
om

pa
ri

so
n

 R
at

io

File Name

HCDC E-HCDC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

alice29.txt

asyoulik.txt

lcet10.txt

plrabn12.txt

alphabet.txt

random
.txt

bible.txt

w
orld192.tx

t

C
om

pa
ri

so
n

 R
at

io

File Name

HCDC E-HCDC

56

Statistics of five files are given in tables in Appendix B, precisely; we present the

statistics for five text files of different sizes and from different corpora, namely,

alice29.txt, bib, bible, book1, and paper1. The tables list the following:

(1) Size of the text (uncompressed) file in Bytes (SB)

(2) Size of the text (uncompressed) file in bits (So)

(3) Size of the compressed file in bits (Sc)

(4) Number of characters within the text file (Nc)

(5) The maximum number of pre-fix bits (m) of the m-encoding scheme

(6) List of characters (ci) (i=1 to Nc)

(7) Character occurrence (counts) (Ti) (i=1 to Nc)

(8) Character frequency (fi) (i=1 to Nc)

(9) Character ASCII code in binary representation (Ai) (i=1 to Nc)

(10) Character encoding in the E-HCDC algorithm (Ei)

The results in Appendix B give us insight into the behavior and the encoding process

of the E-HCDC algorithm, and also the tables can be used to calculate the

compression ratio analytically.

4.2 Experiment #2: Comparing the Compression Ratio of the E-

HCDC and a Number of Statistical Algorithms

In this experiment, the CE-HCDC of the E-HCDC algorithm is compared against a

number of statistical data compression algorithms, such as:

(1) The Huffman coding (HU)

(2) The fixed-length Hamming (FLH)

(3) The Huffman coding following the fixed-length Hamming (HF)

57

(4) The ACW(n,s) scheme using adaptive coding (ACW-A)

(5) The ACW(n,s) scheme using Huffman coding (ACW-H)

(6) The HCDC algorithm

(7) The HCDC(k) algorithm

The compression ratios are calculated for two text files from the Calgary Corpus,

namely, book1 and paper1, where book1 represents a large file example with size

768771 Byte, while paper1 represents a small file with size 53161 Byte. The statistics

of these text files are presented in Appendix B. The results are listed in Table (4.2)

and also plotted in Figure (4.3).

Table (4.2) – Experiment #2

Comparing CE-HCDC of the E-HCDC algorithm against the compression ratios of
various statistical algorithms.

Algorithm Book1 Paper1

HU 1.72 1.60

FLH 1.14 1.14

HF 1.71 1.57

ACW–A 1.67 (14) 1.54 (11)

ACW–H 2.67 (11) 2.43 (11)

HCDC 1.27 1.21

HCDC(k) 2.23 (6) 1.66 (4)

E-HCDC 1.54 1.48

HU Huffman coding

Sharieh, 2004 FLH Fixed-Length Hamming

HF HU following FLH

ACW-A Adaptive Character Wordlength with adaptive coding Al-Bahadili &
Hussain, 2010 ACW-H Adaptive Character Wordlength with Huffman coding

HCDC Hamming Codes based Data Compression Al-Bahadili &
Rababa’a,
2010

HCDC(k) Adaptive HCDC

58

Figure (4.3). Comparing CE-HCDC of the E-HCDC algorithm against the

compression ratio of various statistical algorithms.

The results show that the E-HCDC algorithm achieves a reasonable compression ratio

with respect to other algorithms, and it is expected to be significantly improves if the

algorithm is repetitively applied, i.e. developing an E-HCDC(k) algorithm similar to

the HCDC(k) algorithm. The values between brackets for the ACW algorithm

represent the compression character wordlength, while the values between brackets for

the HCDC represent the number of repetitive loops.

4.3 Experiment #3: Comparing the Compression Ratio of the E-

HCDC and a Number of Adaptive Algorithms

In this experiment, we compare CE-HCDC of the E-HCDC algorithm against the

compression ratios for a number of adaptive algorithms, namely:

(1) The Unix compact utility that is based on adaptive Huffman (AH)

(2) The greedy adaptive Fano coding (AF)

0

0.5

1

1.5

2

2.5

3

HU* FLH* HF* ACW–A** ACW–H** HCDC HCDC(k) E-HCDC

C
om

pa
ri

so
n

 R
at

io

File Name

Book1

Paper1

59

Furthermore, for the sake of comparison, we include results for the HCDC and

HCDC(k) algorithms. The compression ratios are calculated for seven text files from

the Calgary and Canterbury Corpora, namely, bib, book1, book2, and paper1 from the

Calgary corpus, and alice29, asyoulik, lect10, and plrabn12 from the Canterbury

Corpus. The statistics of some of these files are presented in Appendix B. The results

are listed in Table (4.3) and also plotted in Figure (4.4).

Once again, the CE-HCDC of the E-HCDC looks very competitive to the compression

ratios of the adaptive algorithms, and it is expected to overwhelmed them if the

algorithm is repeatedly applied, i.e., developing a new version of the HCDC(k) that

utilizes the m-encoding scheme, which should be very interesting and promising

research.

Table (4.3)

Comparing the compression ratio of the E-HCDC algorithm against various adaptive
algorithms.

Corpus
File

Name
AH AF HCDC HCDC(k) E-HCDC

Calgary
Corpus

bib 1.526 1.524 1.177 1.428 (4) 1.529

book1 1.753 1.750 1.269 2.225 (6) 1.508

book2 1.658 1.653 1.247 1.971 (5) 1.455

paper1 1.587 1.588 1.211 1.658 (4) 1.537

Canterbur
y Corpus

alice29 1.753 1.746 1.258 2.097 (5) 1.509

asyoulik 1.648 1.645 1.230 1.825 (5) 1.520

lcet10 1.718 1.717 1.252 2.009 (5) 1.484

plrabn12 1.769 1.766 1.269 2.235 (6) 1.537

AH Adaptive Huffman use in Unix compact utility (Rueda &
Oommen, 2006) AF Adaptive Fano uses Greedy adaptive Fano coding

HCDC Hamming Codes based Data Compression Al-Bahadili &
Rababa’a, 2010 HCDC(k) Adaptive HCDC

60

Figure (4.4). Comparing CE-HCDC of the E-HCDC algorithm against the

compression ratio of various adaptive and statistical algorithms.

0

0.5

1

1.5

2

2.5

bib book1 book2 paper1 alice29 Asyoulik lcet10 plrabn12

C
om

pa
ri

so
n

 R
at

io

File Name

AH AF HCDC HCDC(k) E-HCDC

61

Chapter Five

Conclusions and recommendations for future work

5.1 Conclusions

This thesis presents a description of an enhanced version of the Hamming Codes

based Data Compression (HCDC) algorithm, which is called the Enhanced HCDC

and abbreviated as E-HCDC. The compression power of the algorithm and the actual

enhancement achieved by the E-HCDC algorithm over the original HCDC are

evaluated through a number of experiments of compressing a number of text files

from Standards Corpora, such as the Calgary, Canterbury, Artificial, and Large

Corpora. The compression ratios of the new algorithm are also compared against its

preceding algorithm (i.e., the HCDC algorithm) and many other statistical and

adaptive algorithms for compressing the same text files.

The main conclusions of this thesis are:

(1) The E- HCDC algorithm provides a compression ratio of 15% to 20% higher

than the compression ratio of the original HCDC algorithm for a range of text

files from various standard corpora. This is achieved through the utilization

of the newly developed m-encoding scheme for the pre-fix bits.

(2) The analytical procedure for estimating the compression ratio provides a

mean to automatically compute the optimum length for the pre-fix bits, which

minimize the user intervention with the code.

(3) The E-HCDC algorithm achieves a compression ratio that is high enough to

be competent with the compression ratios achieved by many well-known

algorithms of statistical and adaptive nature.

(4) The E-HCDC algorithm achieves acknowledgeable compression ratios

encouraging for extending this work to the development of an enhanced

version of the HCDC(k) algorithm, which will be expected to be the highest

possible compression ratio for a lossless bil-level data compression

algorithm.

62

(5) The new algorithm as its preceding algorithm is characterized as:

a. Lossless

b. bit-level

c. An asymmetric

(6) Finally, the E-HCDC algorithm can be used as a post processing technique to

increase the compression ratio of statistical lossless data compression

algorithms, such as Shanon-Fano coding, Huffman coding, arithmetic coding,

a combination of these algorithms, or any modified form of them.

5.2 Recommendations for Future Work

The main recommendations for future work are:

(1) Utilize the m-encoding to develop a repetitive version of the E-HCDC

algorithm, namely, a new E-HCDC(k) algorithm.

(2) Evaluate the performance of the E-HCDC algorithm in compressing other

types of files, such as standstill images, video files, etc.

(3) Use the E-HCDC algorithm as a post-compression stage to other data

compression algorithms, in particular, Shanon-Fano coding, Huffman coding,

arithmetic coding, a combination of these algorithms, or any modified form

of them.

(4) Develop an optimized version of the code to compare its runtime with other

compression algorithms and state-of-the-are software. In addition, to compare

the compression and the decompression processing runtimes.

(5) Modify the core of E-HCDC algorithm itself in some way to provide higher

compression ratio.

63

References

Adiego, J., & De la Fuente, P. (2006). On the use of words as source alphabet

symbols in PPM. In Data Compression Conference, 2006. DCC 2006.

Proceedings (p. 1 pp. –435). Presented at the Data Compression Conference,

2006. DCC 2006. Proceedings. doi:10.1109/DCC.2006.60

Adiego, Joaquín, Navarro, G., & De la Fuente, P. (2007). Using structural contexts to

compress semistructured text collections. Information Processing &

Management, 43(3), 769–790. doi:10.1016/j.ipm.2006.07.001

Al-Bahadili, H. (2008). A novel lossless data compression scheme based on the error

correcting Hamming codes. Computers & Mathematics with Applications,

56(1), 143–150. doi:10.1016/j.camwa.2007.11.043

Al-Bahadili, H., & Al-Saab, S. (2011). A Novel Compressed Index-Query Web

Search Engine Model Utilizing the HCDC Algorithm. The Research Bulletin

of Jordan ACM, 2(4), 119 – 128.

Al-Bahadili, H., & Hussain, S. M. (2008). An adaptive character wordlength

algorithm for data compression. Computers & Mathematics with Applications,

55(6), 1250–1256. doi:10.1016/j.camwa.2007.05.014

Al-Bahadili, H., & Rababa’a, A. (2010). A Bit-Level Text Compression Based on the

HCDC Algorithm. International Journal of Computers and Applications,

32(3). doi:10.2316/Journal.202.2010.3.202-2914

Al-Saab, S. (2011). A Novel Search Engine Model Based on Index-Query Bit-Level

Compression (PhD Thesis). University of Banking & Financial Sciences,

Faculty of Information Technology and Systems, Amman, Jordan.

Amro, I., Zitar, R. A., & Bahadili, H. (2011). Speech compression exploiting linear

prediction coefficients codebook and hamming correction code algorithm.

International Journal of Speech Technology, 14(2), 65–76.

doi:10.1007/s10772-011-9091-7

64

Arnold, R., & Bell, T. (1997). A corpus for the evaluation of lossless compression

algorithms. In Data Compression Conference, 1997. DCC ’97. Proceedings

(pp. 201 –210). Presented at the Data Compression Conference, 1997. DCC

’97. Proceedings. doi:10.1109/DCC.1997.582019

Barr, K. C., & Asanović, K. (2006). Energy-aware lossless data compression. ACM

Trans. Comput. Syst., 24(3), 250–291. doi:10.1145/1151690.1151692

Bell, T. C., & Witten, I. H. (1990). Test Compression. In Test Compression.

Brisaboa, N. R., Fariña, A., Navarro, G., & Paramá, J. R. (2005). Efficiently

decodable and searchable natural language adaptive compression. In

Proceedings of the 28th Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval (pp. 234–241). New

York, NY, USA: ACM. doi:10.1145/1076034.1076076

Brittain, N. J., & El-Sakka, M. R. (2007). Grayscale true two-dimensional dictionary-

based image compression. Journal of Visual Communication and Image

Representation, 18(1), 35–44. doi:10.1016/j.jvcir.2006.09.001

Chu, A. (2002). LZAC lossless data compression. In Data Compression Conference,

2002. Proceedings. DCC 2002 (p. 449). Presented at the Data Compression

Conference, 2002. Proceedings. DCC 2002. doi:10.1109/DCC.2002.999992

Conley, E. S., & Klein, S. T. (2006). Compression of multilingual aligned texts. In

Data Compression Conference, 2006. DCC 2006. Proceedings (p. 1 pp. –

442). Presented at the Data Compression Conference, 2006. DCC 2006.

Proceedings. doi:10.1109/DCC.2006.15

Dai, V. (2008). Data Compression for Maskless Lithography Systems: Architecture,

Algorithms and Implementation. ProQuest.

Freschi, V., & Bogliolo, A. (2004). Longest common subsequence between run-

length-encoded strings: a new algorithm with improved parallelism.

Information Processing Letters, 90(4), 167–173. doi:10.1016/j.ipl.2004.02.011

65

G. Caire, S. S., & S. Verdu. (2004). Advances In Network Information Theory:

Dimacs Workshop Network Information Theory, March 17-19, 2003,

Piscataway, New Jersey. American Mathematical Soc.

Gilbert, J., & Abrahamson, D. M. (2006). Adaptive object code compression. In

Proceedings of the 2006 International Conference on Compilers, Architecture

and Synthesis for Embedded Systems (pp. 282–292). New York, NY, USA:

ACM. doi:10.1145/1176760.1176795

Hashemian, R. (2003). Direct Huffman coding and decoding using the table of code-

lengths. In International Conference on Information Technology: Coding and

Computing [Computers and Communications], 2003. Proceedings. ITCC

2003 (pp. 237 – 241). Presented at the International Conference on

Information Technology: Coding and Computing [Computers and

Communications], 2003. Proceedings. ITCC 2003.

doi:10.1109/ITCC.2003.1197533

Howard, P. G., & Vitter, J. S. (1994). Arithmetic coding for data compression.

Proceedings of the IEEE, 82(6), 857–865. doi:10.1109/5.286189

Huffman, D. A. (1952). A Method for the Construction of Minimum-Redundancy

Codes. Proceedings of the IRE, 40(9), 1098 –1101.

doi:10.1109/JRPROC.1952.273898

Irshid, M. I. (2001). A Simple Binary Run-Length Compression Technique for Non-

Binary Sources Based on Source Mapping. Active and Passive Electronic

Components, 24(4), 211–221. doi:10.1155/2001/23505

Isal, R. Y. K., & Moffat, A. (2001). Parsing strategies for BWT compression. In Data

Compression Conference, 2001. Proceedings. DCC 2001. (pp. 429 –438).

Presented at the Data Compression Conference, 2001. Proceedings. DCC

2001. doi:10.1109/DCC.2001.917174

Jaradat, A.-R., Irshid, M., & Nassar, T. (2006). A File Splitting Technique for

Reducing the entropy of text files. Int. Journal of Information Technology,

3(2).

66

Karpinski, M., & Nekrich, Y. (2009). A Fast Algorithm for Adaptive Prefix Coding.

Algorithmica, 55(1), 29–41. doi:10.1007/s00453-007-9140-4

Kimura, N., & Latifi, S. (2005). A survey on data compression in wireless sensor

networks. In International Conference on Information Technology: Coding

and Computing, 2005. ITCC 2005 (Vol. 2, pp. 8 – 13 Vol. 2). Presented at the

International Conference on Information Technology: Coding and Computing,

2005. ITCC 2005. doi:10.1109/ITCC.2005.43

Klein, S. T. (2000). Skeleton Trees for the Efficient Decoding of Huffman Encoded

Texts. Information Retrieval, 3(1), 7–23. doi:10.1023/A:1009910017828

Knuth, D. E. (1985). Dynamic huffman coding. Journal of Algorithms, 6(2), 163–180.

doi:10.1016/0196-6774(85)90036-7

Kui Liu, Y., & Žalik, B. (2005). An efficient chain code with Huffman coding.

Pattern Recognition, 38(4), 553–557. doi:10.1016/j.patcog.2004.08.017

Lansky, J., & Zemlicka, M. (2006). Compression of small text files using syllables. In

Data Compression Conference, 2006. DCC 2006. Proceedings (p. 1 pp. –

458). Presented at the Data Compression Conference, 2006. DCC 2006.

Proceedings. doi:10.1109/DCC.2006.16

Lánskỳ, J., & Zemlicka, M. (2005). Text Compression: Syllables. In DATESO (Vol.

129, pp. 32–45). Retrieved from

http://www.cs.vsb.cz/dateso/sbornik/dateso05.pdf#page=40

Mahoney, M. (2000). Fast Text Compression with Neural Networks. Proceedings of

the 13th International Florida Artificial Intelligence Research Society

Conference, 230 – 234.

Moffat, A., & Isal, R. Y. K. (2005). Word-based text compression using the Burrows–

Wheeler transform. Information Processing & Management, 41(5), 1175–

1192. doi:10.1016/j.ipm.2004.08.009

Nelson, M. R. (1989). LZW data compression. Dr. Dobb’s J., 14(10), 29–36.

67

Nofal, S. (2007). Bit-Level Text Compression. Proceedings of the First International

Conference on Digital Communications and Computer Applications, 486 –

488.

Pandya, M. K. (2000). Data Compression: Efficiency of Varied Compression

Techniques. UK: University of Brunel.

Plantinga, H. (2006). An Asymmetric, Semi-adaptive Text Compression Algorithm.

IEEE Data Compression.

Rein, S., Gühmann, C., & Fitzek, F. (2006). Compression of Short Text on Embedded

Systems. Journal of Computers, 1(6). doi:10.4304/jcp.1.6.1-10

Rico-Juan, J. R., Calera-Rubio, J., & Carrasco, R. C. (2005). Smoothing and

compression with stochastic -testable tree languages. Pattern Recognition,

38(9), 1420–1430. doi:10.1016/j.patcog.2004.03.024

Robert, L., & Nadarajan, R. (2006). New Algorithms For Random Access Text

Compression. In Third International Conference on Information Technology:

New Generations, 2006. ITNG 2006 (pp. 104 –111). Presented at the Third

International Conference on Information Technology: New Generations, 2006.

ITNG 2006. doi:10.1109/ITNG.2006.98

Rueda, L. G., & Oommen, B. J. (2001). Enhanced static Fano coding. In 2001 IEEE

International Conference on Systems, Man, and Cybernetics (Vol. 4, pp. 2163

–2169 vol.4). Presented at the 2001 IEEE International Conference on

Systems, Man, and Cybernetics. doi:10.1109/ICSMC.2001.972876

Rueda, L., & Oommen, B. J. (2006). A Fast and Efficient Nearly-Optimal Adaptive

Fano Coding Scheme.

Salomon, D. (2004). Data Compression: The Complete Reference. Springer.

Sayood, K. (2012). Introduction to data compression. Fourth Edition, Morgan

Kaufmann.

Shannon, C. E. (1951). Prediction and Entropy of Printed English”, The Bell System

Technical Journal.

68

Sharieh, A. (2004). An Enhancement of Huffman Coding for the Compression of

Multimedia File. Transactions of Engineering Computing and Technology,

3(1), 303 – 305.

Sharma, A. B., Golubchik, L., Govindan, R., & Neely, M. J. (2009). Dynamic data

compression in multi-hop wireless networks. In Proceedings of the Eleventh

International Joint Conference on Measurement and Modeling of Computer

Systems (pp. 145–156). New York, NY, USA: ACM.

doi:10.1145/1555349.1555367

Sirbu, A., & Cleju, I. (2011). On Some Characteristics of a Novel Lossless Data

Compression Algorithm based on Polynomial Codes. Retrieved from

http://iit.iit.tuiasi.ro/Reviste/mem_sc_st_2011/14_MSS_Sirbu_Cleju.pdf

Tanenbaum, A. (2003). Computer Networks. Prentice Hall.

Vitter, J. S. (1989). Dynamic Huffman Coding. Retrieved from

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.68.7162

Wang, W. Y. (2009). A lossless compression method for JPEG based on shuffle

algorithm. In International Conference on Image Analysis and Signal

Processing, 2009. IASP 2009 (pp. 131 –132). Presented at the International

Conference on Image Analysis and Signal Processing, 2009. IASP 2009.

doi:10.1109/IASP.2009.5054622

Wang, Z. H., Chang, C. C., Chen, K. N., & Li, M. C. (2009). A Modification of VQ

Index Table for Data Embedding and Lossless Indices Recovery. 電腦學刊,

20(4), 42–52.

Wijngaarden, A. J. V. (2004). Advances In Network Information Theory: Dimacs

Workshop Network Information Theory, March 17-19, 2003, Piscataway, New

Jersey. American Mathematical Soc.

Witten, I. H. (2004). Adaptive text mining: inferring structure from sequences.

Journal of Discrete Algorithms, 2(2), 137–159. doi:10.1016/S1570-

8667(03)00084-4

69

Witten, I. H., Bell, T. C., Emberson, H., Inglis, S., & Moffat, A. (1994). Textual

image compression: two-stage lossy/lossless encoding of textual images.

Proceedings of the IEEE, 82(6), 878 –888. doi:10.1109/5.286192

Witten, I. H., Neal, R. M., & Cleary, J. G. (1987). Arithmetic coding for data

compression. Commun. ACM, 30(6), 520–540. doi:10.1145/214762.214771

Wong, K.-W., Lin, Q., & Chen, J. (2011). Error detection in arithmetic coding with

artificial markers. Computers & Mathematics with Applications, 62(1), 359–

366. doi:10.1016/j.camwa.2011.05.017

Xie, Y., Wolf, W., & Lekatsas, H. (2003). Code compression using variable-to-fixed

coding based on arithmetic coding. In Data Compression Conference, 2003.

Proceedings. DCC 2003 (pp. 382 –391). Presented at the Data Compression

Conference, 2003. Proceedings. DCC 2003. doi:10.1109/DCC.2003.1194029

Ziv, J., & Lempel, A. (1977). A universal algorithm for sequential data compression.

IEEE Transactions on Information Theory, 23(3), 337– 343.

doi:10.1109/TIT.1977.1055714

Ziv, J., & Lempel, A. (1978). Compression of individual sequences via variable-rate

coding. IEEE Transactions on Information Theory, 24(5), 530– 536.

doi:10.1109/TIT.1978.1055934

70

Appendix A

Compression Corpora

A.1 Calgary Corpus

A.2 Canterbury Corpus

A.3 Artificial Corpus

A.4 Large Corpus

A.5 Miscellaneous Corpus

71

Compression Corpora

In order to evaluate the performance of various compression schemes, standard

corpora are usually used, these include:

(1) Calgary Corpus

(2) Canterbury Corpus

(3) Artificial Corpus

(4) Large Corpus

(5) Miscellaneous Corpus

This appendix provides a description of the above corpora and their constituent files.

A.1 Calgary Corpus

The Calgary Corpus is the most referenced corpus in the data compression field,

especially, for text compression and is the de facto standard for lossless compression

evaluation. The corpus was founded in 1987 by Ian Witten, Timothy Bell and John

Cleary (Bell & Witten, 1990; Ian H. Witten et al., 1987)There are two versions of this

corpus:

(1) Large Calgary corpus which consists of 18 files (Bib, Book1, Book2, Geo,

News, Obj1, Obj2, Paper1, Paper2, Paper3, Paper4, Paper5, Paper6, Pic,

Progc, Progl, Progp and Trans).

(2) Standard Calgary Corpus which consists of 14 files (all files above except

Paper3, Paper4, Paper5 and Paper6).

Nine different types of text are represented, and to confirm that the performance of

schemes is consistent for any given type, many of the types have more than one

representative. Normal English, both fiction and non-fiction, is represented by two

books and six papers (labeled Book1, Book2, Paper1, Paper2, Paper3, Paper4, Paper5,

Paper6). More unusual styles of English writing are found in a bibliography (Bib)

and a batch of unedited news articles (News).

72

Three computer programs represent artificial languages (Progc, Progl, Progp). A

transcript of a terminal session (Trans) is included to indicate the increase in speed

that could be achieved by applying compression to a slow line to a terminal. All of

the files mentioned so far use ASCII encoding. Some non-ASCII files are also

included: two files of executable code (Obj1, Obj2), some geophysical data (Geo),

and a bit-map black and white picture (Pic).

The file Geo is particularly difficult to compress because it contains a wide range of

data values, while the file Pic is highly compressible because of large amounts of

white space in the picture, represented by long runs of zeros. More details of the

individual texts are given in (Bell & Witten, 1990). In addition, results of compression

experiments on these texts are given in (Ian H. Witten et al., 1987)

Table (A.1) - Calgary Corpus.

File

Name
Size (Byte) Contents

1 Bib 111261 Structured text (bibliography)

2 Book1 768771 Text

3 Book2 610856 Formatted text, scientific

4 Geo 102400 Geophysical data

5 News 377109 Formatted text, script with news

6 Obj1 21504 Program code (object file), executable machine code

7 Obj2 246814 Program code (object file), executable machine code

8 Paper1 53161 Formatted text, scientific

9 Paper2 82199 Formatted text, scientific

10 Paper3 46526 Formatted text, scientific

11 Paper4 13286 Formatted text, scientific

12 Paper5 11954 Formatted text, scientific

13 Paper6 38105 Formatted text, scientific

14 Pic 513216 Image data (black and white)

15 Progc 39611 Source code

16 Progl 71646 Source code

17 Progp 49379 Source code

18 Trans 93695 Transcript terminal data

73

A.2 Canterbury Corpus

The Canterbury collection is the main benchmark for comparing compression

methods. It was developed in 1997 by Ross Arnold and Tim Bell (Arnold & Bell,

1997) as an improved version of the Calgary Corpus. It consists of 11 files. The files

were chosen because their results on existing compression algorithms are “typical”,

and so it is hoped this will also be true for new methods. Ross Arnold and Tim

Bell(Arnold & Bell, 1997) explain how the files were chosen, and why it is difficult to

find “typical” files. This collection will not be changed so that it can be used as a

benchmark in future.

Table (A.2) - Canterbury Corpus.

File Name Size (Byte) Contents

1 alice29.txt 152089 English text

2 asyoulik.txt 125179 Shakespeare

3 cp.html 24603 HTML source

4 fields.c 11150 C source

5 grammar.lsp 3721 LISP source

6 kennedy.xls 1029744 Excel Spreadsheet

7 lcet10.txt 426754 Technical writing

8 plrabn12.txt 481861 Poetry

9 ptt5 513216 CCITT test set

10 sum 38240 SPARC Executable

11 xargs.1 4227 GNU manual page

A.3 Artificial Corpus

The Artificial Corpus is a collection that contains 4 files for which the compression

methods may exhibit pathological or worst-case behavior - files containing little or no

repetition (random.txt), files containing large amounts of repetition (alphabet.txt),

or very small files (a.txt).

As such, “average” results for this collection will have little or no relevance, as the

data files have been designed to detect outliers. Similarly, times for “trivial” files will

be negligible, and should not be reported.

74

New files can be added to this collection, so the overall average for the collection

should not be reported as a benchmark. Results on this corpus should be reported for

individual files, or a subset should be identified. Existing files in the collection will

not be changed or removed.

Table (A.3) - Artificial Corpus.

File Name
Size

(Byte)
Contents

1 a.txt 1 The letter “a”.

2 aaa.txt 100000 The letter “a”, repeated 100,000 times.

3
alphabet.txt 100000 Enough repetitions of the alphabet to fill 100,000

characters

4
random.txt 100000 100,000 characters, randomly selected from [a-z,

A-Z, 0-9] (alphabet size 64)

A.4 Large Corpus

The Large Corpus is a collection of relatively 3 large files. While most compression

methods can be evaluated satisfactorily on smaller files, some require very large

amounts of data to get good compression, and some are so fast that the larger size

makes speed measurement more reliable. New files can be added to this collection, so

the overall average for the collection should not be reported as a benchmark. Results

on this corpus should be reported for individual files, or a subset should be identified.

Existing files in the collection will not be changed or removed.

Table (A.4) - Large Corpus.

File Name Size (Byte) Contents

1 E.coli 4638690 Complete genome of the E. Coli bacterium.

2 bible.txt 4047392 The King James version of the bible (bible).

3 world192.txt 2473400 The CIA world fact book (world).

A.5 Miscellaneous Corpus

This is a collection of "miscellaneous" files that is designed to be added to by

researchers and others wishing to publish compression results using their own files.

New files can be added to this collection, so the overall average for the collection

should not be reported as a benchmark.

75

Results on this corpus should be reported for individual files, or a subset should be

identified. Existing files in the collection will not be changed or removed. There is

only one file in this corpus till now.

Table (A.5) - The Miscellaneous Corpus.

File Name Size (Byte) Contents

1 pi.txt 10000000 The first million digits of pi.

76

Appendix B

List of Characters and Characters Frequencies of Some Text File

from Standard Corpora

Table Filename No. of Characters (Nc)

B.1 alice29.txt 73

B.2 bib 81

B.3 bible.txt 63

B.4 boo1 80

B.5 paper1 95

77

Table (B.1) – Filename: alice29.txt

alice29.txt

Size (Byte) m So Nc Sc C

152089 5 1216712 73 795702 1.53

i Character Occurrence
Character
Frequency

fi (%)

Group
Frequency

Binary Representation

ASCII E-HCDC

1 Space 28900 19.0

81.11

00100000 00000

2 e 13381 8.8 01100101 00001

3 t 10212 6.71 01110100 00010

4 a 8149 5.36 01100001 00011

5 o 7965 5.24 01101111 00100

6 h 7088 4.66 01101000 00101

7 n 6893 4.53 01101110 00110

8 i 6778 4.46 01101001 00111

9 s 6277 4.13 01110011 01000

10 r 5293 3.48 01110010 01001

11 d 4739 3.12 01100100 01010

12 l 4615 3.03 01101100 01011

13 LF 3608 2.37 00001010 01100

14 CR 3608 2.37 00001101 01101

15 u 3402 2.24 01110101 01110

16 g 2446 1.61 01100111 01111

17 w 2437 1.6

15.58

01110111 100000

18 , 2418 1.59 00101100 100001

19 c 2253 1.48 01100011 100010

20 y 2150 1.41 01111001 100011

21 f 1926 1.27 01100110 100100

22 m 1907 1.25 01101101 100101

23 ' 1761 1.16 00100111 100110

24 p 1458 0.96 01110000 100111

25 b 1383 0.91 01100010 101000

26 ` 1108 0.73 01100000 101001

27 k 1076 0.71 01101011 101010

28 . 977 0.64 00101110 101011

29 v 803 0.53 01110110 101100

30 I 733 0.48 01001001 101101

31 - 669 0.44 00101101 101110

32 A 638 0.42 01000001 101111

33 T 472 0.31

2.37

01010100 1100000

34 ! 449 0.3 00100001 1100001

35 H 284 0.19 01001000 1100010

36 W 237 0.16 01010111 1100011

37 : 233 0.15 00111010 1100100

38 S 218 0.14 01010011 1100101

39 ? 202 0.13 00111111 1100110

78

40 M 200 0.13 01001101 1100111

41 ; 194 0.13 00111011 1101000

42 D 192 0.13 01000100 1101001

43 E 188 0.12 01000101 1101010

44 O 176 0.12 01001111 1101011

45 C 144 0.09 01000011 1101100

46 x 144 0.09 01111000 1101101

47 R 140 0.09 01010010 1101110

48 j 138 0.09 01101010 1101111

49 q 125 0.08

0.89

01110001 11100000

50 N 120 0.08 01001110 11100001

51 Y 114 0.07 01011001 11100010

52 " 113 0.07 00100010 11100011

53 L 98 0.06 01001100 11100100

54 B 91 0.06 01000001 11100101

55 Q 84 0.06 01010001 11100110

56 G 82 0.05 01000111 11100111

57 K 82 0.05 01001011 11101000

58 z 77 0.05 01111010 11101001

59 F 74 0.05 01000110 11101010

60 U 66 0.04 01010101 11101011

61 P 64 0.04 01010000 11101100

62 * 60 0.04 00101010 11101101

63 (56 0.04 00101000 11101110

64) 55 0.04 00101001 11101111

65 V 42 0.03

0.04

01010110 111100000

66 J 8 0.01 01001010 111100001

67 X 4 0 01011000 111100010

68 _ 4 0 01011111 111100011

69 [2 0 01011011 111100100

70] 2 0 01011101 111100101

71 2 1 0 00110010 111100110

72 9 1 0 00111001 111100111

73 Z 1 0 01011010 111101000

Sum 152088 100% 100%

79

Table (B.2) – Filename: bib.txt

 bib.txt

Size (Byte) m So Nc Sc C

111261 6 890088 81 611819 1.45

i Character Occurrence
Character
Frequency

fi (%)

Group
Frequency

Binary Representation

ASCII E-HCDC

1 Space 13739 12.35

68.42

00100000 00000

2 e 6984 6.28 01100101 00001

3 LF 6280 5.64 00001010 00010

4 % 5556 4.99 00100101 00011

5 n 5462 4.91 01101110 00100

6 i 4887 4.39 01101001 00101

7 o 4756 4.27 01101111 00110

8 a 4737 4.26 01100001 00111

9 r 4664 4.19 01110010 01000

10 t 4502 4.05 01110100 01001

11 s 3451 3.1 01110011 01010

12 c 2665 2.4 01100011 01011

13 l 2442 2.19 01101100 01100

14 A 2035 1.83 01000001 01101

15 m 1994 1.79 01101101 01110

16 . 1984 1.78 00101110 01111

17 u 1617 1.45

18.24

01110101 100000

18 , 1607 1.44 00101100 100001

19 g 1569 1.41 01100111 100010

20 d 1540 1.38 01100100 100011

21 p 1489 1.34 01110000 100100

22 1 1486 1.34 00110001 100101

23 h 1364 1.23 01101000 100110

24 f 1235 1.11 01100110 100111

25 T 1219 1.1 01010100 101000

26 C 1165 1.05 01000011 101001

27 D 1089 0.98 01000100 101010

28 y 1057 0.95 01111001 101011

29 P 1039 0.93 01010000 101100

30 9 973 0.87 00111001 101101

31 J 930 0.84 01001010 101110

32 I 911 0.82 01001001 101111

33 8 864 0.78

8.85

00111000 1100000

34 - 842 0.76 00101101 1100001

35 S 814 0.73 01010011 1100010

36 M 696 0.63 01001101 1100011

37 E 682 0.61 01000101 1100100

38 b 671 0.6 01100010 1100101

39 2 637 0.57 00110010 1100110

80

40 R 613 0.55 01010010 1100111

41 3 581 0.52 00110011 1101000

42 K 579 0.52 01001011 1101001

43 O 540 0.49 01001111 1101010

44 N 523 0.47 01001110 1101011

45 v 507 0.46 01110110 1101100

46 4 457 0.41 00110100 1101101

47 5 425 0.38 00110101 1101110

48 w 416 0.37 01110111 1101111

49 * 402 0.36

3.97

00101010 11100000

50 7 396 0.36 00110111 11100001

51 V 381 0.34 01010110 11100010

52 B 370 0.33 01000001 11100011

53 6 343 0.31 00110110 11100100

54 k 318 0.29 01101011 11100101

55 L 309 0.28 01001100 11100110

56 H 304 0.27 01001000 11100111

57 0 287 0.26 00110000 11101000

58 G 278 0.25 01000111 11101001

59 W 220 0.2 01010111 11101010

60 x 194 0.17 01111000 11101011

61 F 177 0.16 01000110 11101100

62 U 168 0.15 01010101 11101101

63 : 135 0.12 00111010 11101110

64 z 133 0.12 01111010 11101111

65 Y 112 0.10

0.52

01011001 111100000

66 q 80 0.07 01110001 111100001

67 \ 74 0.07 01011100 111100010

68 (44 0.04 00101000 111100011

69 X 42 0.04 01011000 111100100

70 Z 42 0.04 01011010 111100101

71 ' 35 0.03 00100111 111100110

72) 33 0.03 00101001 111100111

73 / 32 0.03 00101111 111101000

74 j 22 0.02 01101010 111101001

75 | 21 0.02 01111100 111101010

76 ? 10 0.01 00111111 111101011

77 ` 10 0.01 01100000 111101100

78 Q 8 0.01 01010001 111101101

79 ; 3 0 00111011 111101110

80 + 2 0 00101011 111101111

81 ! 1 0 0.00 00100001 1111100000

Sum 111261 100% 100%

81

Table (B.3) – Filename: bible.txt

bible.txt

Size (Byte) m So Nc Sc C

4047392 4 32379136 63 20875652 1.55

i Character Occurrence
Character
Frequency

fi (%)

Group
Frequency

Binary Representation

ASCII E-HCDC

1 Space 766111 18.93

86.38

00100000 00000

2 e 396042 9.79 01100101 00001

3 t 299633 7.40 01110100 00010

4 h 270179 6.68 01101000 00011

5 a 248716 6.15 01100001 00100

6 o 226152 5.59 01101111 00101

7 n 215496 5.32 01101110 00110

8 s 179075 4.42 01110011 00111

9 i 174140 4.30 01101001 01000

10 r 157355 3.89 01110010 01001

11 d 144021 3.56 01100100 01010

12 l 117300 2.90 01101100 01011

13 u 80762 2.00 01110101 01100

14 f 78370 1.94 01100110 01101

15 m 74364 1.84 01101101 01110

16 , 68389 1.69 00101100 01111

17 w 61051 1.51

11.72

01110111 100000

18 y 56323 1.39 01111001 100001

19 c 51317 1.27 01100011 100010

20 g 47279 1.17 01100111 100011

21 b 42888 1.06 01100010 100100

22 p 39885 0.99 01110000 100101

23 LF 30383 0.75 00001010 100110

24 v 29448 0.73 01110110 100111

25 . 25438 0.63 00101110 101000

26 k 20703 0.51 01101011 101001

27 A 17038 0.42 01000001 101010

28 I 12823 0.32 01001001 101011

29 : 12439 0.31 00111010 101100

30 ; 9968 0.25 00111011 101101

31 L 8859 0.22 01001100 101110

32 O 8547 0.21 01001111 101111

33 D 8425 0.21

1.64

01000100 1100000

34 T 7424 0.18 01010100 1100001

35 R 7179 0.18 01010010 1100010

36 G 5943 0.15 01000111 1100011

37 J 5920 0.15 01001010 1100100

38 S 4618 0.11 01010011 1100101

39 B 4472 0.11 01000001 1100110

82

40 ? 3179 0.08 00111111 1100111

41 H 3042 0.08 01001000 1101000

42 M 2954 0.07 01001101 1101001

43 E 2439 0.06 01000101 1101010

44 j 2388 0.06 01101010 1101011

45 W 2345 0.06 01010111 1101100

46 F 2292 0.06 01000110 1101101

47 ' 1943 0.05 00100111 1101110

48 z 1828 0.05 01111010 1101111

49 N 1746 0.04

0.26

01001110 11100000

50 P 1718 0.04 01010000 11100001

51 C 1621 0.04 01000011 11100010

52 x 1423 0.04 01111000 11100011

53 q 930 0.02 01110001 11100100

54 Z 883 0.02 01011010 11100101

55 Y 529 0.01 01011001 11100110

56 K 519 0.01 01001011 11100111

57 ! 308 0.01 00100001 11101000

58 U 275 0.01 01010101 11101001

59 (214 0.01 00101000 11101010

60) 214 0.01 00101001 11101011

61 V 99 0 01010110 11101100

62 - 23 0 00101101 11101101

63 Q 5 0 01010001 11101110

Sum 4047392 100% 100%

83

Table (B.4) – Filename: book1.txt

book1.txt

Size (Byte) m So Nc Sc C

768771 6 6150168 80 4000973 1.54

i Character Occurrence
Character
Frequency

fi (%)

Group
Frequency

Binary Representation

ASCII E-HCDC

1 Space 125552 16.33

82.77

00100000 00000

2 e 72431 9.42 01100101 00001

3 t 50027 6.51 01110100 00010

4 a 47836 6.22 01100001 00011

5 o 44795 5.83 01101111 00100

6 n 40919 5.32 01101110 00101

7 h 37561 4.89 01101000 00110

8 i 37007 4.81 01101001 00111

9 s 36788 4.79 01110011 01000

10 r 32889 4.28 01110010 01001

11 d 26623 3.46 01100100 01010

12 l 23078 3.00 01101100 01011

13 LF 16622 2.16 00001010 01100

14 u 16031 2.09 01110101 01101

15 w 14071 1.83 01110111 01110

16 m 14044 1.83 01101101 01111

17 c 12685 1.65

14.92

01100011 100000

18 g 12303 1.6 01100111 100001

19 f 12237 1.59 01100110 100010

20 y 11986 1.56 01111001 100011

21 , 10296 1.34 00101100 100100

22 p 9332 1.21 01110000 100101

23 b 9132 1.19 01100010 100110

24 . 7170 0.93 00101110 100111

25 ' 6470 0.84 00100111 101000

26 v 5382 0.7 01110110 101001

27 k 4994 0.65 01101011 101010

28 - 3955 0.51 00101101 101011

29 I 2899 0.38 01001001 101100

30 " 2468 0.32 00100010 101101

31 T 1966 0.26 01010100 101110

32 B 1463 0.19 01000001 101111

33 H 977 0.13

1.53

01001000 1100000

34 A 967 0.13 01000001 1100001

35 x 861 0.11 01111000 1100010

36 O 856 0.11 01001111 1100011

37 S 850 0.11 01010011 1100100

38 ! 832 0.11 00100001 1100101

39 ; 762 0.1 00111011 1100110

84

40 ? 759 0.1 00111111 1100111

41 W 753 0.1 01010111 1101000

42 P 693 0.09 01010000 1101001

43 + 691 0.09 00101011 1101010

44 C 580 0.08 01000011 1101011

45 G 575 0.07 01000111 1101100

46 M 565 0.07 01001101 1101101

47 q 520 0.07 01110001 1101110

48 N 502 0.07 01001110 1101111

49 < 498 0.06

0.67

00111100 11100000

50 > 498 0.06 00111110 11100001

51 j 468 0.06 01101010 11100010

52 E 444 0.06 01000101 11100011

53 Y 416 0.05 01011001 11100100

54 F 413 0.05 01000110 11100101

55 L 413 0.05 01001100 11100110

56 D 269 0.03 01000100 11100111

57 z 264 0.03 01111010 11101000

58 J 253 0.03 01001010 11101001

59 R 245 0.03 01010010 11101010

60 1 240 0.03 00110001 11101011

61 : 220 0.03 00111010 11101100

62 2 185 0.02 00110010 11101101

63 3 184 0.02 00110011 11101110

64 4 151 0.02 00110100 11101111

65 U 103 0.01

0.11

01010101 111100000

66 0 98 0.01 00110000 111100001

67 5 96 0.01 00110101 111100010

68 6 87 0.01 00110110 111100011

69 7 85 0.01 00110111 111100100

70 8 85 0.01 00111000 111100101

71 9 82 0.01 00111001 111100110

72 V 64 0.01 01010110 111100111

73 K 45 0.01 01001011 111101000

74 (43 0.01 00101000 111101001

75) 40 0.01 00101001 111101010

76 Q 14 0 01010001 111101011

77 = 5 0 00111101 111101100

78 X 5 0 01011000 111101101

79 & 1 0 00100110 111101110

80 * 1 0 00101010 111101111

Sum 100% 100%

85

Table (B.5) – Filename: paper1

paper1

Size (Byte) m So Nc Sc C

53161 6 425288 95 286499 1.48

i Character Occurrence
Character
Frequency

fi (%)

Group
Frequency

Binary Representation

ASCII E-HCDC

1 Space 7301 13.73

74.05

00100000 00000

2 e 4689 8.82 01100101 00001

3 t 3048 5.73 01110100 00010

4 i 2879 5.42 01101001 00011

5 o 2568 4.83 01101111 00100

6 n 2503 4.71 01101110 00101

7 a 2441 4.59 01100001 00110

8 s 2374 4.47 01110011 00111

9 r 2058 3.87 01110010 01000

10 l 1593 3.00 01101100 01001

11 h 1485 2.79 01101000 01010

12 c 1476 2.78 01100011 01011

13 d 1431 2.69 01100100 01100

14 LF 1250 2.35 00001010 01101

15 m 1154 2.17 01101101 01110

16 f 1118 2.10 01100110 01111

17 u 1069 2.01

17.76

01110101 100000

18 p 961 1.81 01110000 100001

19 \ 891 1.68 01011100 100010

20 . 839 1.58 00101110 100011

21 g 778 1.46 01100111 100100

22 b 715 1.34 01100010 100101

23 0 666 1.25 00110000 100110

24 w 540 1.02 01110111 100111

25 y 503 0.95 01111001 101000

26 $ 480 0.9 00100100 101001

27 , 431 0.81 00101100 101010

28 1 392 0.74 00110001 101011

29 v 353 0.66 01110110 101100

30 TAB 301 0.57 00001001 101101

31 (277 0.52 00101000 101110

32) 243 0.46 00101001 101111

33 x 227 0.43

4.79

01111000 1100000

34 ' 226 0.43 00100111 1100001

35 ~ 224 0.42 01111110 1100010

36 2 214 0.40 00110010 1100011

37 - 195 0.37 00101101 1100100

38 I 179 0.34 01001001 1100101

86

39 T 157 0.30 01010100 1100110

40 3 143 0.27 00110011 1100111

41 9 137 0.26 00111001 1101000

42 q 137 0.26 01110001 1101001

43 R 134 0.25 01010010 1101010

44 5 128 0.24 00110101 1101011

45 4 122 0.23 00110100 1101100

46 [121 0.23 01011011 1101101

47 _ 102 0.19 01011111 1101110

48 F 101 0.19 01000110 1101111

49 + 100 0.19

2.24

00101011 11100000

50 8 96 0.18 00111000 11100001

51 k 96 0.18 01101011 11100010

52 6 95 0.18 00110110 11100011

53 A 91 0.17 01000001 11100100

54] 84 0.16 01011101 11100101

55 C 80 0.15 01000011 11100110

56 7 75 0.14 00110111 11100111

57 H 74 0.14 01001000 11101000

58 = 69 0.13 00111101 11101001

59 " 66 0.12 00100010 11101010

60 L 60 0.11 01001100 11101011

61 E 56 0.11 01000101 11101100

62 N 55 0.10 01001110 11101101

63 B 49 0.09 01000001 11101110

64 ; 44 0.08 00111011 11101111

65 / 43 0.08

1.16

00101111 111100000

66 < 42 0.08 00111100 111100001

67 S 42 0.08 01010011 111100010

68 M 39 0.07 01001101 111100011

69 | 38 0.07 01111100 111100100

70 P 34 0.06 01010000 111100101

71 z 32 0.06 01111010 111100110

72 { 30 0.06 01111011 111100111

73 ` 28 0.05 01100000 111101000

74 } 28 0.05 01111101 111101001

75 X 27 0.05 01011000 111101010

76 O 24 0.05 01001111 111101011

77 V 22 0.04 01010110 111101100

78 W 22 0.04 01010111 111101101

79 j 22 0.04 01101010 111101110

80 U 21 0.04 01010101 111101111

81 * 19 0.04 00101010 1111100000

82 : 16 0.03 00111010 1111100001

83 ! 15 0.03 00100001 1111100010

84 % 15 0.03 00100101 1111100011

87

85 & 14 0.03 00100110 1111100100

86 D 14 0.03 01000100 1111100101

87 G 9 0.02 01000111 1111100110

88 > 6 0.01 00111110 1111100111

89 J 4 0.01 01001010 1111101000

90 K 3 0.01 01001011 1111101001

91 ? 2 0 00111111 1111101010

92 Z 2 0 01011010 1111101011

93 ^ 2 0 01011110 1111101100

94 Q 1 0 01010001 1111101101

95 Y 1 0 01011001 1111101110

Sum 53161 100% 100%

