

XML Database Schema Refinement

through Functional Dependencies

and Normalization

Master Thesis

By

Zina Zuhair Al Shamaa

Supervised by

Prof. Musbah M. Aqel

Submitted in Partial Fulfillment of the Requirements for the

Master Degree in Computer Information Systems

Department of Computer Information Systems

Faculty of Information Technology

Middle East University

Amman, Jordan

January, 2012

II

III

IV

V

DEDICATION

This thesis is dedicated to my parents, my husband Fakhry and my

children, Mahmood, Hassan and Mariam.

VI

Acknowledgments

 First and foremost, I thank and pray to God who gave me the health and the

strength to do this research.

 My deepest gratitude is conveyed to my supervisor Prof. Musbah M. Aqel for

his advice, guidance, and constant supervision during the work of this desertation.

 Thanks are extended to Dr. Zeyad M. Al Fawaer for his support in the proposal

of this research.

 I am deeply indebted to thank my parent for their immense patience, emotional

support and encouragement in all aspects of my life, and for being my first and

greatest teachers.

 Furthermore, I would like to thank my dear husband, Fakhry, for his patience and

understanding during hard times over the studying period.

 My sister and brothers deserve my wholehearted thanks as well.

 I could have never finished my degree without the exceptional support of my

loving family, friends and supervisors.

VII

Table of Contents

Contents page#

List of Figures …..…………………………………………………………… IX

List of Appendices ………………………………………………….………..

List of Abbreviations ……………………………………………………….

X

XI

Abstract in English ……………………………………………………….…... XII

Abstract in Arabic …………………………………………………………… XIII

Chapter 1: Introduction …………………………………………………….. 1

 1.1 Problem Statement …………………………………………… 3

 1.2 Thesis contribution …………………………………………… 5

 1.3 Related Work ………………………………………………… 5

 1.4 Thesis Outline ………………………………………………... 10

Chapter 2: XML Databases ……….……………………………….…….…. 11

 2.1 Introduction ………………………………………………... 11

 2.2 XML Documents and XSDs …………………………………. 15

 2.2.1 Definition of XML Tree ………….…………………….. 15

 2.2.2 Definition of XSD ……………………………………… 17

 2.2.3 Paths in XSDs and Instances in XML Tree Documents.. 18

 2.2.3.1 Definition of Path in XSD………………………. 18

 2.2.3.2 Path instance in an XML Tree Document………. 19

 2.3 Tuples and Tree Tuples for XML …………………………… 21

 2.3.1 Definition of Tuples for XML………………………….. 21

 2.3.2 Definition of)(ttreex …………………………………… 23

 2.3.3 Definition of Node Equal and Value Equal ……………... 23

 2.4 Keys and Foreign Keys for XML Documents ………………... 25

 2.4.1 Definition of XML Key (XK) ………………………….. 26

 2.4.2 Definition of XML Foreign Key (XFK)………………… 27

 2.5 XML Schema Representation…………………………………. 28

 2.5.1 Flat XML Schema……………………………………….. 28

 2.5.2 Hierarchical XML Schema………………………………. 29

VIII

Chapter 3: Enhancement of Functional Dependencies Definition for XML 30

 3.1 Introduction……………………………………………………. 30

 3.2 Functional Dependencies… …………………………………... 31

 3.2.1 Definition of Functional Dependency for XML ………... 32

 3.2.2 Our Improvement Definition of XFD…………………… 33

 3.2.3 Discussion about Definition of XFD ………………….… 37

 3.3 Types of Dependencies ………………………………………. 38

 3.3.1 Types of Functional Dependencies for Flat XML Schema 38

 3.3.1.1 Partial XFD for Flat XML Schema (PXFD/F)….. 38

 3.3.1.2 Transitive XFD for Flat XML Schema (TXFD/F) 39

 3.3.2 Types of Dependency for Hierarchical XML Schema….. 40

 3.3.2.1 Absolute XML Functional Dependency for

 Hierarchical Schema………………………………

40

 3.3.2.2 Relative XML Functional Dependency (RXFD)… 41

 3.3.2.2.1 Relative Transitive XFD (RTXFD/H)…. 41

 3.3.2.2.2 Relative Full and Partial XFD………….. 43

 3.4 Normal Form for XML………………………………………... 45

Chapter 4: XML Schema Normalization…………………………………. 46

 4.1 Introduction ………………………………………………….. 46

 4.2 Normalization Rules …………………………………………. 47

 4.3 Normalization Process ……………………………………...... 50

 4.4 XML Normalizer …………………………………………….. 51

 4.5 Normalization Examples …………………………………….... 51

 4.5.1 Example of Flat Schema Normalization ………………… 51

 4.5.2 Example of Hierarchical Schema Normalization………... 54

 4.5.3 Example of Hierarchical Schema normalization that apply

 rule-3…………………………………………………….

56

Chapter 5: Conclusion and Future Work…………………………………. 57

 5.1 Conclusion…………………………………………………….. 57

 5.2 Future Work…………………………………………………… 59

References……………………………………………………………………… 60

APPENDICES………………………………………………………………… 63

IX

List of Figures

Figure Title Page

Figure 1.1 XML document normalization process steps 4

Figure 2.1 An XML document for school management database 12

Figure 2.2 An XSD schema for school management database 14

Figure 2.3 Tree representation of an XML document 16

Figure 2.4 Tree tuple)(ttreex 23

Figure 2.5 XML document tree with data redundancy 24

Figure 2.6 Flat XML document for lease property database 29

Figure 3.1 Tree representation for Project-supplier-Part database 44

Figure 4.1 Flowchart of XSD Normalization process 50

Figure 4.2 An un-normalized XSD schema for lease property database 53

Figure 4.3 Normalized XSD schema for lease property database after applying

rule-1

53

Figure 4.4 XML document for un-normalized school schema 55

Figure 4.5 XML document for normalized school schema 55

Figure 4.6 A tree representation of XML document for Project-supplier-

part database after applying rule-3

56

Figure 1 GUI for XML normalizer 65

Figure 2 GUI for Lease Property database normalization process

presented in Example 4.5.1

66

Figure 3 GUI for School management database normalization process

presented in Example 4.5.2

67

Figure 4 GUI for Project-supplier-part database normalization process

presented in Example 4.5.3

68

X

List of Appendices

Appendix Title Page

Appendix A XML Normalizer 63

Appendix B Implementation of normalizing flat XML representation 69

Appendix C Implementation of normalizing hierarchical XML

representation

70

XI

List of Abbreviations

XML eXtensible Markup Language

XNF XML Normal Form

DTD Document Type Definition

XSD XML Schema Definition

XK XML Key

XFK XML Foreign Key

XFD XML Functional Dependency

LHS Left Hand Side

RHS Right Hand Side

PXFD/F Partial XFD for Flat XML Schema

TXFD/F Transitive XFD for Flat Schema

AXFD/H Absolute XML Functional Dependency for Hierarchical Schema

RXFD Relative XML Functional Dependency

RTXFD Relative Transitive XML Functional Dependency

RFXFD Relative Full XML functional Dependency

RPXFD Relative Partial XML Functional Dependency

EAXFD Eliminate Absolute XFD

ERTXFD Eliminate Relative Transitive XFD

ERPXFD Eliminate Relative Partial XFD

XII

ABSTRACT

XML Database Schema Refinement through Functional

Dependencies and Normalization

By

Zina Zuhair Al Shamaa

 As eXtensible Markup Language (XML) has become the standard means for

storing and exchanging data over the Web, the methods for designing XML database

schemas are becoming more and more important. XML documents may contain

redundant information due to the bad design of XML schemas. Redundantly stored

information can lead to take up unnecessary storage space, inflates data storage and

transfer cost; furthermore, it leads to operation anomalies. One approach to remove

data redundancies in XML documents is based on normalization theory. This

approach proposed XML normal forms (XNFs) to determine whether an XML

schema is properly designed or not. Then the XML schema is redesigned or refined to

satisfy some XNFs based on the supposed known XML functional dependencies

(XFDs). The research about XFD and XML document normalization on the basis of

XFD is still an open problem.

 In this thesis, we first present a formal definition of the XML Schema Definition

(XSD), and then we improve the definition of XFD according to the hierarchical

structure of XSD. Since the main goal of identifying XFDs is to detect the possible

redundancy they may cause, we defined an XNF that generalizes BCNF. We also

define a set of normalization rules for converting any XSD into one in XNF. Finally,

we design and implement the process of XML normalization through a semi-

automated XML Normalizer tool. The XML Normalizer is very useful for designer to

facilitate, accelerate and accurate the process of normalization. We evaluate our

approach through examples. The results demonstrate that the XML schema generated

by XML normalizer contribute to a normal form schema.

XIII

 ا�����

ا�� �����ت � ��
ا��� دا�) ا�آ� ام ال(���������"�� و� ��� ا��ت ا

�	
وآ�ي $��*ة)����ت ا'�ى . و#��� $��#�� �
�"�! و�	�دل ا�	����ت �	� �	�� ا���� ا�������)ا�آ� ام ال(��

,
��7 ـ وا�
? �1	� ز��دة :1=�ـ.�>��:�ت ـ�ا>;� ��8 :�ـ9دي ا�8 ا7
ـ� 56 ـ ه���تـ��*ة ا�	�ـ2���3 ا�01 ـ.�ن ا�

����ت وآ�D: �;E� F�6آ@ .? �����ت �B�*C ا�	����ت��A ��"�! و�3@ ا�	�ـت و)��
��? �"داد آ���"�! ه56 ا�	��.

�3�*ة)����ت ا�آ� ام الـ.? ه56 ا�*را#� $� HI�: J���
(�K� وه�)ا�آ� اس دي(J���� !�1C
(�K�$ 2M ،

���	
��)ا�آ� اف دي (دا�ت ا� �P�Q J���
� R��� ��*�
������ ا� ا�آ� ام ال ���تـ)��3ا�* �ذ��S � وا�6ي ا

��=<�Aا� !:.

�� :! $ـ)
����ـ�Kـآ�� $��U: Jا�ـ !��
	H�1ـ�ا Q 2M1ـ��Cل
? � وا��H ـ1ـ	ـ ا�
 ��������)? ـ���K ا���HI ا�

�3�*ة)����ت ا�آ� ام ال ا���HI ا�و�?� ��Sذ��� �P�,(HI�: 8ا�.=<�Aـوا'��ا $.��ـ'��? :! ا� �K� 6�AK
(

�� �وا'
)�:��U ا������56 ه��V:ل ا�W' !: X<�
Kا� .

1

Chapter 1

Introduction

With the widespread use of the Web application and the accessibility of a huge

amount of electronic data, XML has been used as the standard data model for storing

and exchanging data over the Web. Currently, XML is used for many different types

of applications which can be classified into two main types. The first application type

is called document centric XML and the other is called data centric XML. The

document centric XML is used as a markup language for text documents with mixed-

content elements and comments. The data centric XML consist of regular structure

data for automated processing (Zainol & Wang, 2010).

In data centric applications, a huge amount of data has been managed and

stored in XML database which may contain redundant information due to the bad

design. The redundantly stored information means the same information stored in

more than one place and at different sub trees, which can lead to operation anomalies

and waste of storage space that lead to increase the cost of storage and an overmuch

costs for transferring and manipulating data . In fact, once a huge XML document are

created, its very difficult to change their structure; therefore there is an adventure of

having a huge amounts of widely accessible, but poorly structured data (Arenas,

2006).

One strategy to avoid data redundancies is to design schema without

redundancies. Thus, a good XML schema design has become an important task. In

relational data model, it is clear that the process of designing database is a non trivial

and time consuming task, it has two main approaches applied to design a good

relational database: The conceptual approach and normalization approach (Connolly

2

& Begg, 2010). XML database researchers extend these two approaches with some

modification to apply in designing a good XML schema.

The first design approach is the conceptual XML data approach (Zainol &

Wang, 2010), which is first displayed XML data in terms of a conceptual model, then

the model is restructured to eliminate redundancy by using normalization rules, and

finally mapping the model into an XML normalized schema.

 The other design approach is XML normalization theory (Arenas & Libkin,

2004). It is directly choosing an appropriate schema such as Document Type

definition (DTD) or XML Schema Definition (XSD) which describe the constraints

on the structure of an XML document. Then a set of data dependencies such as XML

functional dependency (XFD) are defined. The data dependencies are used to detect

data redundancies in the XML document. Finally, a lossless algorithm is applied to

convert an initial schema into one in normal form (Arenas, 2005) which eliminate

redundant information and update anomalies.

Just like relational database, the concept of functional dependency (Lee et al,

2002) plays an important role in providing richer data semantic information and

normalizing XML data, which has been widely investigated over the past few years.

(Chen & Liao, 2010) clarify that a good definition for XFD should have some

properties such as: extend the concept of relational model, consider the shape of

hierarchical structure, have a powerful to capture a list of nodes as the involved

information items, and facilitate the investigation of Normalization for XML.

Although the theory of functional dependencies and normalization in

relational database has matured, there is no such mature and systematic theory for

XML world and it is still an open problem (Zhao et al, 2009). Some researchers

((Provost, 2002), (Arena, 2006) and (Pankowski & Pilka, 2009)) proposed the idea of

3

applying the theories of relational database on XML database schema design.

However, extending functional dependency and normalization theory from relational

database can not be applied directly in the XML schema design due to the substantial

differences in structure between the two models, relational model are flat and

structured while XML schemas are nested, and have hierarchical structure that makes

XML functional dependencies items appear at different levels of XML tree (Wu,

2004), (Lv & Yan, 2007).

Research on normalization of XML data was reported in a number of papers

((Arenas & Libkin, 2004) ;(Vincent et al, 2004); (Wu, 2004); (ALibkin, 2007); (LV

& Yan, 2007); (Yu & Jagadish, 2008)). Since there is still no standard way in

defining XML functional dependencies, a lot of attempts have been made ((Lee et al,

2002); (Vincent et al, 2004); (Yan & Lv, 2006); (Ahmad & Ibrahim, 2008); (Zhao et

al., 2009)), the previous definitions of XFD differ in how to choose nodes of sub trees

or how to specify equality between nodes. However, they are not powerful enough to

specify constrains for every structure of XML. Some literatures researched on XML

keys ((Buneman et al, 2001), (Shahriar & Liu, 2008)). Whatever, the above research

has not solved the problems of XML functional dependency and XML Normalization

perfectly, and obviously, the task of designing XML schema is becoming more

complex than designing relational database due to the irregular hierarchical structure

of XML schema.

1.1 Problem Statement

As XML has increasingly used by Web application, a huge amount of data has

been managed and stored in XML database. Just like any other database model, XML

database may contain redundant information due to the bad design of schema.

4

Redundantly stored information take up unnecessary storage, inflates data transfer

cost, and can lead to the problem of update anomalies such as insertion anomaly,

rewriting anomaly and deletion anomaly. Furthermore, once massive Web database

are created, it is challenging and hard to change their organization; hence, there is a

risk of having huge amounts of widely accessible, but poorly organized data. One

strategy to avoid data redundancies is to design redundancy-free schema. Starting

from an intuitively correct XML schema, then specify a set of functional

dependencies which reflect semantic constraint existing in application domain. Then

the schema is normalized, and restructured according to some roles to obtain new

schema that has no redundancy. However, the hierarchical structure of XML

documents makes the normalization process quite challenging. Figure 1.1 illustrates

the normalization process steps for XML document. This process takes an XSD as

input, and then a set of constraints is defined such as keys and functional

dependencies. Finally, Normalization is carried out according to set of rules to convert

initial schema into one in normal form.

 Figure 1.1: XML document normalization process steps.

Un -

normalized

XML

Schema

XML

document

contain

redundant

information

Define

Constraint

1-Keys

2-XFDs

Normalization

process

according to set

of rules
Implemented

through XML

normalizer

Normalized

XML

Schema

XML

document

without

redundancy

5

1.2 Thesis Contribution

 The main contribution of our thesis is as follows:

1-As XSD is an improvement over DTD and touted to overcome some shortfalls of

DTD. In our research we use XSD and introduce the formal definition of this

schema.

2-The notion of functional dependency plays an important role in normalization

theory, so we improve the definition of XML functional dependency by using the

XPath language and takes into consideration the hierarchical structure of XSD

schema by adding the level of last elements of paths to definition.

3-We introduce a set of dependencies depending on our improved functional

dependencies definition and integrated the definition of relative dependency for

(Zhao et al., 2009) with the definition of (Wu et al., 2002).

4- We define an XML normal form that generalizes BCNF.

5- We designed and implemented a case tool, called XML normalizer that automates

the XML schema normalization process.

1.3 Related Work

Normalization theory for XML was proposed by (Provost, 2002) to perform in

similar manner to relational normalization. Even though there were many differences

between relational schema and XML schema, similar techniques were used. Arena &

Libkin, (2004) proposed a formal definition of XML functional dependency which is

considered as basis of other related research such as normalizing XML document and

schema design, then proposed the most accepted XML normal form based on XFD.

There are two major approaches of XML functional dependency definitions.

The first approach is based on tree tuple (Arenas & Libkin, 2004) and the second

6

approach is based on path (Vincent et al, 2004; Yan & Lv, 2006)). Yu & Jagadish,

(2007) showed that the previous definitions of XFD is not sufficient and propose a

Generalized Tree Tuple XML FD. Many researches defined the XFD without

considering the scope of XFD. The scope is an important characteristic in XML

documents according to their nested structure, some researchers classified XFDs into

two categories according to the scope of XFD: local and global (Yu & Jagadish, 2007;

Ahmad & Ibrahim, 2009), while (Zhao et al., 2009) proposed a new kind of XFD that

can be classified into: absolute and relative XFD which has stronger expression ability

to XML documents.

Several XML normal forms were proposed by ((Wu et al., 2002); (Arenas &

Libkin , 2004); (Lv & Yan, 2007); (Yu & Jagadish, 2008); (Pankowski & Pilka,

2009); (Zhao et al., 2009); (Zainol & Wang, 2010)) depending on definition of XFDs

((Lee et al, 2002); (Vincent et al, 2004); (Lv & Yan, 2006); (Zhao et al., 2009)) and

keys ((Buneman et al., 2001); (Shahriar & Liu, 2008)) which are studied in the

context of XML. They differ in Terms of schema and how to describe constraint, but

are dependent on the same set of transformations.

In the following section we introduce some of the most important related

studies in the field of XML functional dependencies and XML normal form which

provide us a good guidance to our work.

(Wu et al., 2002) They presented the notion of a semi-structured data model

which is richer, more complex than the flat relational data model, and plays an

important role in the prevalent Web applications. They incorporated the definition of

semi-structured schema with integrity constraint (dependency and key constraints).

They clarified that just like in relational database, semi structured schema may

contain data redundancy and inconsistency if it is not designed well which causes the

7

occurrences of different anomalies such as insertion anomaly, deletion anomaly,

rewriting anomaly, and path anomaly. They proposed a Normal Form for Semi

Structured Schema (NF-SS) which guarantee minimal redundancy, no undesirable

updating anomalies and a more reasonable representation of real world semantics.

They introduced restructuring rules. Finally they developed an algorithm used to

restructuring a semi structured schema into a normal form based on defined set of

rules.

(Arenas & Libkin, 2004) took the first step towards a good XML schema

design and normalization theory. Firstly, they introduced an XFD by considering a

relational representation of documents based on the approach of tree tuple, and

defined XFD for a DTD as an expression of the form 21 SS → where S1,S2 are finite

non-empty subsets of paths(X). Secondly, they defined an XML normal form that

avoids redundancy caused by XFDs and disallows update anomalies. The definition of

normal form they defined generalizes BCNF in relational database. There definition is

as follows:

Given a DTD schema and a set of functional dependencies, then the DTD schema is

in normal form if and only if for every non-trivial functional dependency of the form

lpS @.→ or SpS .→ , it is the case that pS → must be implied by the schema.

Where the LHS is path end with element and the RHS is path end with string or

attribute. The intuition is for every set of values of the element in S, there is exactly

one value of the path lp @. . Finally, they introduced a decomposition algorithm for

two kinds of commonly design problem that combines two basic ideas: creating a new

element type, and moving an attributes. This algorithm is converting an arbitrary DTD

schema into one in normal form depending on a given set of XFD.

8

(Lv & Yan, 2007) defined XFD based on the tree model and introduced the

definition of keys and three types of functional dependencies such as full Functional

dependency, partial functional dependency and transitive functional dependency.

Then according to these definitions they proposed three XML normal forms such as

first XML normal form, second XML normal form and third XML normal form. They

supposed that their normal form can eliminate data redundancies and operation

anomalies.

(Yu & Jagadish, 2008) showed that the XFD was defined by (Arenas &

Libkin, 2004) and the one defined by (Vincent et al., 2004) are insufficient for

capturing certain XML data redundancies, therefore they proposed a new XFD based

on generalized tree tuple that extends and improves the notion introduced by (Arenas

& Libkin, 2004) and showed that there XFD can capture more data redundancies. Yu

& Jagadish defined XFD as a triple >< RHSLHSCp ,, , where Cp denotes a tuple

class, LHS is a set of paths relative to p, and RHS is a single path relative to p. They

classified functional dependency into two categories: local and global functional

dependency.

They present the design and implement of the first detection system, Discover XFD,

for efficiently discover XFDs and showed that discovered XFD can capture more data

redundancies. Moreover, they introduced a new normal form for schema based on

new XFD, called generalized tree tuple normal form which satisfied if and only if for

each XFD of the form (Cp, LHS, RHS) the (Cp, LHS) is an XML key. Finally, they

introduced a normalization algorithm for reconstruction the initial XML schema into a

new normal form by eliminating the redundancy in global functional dependency, and

eliminating the redundancy of local functional dependency.

9

 (Pankowski & Pilka, 2009) presented a language, which is a class of XPath

expressions, to express XML functional dependencies. They defined XML normal

form based on the approach of (Arena, 2006). They showed how to develop a method

for normalizing XML data by firstly building a conceptual model using ER schema

and specifying all dependencies for its attributes, then following some condition to

create XML schema in normal form according to its functional dependencies. Finally,

they showed that generated schema can be further normalized by using the

decomposition algorithm proposed by (Arenas & Libkin, 2004).

(Zhao et al., 2009) proposed a novel expression of functional dependency

depending on path language of XML model, which is used to better express the XML

data constraints that can result in redundancies. Their definition is of the form

)))),.....(,.....,(,(,(1121 mnn SSQQQQPO +→ where O is context path, P is target path,

Q1,Q2,….,Qn is called left path, Qn+1 is called right target path, and S1,…,Sm are called

right paths. Furthermore, they classify the functional dependencies into absolute

functional dependency and relative functional dependency. Then depending on the

definition of XFD, they proposed a kind of XML normal form and a lossless

conversion algorithm of DTD that convert abnormal XML document into normal

form.

(Zainol & Wang, 2010) They introduced a method to improve XML

structural design by transforming the DTD into a proposed conceptual model called

Graphical Notation for Document Type Definition (GN-DTD). The GN-DTD is a

graphical model approach that present the DTD schema and XML documents. They

defined data dependencies between object of schema which is categorized into key

dependencies and functional dependencies (Global functional dependency, transitive

functional dependency, and partial functional dependency). Furthermore, they

10

presented normalization rule to switch the model into proposed first normal form,

second normal form, third normal form, and normal form for GN-DTD; based on the

defined dependencies. Finally they present mapping rules to transform from

normalized GN-DTD back to a new DTD schema.

1.4 Thesis Outline

The rest of the thesis is organized as follows:

Chapter 2: We present the definition of basic knowledge and terminology for XML

structure upon which the thesis rests. We introduce the formal model for XML

documents and XSDs as well as the notion of paths in XML documents and in XSDs.

We also introduce the notion of tree tuple and the concept of keys over XML schema.

Finally we introduce the types of XML schema representation.

Chapter 3: we present the definition of Functional Dependencies for XML (XFDs),

and then we introduce our improvement definition of XFD. We also introduce the

types of dependencies according to the types of representation. Finally, we introduce

the notion of XML normal form (XNF).

Chapter 4: we present normalization rules that we used to transform the un-normal

form of XSD into a normal one. We also, present the flowchart of normalization

process and the case tool we developed to automate the process of XML database

normalization. Finally, we present examples to illustrate how the XSD is restructured

to XNF.

Chapter 5: Conclusion and future work.

11

Chapter 2

XML Databases

This chapter presents the basic knowledge and terminology upon which the

thesis rests. The content presented here will be the frame of reference for the

remaining chapters.

2.1 Introduction

Extensible Markup Language was mainly appeared to disseminate electronic

data, but recently has become standard format for storing and exchanging data over

the Web (Arenas, 2006). The data in XML document are represented in hierarchical

model and XML schema describes the structure of those data. The easiest way to

create an XML Schema is to follow the structure of the document and define each

element in the document (Connolly & Begg, 2010).

An example of XML document is shown in Figure 2.1. The document contains

two different types of tags: start tag, such as <Dname> and end tag, such as </Dname>.

XML element tags are case sensitive. These tags must be balanced and they are used

to delimit elements. For example, <cname>Database</cname> is an element bounded by

matching tags <cname> and </cname>. Every element can contain raw text, other

elements, or a mixture of them. For instance, the element we mentioned above

contains raw text while the element delimited by <school > contains three elements.

The first element <school > must be a root element.

The XML document shown in Figure 2.1 is part of a database for storing

information about school management activity. The school has many departments.

Every department includes department name (Dname), a set of courses, and offices.

12

Every course has course number (cno), course name (cname), and list of students

which chose these courses. The student list contains a set of student's number (sno),

student name (sname), student age (age), and grade (grade). Each office has room

number (room-no), office name (Oname) and address (address) of the building it

located.

<school xmlns="http://tempuri.org/XSDSchema1.xsd">

 <department >

 <Dname>CIS</Dname>

 <course>

 <cno>10</cno>

 <cname>Database</cname>

 <student>

 <sno>1</sno>

 <sname>Ahmad</sname>

 <age>35</age>

 <grade>B</grade>

 </student>

 </course>

 <office>

 <room-no>100</room-no>

 <Oname>Secrtary</Oname>

 <address>Buld-1</address>

 </office>

 </department>

</school>

 Figure 2.1: An XML document for school management database.

XML documents have a nested structure. This gives a lot of flexibility when

storing information. To specify the structure of a class of XML documents, we have

to specify a schema. Schema languages for XML have been heavily researched with

the DTD (Document Type Definition) (Shipman, 2009) and XSD (XML Schema

Definition) (Thompson et al., 2004) being the most popular currently. DTD has been

the de-facto schema language for XML for the past couple of years and has widely

used in many theoretical researches. It defines the key and foreign key in the form of

ID and IDREF, however it is not clear that ID and IDREF attributes are used as

database key rather than internal pointers. The XSD is an effort to overcome some

shortfalls of the DTD, In general, it is richer than DTD and has additional property

such as specifying type constraint and complex cardinality constraints that make XSD

schema more powerful and expressive than DTD (Lee et al., 2002). Obviously, from a

theoretical point of view, DTDs can be characterized in terms of unranked tree

13

automata, which have been widely studied in automata theory and more recently in

database theory (Arenas, 2005), but XSDs have increasingly used by Web

applications to manage their data since they have many characteristics over DTD that

are desired in applications. In this research, we consider only XSD.

The XML schema is a node labeled tree. It is defined as a method to express

the content model of an XML document structure. It consists of a finite set of

elements with two distinguished types (complex type, simple type). The element that

contains other elements is defined of complex type while the elements that have no

sub elements or attributes are defined of simple type. Each element has some

relationship with other elements. These relationships define the structure of the

schema which can ensure that the data is well organized and can be maintained and

exchanged by applications robustly. To express the structure, some rules and

constraints have to define for the data. The rules that state the hierarchy of element in

an XML schema are defined in XSD (Connolly & Begg, 2010). Example 2.1.1 shows

an element of complex type and Example 2.1.2 shows an element of simple type.

Example 2.1.1 (Connolly & Begg, 2010)

 <xs: element name " ">

 <xs: complex type>

 <xs: sequence>

 <!--- children defined here..>

 </xs: sequence>

 </xs:complex>

</xs:element>

Example 2.1.2 (Connolly & Begg, 2010)

 <xs:element name="STAFNO" type="xs:string"/>

An XSD schema for the school management database is shown in Figure 2.2.

This schema specifies the structure of elements allowed in XML document. The first

element tag must be a root (school) which declared as complex element followed by

an arbitrary number of complex elements (department) which declared by the

maxoccurs constraint as unbounded. Each department contains simple element

14

(Dname), complex element (course) with unbounded constraint, and complex element

(office) also unbounded constraint. Each complex element course contains two simple

elements (Cno, Cname) and one complex element (student) with unbounded

constraint while each student contains four simple elements (Sno, Sname, age, grade).

The second complex element in department is (office) contains three simple elements

(room-no, Oname, address).

 <xs:element name="school">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="department" minOccurs="0" maxOccurs="unbounded" >

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Dname" type="xs:string" />

 <xs:element name="course" minOccurs="0" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="cno" type="xs:string" />

 <xs:element name="cname" type="xs:string" />

 <xs:element name="student" minOccurs="0" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="sno" type="xs:string" />

 <xs:element name="sname" type="xs:string" />

 <xs:element name="age" type="xs:string" />

 <xs:element name="grade" type="xs:string" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="office" minOccurs="0" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="room-no" type="xs:string" />

 <xs:element name="Oname" type="xs:string" />

 <xs:element name="address" type="xs:string" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 <xs:key name="departmentKey1">

 <xs:selector xpath="." />

 <xs:field xpath="mstns:Dname" />

 </xs:key>

 <xs:key name="departmentKey2">

 <xs:selector xpath=".//mstns:course" />

 <xs:field xpath="mstns:cno" />

 </xs:key>

 <xs:key name="departmentKey3">

 <xs:selector xpath=".//mstns:student" />

 <xs:field xpath="mstns:sno" />

 </xs:key>

 <xs:key name="departmentKey4">

 <xs:selector xpath=".//mstns:office" />

 <xs:field xpath="mstns:room-no" />

 </xs:key>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 Figure 2.2: An XSD schema for school management database.

15

In the next section, we formalize the notion of XML document and XSD.

2.2 XML Documents and XSDs

In this section, we present the formal model for XML documents and XSDs.

Also in this section, we introduce the notion of paths in XML documents and in

XSDs.

Assume that we have the following disjoint sets:

El is any set of complex element names and simple element names,

A is any set of attribute names (to refer to attribute, all attribute names start with

 the symbol @ to distinguish them from labels),

L is any set of labels,

S String values of attributes

N is any set of Nodes, represented as { }innn ,.......,, 10

In Chen and Liao's model (Chen & Liao, 2010), XML documents are

represented as trees.

Definition 2.2.1 (XML Tree)

An XML tree T is defined to be),,,,(valcomplabelrootNT = , where

• N is a finite set of nodes in the tree that represent ASECE ∪∪

• root is the first complex node in tree

• Label is a function that assigns a label to each node in tree, such that for each

node Nn∈ , if CEnlab ∈)(then n is called complex element, if SEnlab ∈)(then n

is called simple element, and if Anlab ∈)(then n is called attribute.

• comp is a function from complex element node to a sequence node of ASECE ∪∪

such as when Nn∈ ,if)(ncompu ∈ then we call u a child of n and n the parent of

u, so the parent-child relationships represent the structure of tree.

16

• val is a function that assigns a value to each SE or A, the CE is null.

Figure 2.3 is an example of a tree representation of the XML document of the

school management database in Figure 2.2.

 Figure 2.3: Tree representation of an XML document.

Example 2.2.1: Figure 2.3 shows the tree representation of the XML document

shown in Figure 2.1. This tree contains a set of nodes, which are labeled as follows:

label(n0)= school label(n1)=Department label(n2)=Dname

 label(n3)=Course label(n4)=Cno label(n5)=Cname

label(n6)=Student label(n7)=Sno label(n8)=Sname

label(n9)=age label(n10)=grade label(n11)=Office

label(n12)=room-no label(n13)=Oname label(n14)=address

comp(school)=[department] comp(department)=[Dname, course, office]

comp(course)=[Cno, Cname, student] comp(student)=[Sno, Sname, age, grade]

comp(office)=[room-no, Oname, address]

17

val(Dname)=CIS val(Cno)=10 val(Cname)=Database

val(Sno)=1 val(Sname)=Ahmad val(age)=35

val(grade)=B val(room-no)=100 val(Oname)=secrtary

val(address)= Build-1

Definition 2.2.2 of XSD

An XSD X is defined to be),,,,,(CrootFASECEX = , where:

• CE is a set of complex elements which has another complex element, simple

elements and attribute. The children of complex element can be described by three

types of model groups (all, choice and sequence). For simplicity we consider on

sequence model group whose defines the appearance of sub-elements items in

specified order.

 SE is a set of simple element nodes that have no sub-elements or attributes, they

associated with a data types such as string, date, and decimal.

• A is a set of attribute names that used to identify the properties of a complex

element node.

• F is a function from each CE to the children of the element set and attribute

(SAElCE ∪∪→), and from each SE to its element type definitions.

• root is the root element of the schema, it is of complex type and it is in level zero.

• C is any set of identity constraint such as Keys, and key references.

Example 2.2.2: The XSD shown in Figure 2.2 is represented as follows:

root= school,

CE= {school, department, course, student, office}

SE={Dname, Cno, Cname, Sno, Sname, age, grade, room-no, Oname, address}

F(CE)

F(school)=department* F(department)= Dname,course*, office*

18

F(course)=Cno, Cname, student* F(student)= Sno, Sname, age, grade

F(office)= room-no, Oname, address

F(SE)

F(Dname)= S F(Cno)= S F(Cname)= S F(Sno)=S

F(Sname)= S F(age)= S F(grade)= S F(room-no)= S

F(Oname)= S F(address)= S

C = Dname, Cno, Sno, room-no (are keys)

2.2.3 Paths in XSDs and Instance in XML Tree Documents

An important concept in XSD is the path expression which is used for

navigating and specifying the sequence of elements in XML document. This sequence

represents a route that starts from the element type of the root. Parses X according to

the rules defined in the XSD, and ends at any specific location in X. The formal

definition of paths in XSDs is given bellow (Vincent et al., 2004).

Definition 2.2.3.1 Path in XSD (Vincent et al., 2004)

Given the XSD),,,,,(CrootFASECEX = then the path is defined as a

sequence of elements keexP /...../)(1= where:

- }{SASECEei ∪∪∪∈

- ki ≤≤1

- 1e = root, Length (P) = k and last(P)= ke

- ie is in the alphabet of)(1−ieF for 12 −≤≤ ki , which mean the element whose

 name is ie , is sub- element of the element whose name is 1−ie

- ke is in the alphabet of)(1−keF , or ke =S, or ke =@a, which mean the element whose

 name is ke is sub-element of the element whose name is 1−ke

19

Definition 2.2.3.2: Path instance in an XML Tree document (Vincent et al., 2004)

A path instance in an XML tree),,,,(valcomplabrootNT = is defined as a

sequence of nodes knnTP /....../)(1= , where:

rootn =1

in is in the alphabet of)(1−incomp

kn is in the alphabet of)(1−kncomp , or SEnk = , or Ank =

Generally there may be many instances that refer to as target set of paths. For example

the set of paths in the XML document shown in Figure 2.1 and Figure 2.3 are:

School,

school/department,

school/department/Dname,

school/department/Dname/S,

school/department/course

school/department/course/Cno

school/department/course/Cno/S,

school/department/course/Cname

school/department/course/Cname/S,

school/department/course/student

school/department/course/student/Sno

school/department/course/student/Sno/S

school/department/course/student/Sname

school/department/course/student/Sname/S

school/department/course/student/Age

school/department/course/student/Age/S

school/department/course/student/Grade

school/department/course/student/Grade/S

school/department/office

school/department/office/room-no

school/department/office/room-no/S

school/department/office/Oname

20

school/department/office/Oname/S

school/department/office/address

school/department/office/address/S

We can define the following functions for both XSD path and Tree path:

 Paths(X) = {P|P is a path in X},

)(TPaths = {n|n is a path in T}

})(|)({)(SECEPlastXpathsPXEpaths U∈∈= ,

)}()(|)({)(nlabelnlastTPathsnTEpaths ∈∈=

)()()(

),()()(

TEpathsTPathsTXpaths

XEpathsXPathsXXpaths

−=

−=

Let nppp /..../1= and mqqq /...../1= two paths in X schema then we can have the

following functions:

child(1−ip)= ip

11 /...../)(−= nn pppParent

(p)Prefix (q) if 11 qp = and mn ≤

(p)Equal (q) if 11 qp = and mn qp = also its true if (p) Prefix (q) and (q) Prefix (p)

The previous functions are applied to a Tree, if we assumed, we have two instance

paths of nodes. (Vincent et al., 2004)

To express about the path logically the XPath language is used. The XPath is a

standardized path description language, which is familiar to users and has powerful to

express rich cases. It treats an XML document as logical tree with nodes to represent

elements, attributes, text, namespace, and root. The basis for XPath technique is the

context node and location path, which describe a starting point and path direction

respectively. So, XPath is used for navigating and specifying sets of nodes and sets of

21

paths in an XML document tree (Connolly & Begg, 2010). It is used to move in all

directions in the document tree such as down to children and descendents, or upwards

to parents and ancestors, or may be sideways to siblings (Buneman et al., 2001). The

path that begins with a slash (/) is an absolute path, it starting from the top of the

document, while the path that start with double slash (//) means that the node start

from anywhere in the document. Thus, it is reasonable to use XPath as path

description language.

2.3 Tuples and Tree Tuples for XML

In relational database, tuples are used to assign to each attribute a value from

the corresponding domain. In order to extend the concept of relational database to the

XML data model, the XML data tree is considered as tree tuple (Arenas & Libkin,

2004). The tree tuples are used to assign to each path in X schema a value of stored

data. It is defined as a finite XML tree constructed with at most one occurrence of

each path in a schema X. The following definition regarding tree tuples are adopted

from (Zhang, 2004).

Definition 2.3.1: Tuples for XML (Zhang, 2004)

Given a schema),,,,,(CrootFASECEX = , a tuple t in X is a function from paths(X)

to }{⊥∪∪ SN such that:

- ≠⊥)(rt

- If)(XEpathsp ∈ then }{)(⊥∪∈ Npt

- If)()(XEpathsXpathsp −∈ , then }{)(⊥∪∈ Spt

- If)2()1(ptpt = and Nptpt ∈)2(),1(then p1=p2

22

- If =⊥)1(pt and p1 is a prefix of p2, then =⊥)2(pt

- })(|)({ ≠⊥∈ ptXpathsp is finite.

The set of all tuples in X is defined as T(X)

Example 2.3.1: Suppose that X is the XSD shown in Figure 2.2 then a tuple in X

assigns values to each path in paths(X):

t(school)=n0

t(school/department)=n1

t(school/department/Dname)=CIS

t(school/department/course)=n3

t(school/department/course/Cno)=10

t(school/department/course/Cname)=Database

t(school/department/course/student)=n6

t(school/department/course/student/Sno)=1

t(school/department/course/student/Sname)=Ahmad

t(school/department/course/student/age)=35

t(school/department/course/student/grade)=B

t(school/department/office)=n34

t(school/department/office/room-no)=100

t(school/department/office/Oname)=secrtary

t(school/department/office/address)=buld-1

So we can present tuple t1, by collecting all values together as follows:

t1(X)= (n0,n1,CIS,n3,10,Database, n6, 1, Ahmad, 35, B, n34,100, Secratry, Build-1),

in the same way we can present tuple t2 for the same schema by assigning another

values from the XML document representation in Figure 2.5, as follows:

t2(X)= (n0,n1,CIS,n3,10,Database, n11, 2, Faris, 40, A, n34, 100, Secratry, Build-1).

23

Definition 2.3.2:)(ttreex (Arenas & Libkin, 2004)

 Given an XSD),,,,,(CrootFASECEX = and a tuple)(XTt ∈ ,)(ttreex is

defined to be an XML tree),,,,(valcomplabrootNT = with root = t(r) such that

-)}(,)(|{ ptnsuchthatXEpathspNodenN =∈∃∈=

- if)(ptn = and Nn ∈ then)()(plastnlabel =

-)(ncomp = }.,,,.&)(|)({ spporELeeppptpt =′∈=′≠⊥′′ for Nn ∈ and)(ptn =

Generally, an XML tree can be described as a set of tree tuples. In such a

representation each tree tuple is with the maximal information.

Example 2.3.2: Let X be the XSD from Figure 2.2 and t be the tuple from Example

2.3.1 that gives rise to the following XML tree tuple in Figure 2.4:

 Figure 2.4: Tree tuple)(ttreex

Definition 2.3.3: Node equal and value equal

When considering data redundancy by normalization process, it is important to

compare the nodes in the tree and detect value equality between them (Yan & Lv,

2006; Zhao et al., 2009).

Two nodes 21,nn are called value equal denoted as 21 nn v= so that

If 21,nn is an simple element or attribute then

1))()(21 nlabelnlabel =

24

2))()(21 nvalnval =

Otherwise, if 21,nn is complex elements called node equal if

1))()(21 nlabelnlabel = , or

2) If the attribute a∈ n1 there is an attribute b∈ n2 such that ba = and vise

 versa.

3) The sequence of their children elements is equal in pairs, which is mean

)()(21 ncompnComp =

Let's consider the XML document of XSD in Figure 2.2 with data as in Figure

2.5. The two data elements (e.g., node 8 and node 26) are value equal which have the

same value name Ahmad. While two complex elements are node equal if and only if

the sub-trees rooted at those two elements are identical when the order among sibling

elements is ignored.

 Figure 2.5: XML document tree with data redundancy

25

2.4 Keys and Foreign Keys for XML Documents

In recent years, the increasingly use of data centric approach of XML has

necessitated to enrich the semantics of XML data which can be done through using

keys. Keys are an important part of any data model, as well as in XML database. It is

considered as one of those integrity constraints which specify the way that the

elements are associated to each other (Ahmad & Ibrahim, 2008), and identifies the

scope of uniqueness over XSD level (Buneman et al., 2001). Just like in relational

database model, the key establish the connection between a real word object and its

representation in the database thus enabling information about an object to be located

in the database (Vincent et al, 2004). The XML needs for specification of keys to help

in locating data in an XML document and in enforcing semantic integrity constrains,

in order to prevent incorrect tuple insertion in the XML schema, furthermore they are

using for indexing and querying optimization. Shahriar & Liu, (2008) proposed that

XML key is preserving transformation of XML which can be used in XML-to-XML

data transformation and integration.

Keys of DTD are defined in terms of ID and IDREF attribute which can

identify uniqueness of element within an XML document, but with limited scope in

the entire document; however it is not clear that ID attributes are used as keys rather

than internal pointers (Buneman et al., 2001). While the XSD supports the definition

of key and foreign key concepts and has precise way for specifying them through the

use of XPath language (Clark & DeRose, 1999). The key function confirms

uniqueness and asserts that all selected content actually has such tuples, furthermore it

confirm that the value of key has to be not null. The location of the key element in the

schema provides the context node in which the constraint holds. The constraint place

26

under the selector XPath element is a key that refers to the field XPath element

(Connolly & Begg, 2010).

(Wu et al., 2002; Zhao et al., 2009) classified keys into two types, absolute

key and relative key, the absolute key indicating that the simple element key of

significant complex element has uniquely identified it, otherwise the relative key

indicating that more than one simple element key in different level have uniquely

identified significant complex element.

In this section we define the key and foreign key based on XSD schema. Our

definition adopted from ((Necasky & Pokorny, 2007) by using the XPath expression

as follows:

Definition 2.4.1: XML Key (XK)

To define a key constraint, we specify a unique element that can determine

uniquely other simple elements or attributes in the whole XML document (Zainol &

Wang, 2010). Like in relational database key, it can be defined to include one or more

fields which are called a composite key (Provost, 2002). The formal definition of key

in XSD is as follows:

Given an XSD),,,,,(CrootFASECEX = , the XK is a key of X schema that defined

as }),......,{,(,1, nffS PPPK represented primary keys (which are to be unique and cannot

be null) (Necasky & Pokorny, 2007), where

n>0,

SP is a selector path on XSD that specifies the complex element that hold fields with

uniqueness constraint.

},......,,......,{ ,,1, nfiff PPP are a set of field paths that represent the nodes to be checked

for their value equality or uniqueness.

27

The following expression corresponds to the key in XSD:

<xs:key>

 <xs:selector xpath=" sP "/>

 <xs:field xpath=" 1,fP "/>

 ….

 <xs:field xpath=" nfP , "/>

</xs:key>

Example 2.4.1 defines a key for the XSD in Figure 2.2. The key named

departmentKey2 define a unique constraint on the simple element cno which is

under the complex element course. The location of the unique element in the schema

provides the context node in which the constraint holds. So, by placing this constraint

under the course element, we specify that this constraint has to be unique within the

context of a course element only. This constraint is analogous to specifying a

constraint on a relation in relational database.

Example 2.4.1

 <xs:key name="departmentKey2">

 <xs:selector xpath=".//mstns:course" />

 <xs:field xpath="mstns:cno" />

 </xs:key>

Definition 2.4.2: XML Foreign Key (XFK)

The foreign key in XSD is defined by the use of keyref function. It specifies

association between nodes of XSD and asserts similar constraints on the value of

referencing nodes (Provost, 2002).

The formal definition of the XFK is as follows:

}),.......,{,,(,1, mfRfRSR PPPXKXFK = , (Connolly & Begg, 2010), where:

XFK is defined as foreign key referred to be constrained to XK key.

28

SRP is the selector reference path that specifies the complex element that hold

reference fields.

mfRfR PP ,1, ,,......... is the set of fields reference paths that consider as a foreign key

referred to the key in field of XK. The following expression corresponds to the foreign

key in XSD:

<xs:keyref name=" XFK " refer "XK ">

 <xs:selector xpath=" SRP "/>

 <xs:field xpath=" 1,fRP "/>

 ….

 <xs:field xpath=" nfP , "/>

</xs:keyref>

2.5 XML Schema Representation

Yu & Jagadish, (2008) referred to two types of representation in XML schema

which is either flat or hierarchical representation.

2.5.1 Flat XML Schema

The flat XML data is common due to its simplicity way in publishing XML

data. It has little characteristics and no nesting of elements and such databases model

their data mainly as attributes. The flat XML schema consists of single complex

element under the root which contains many children of simple elements in the same

level (Lee at el., 2002).

29

Example 2.5.1: Consider an XML document tree in Figure 2.6 which shows a sample

of flat XML database about leasing a property. It consists of complex element named

leases property with unbounded occurrence. The leases property element contains the

following simple elements (clientNo, Cname, propertyNo, Paddress, rent-start, rent-

finish, rent-price, Ownerno, and Oname) as children of complex element lease

property.

 Figure 2.6: Flat XML document tree for lease property database

2.5.2 Hierarchical XML Schema

Hierarchical XML schema is inspired from the concept of nested relation. It

consists of many complex elements with many simple elements in different levels. It

is structured as a hierarchical tree (Yu & Jadadish, 2008). The XML document tree in

Figure 2.5 is an example of hierarchical XML database.

30

Chapter 3

Enhancement of Functional Dependencies Definition

for XML

In this chapter, we present the definition of Functional Dependencies for XML

(XFDs), and then we introduce our improvement definition of XFD. We also present

the types of dependencies according to the type of representation. Finally, we

introduce the notion of XML normal form (XNF).

3.1 Introduction

The hierarchical structure of XML document allows redundancy of data with

its elements which may be nested and repeated. This will make the same information

appeared in more than one place; which means the same elements appear at different

sub-trees. Existence of such redundancy can lead to waste of storage space and to

anomalies in recover information (Ahmad & Ibrahim, 2009). Similar to traditional

databases, we can identify three kinds of update anomalies in a badly designed XML

database: insertion anomaly, rewriting anomaly and deletion anomaly.

One strategy to avoid data redundancies is to design redundancy-free schema,

which are formalized by means of data dependencies (Pankowski & Pilka, 2009). The

data dependencies are considered as part of the real word semantics. They present the

semantic information in the form of relationships between different elements in the

XML documents (Arenas & Libkin, 2004). Similarly to relational database, the data

dependency in XML can be categorized into Key dependencies and functional

dependencies. One good strategy is that the data dependency should be modeled in the

start of design stage for a correct and complete database representation of semantic

(Zainol & Wang , 2010).

31

3.2 Functional Dependencies

A functional Dependency is considered as one of the most popular data

dependencies for relational databases which describes the property that the values of

some attributes of a tuple uniquely determine the values of other attributes of the

tuple. Similarly is the definition for XML but the difference is that attributes and

tuples are basic units in relational database, while in XML model they must be

defined using paths of tree tuple (Ahmad & Ibrahim, 2009)

Just like in traditional databases, the concept of functional dependency for

XML has played a centric role in providing richer data semantic which is important in

normalizing XML schema. This concept has been widely investigated over the past

few years (chen & Liao, 2010).

Although some proposals have been made, there seems to be no consensus on

how to define XML functional dependencies (Chen & Liao, 2010). In general, there

are two main approaches in XML research community which are different in how to

specify the target elements of the constraint (Ahmad & Ibrahim, 2008). The first

approach is the path-based (Vincent et al., 2004) where the target elements are

implicitly encodes inside the functional dependency specification. The second

approach is tuple-based (Arenas & Libkin, 2004) which specifies the target elements

independent of each individual functional dependency specification. However, both

approaches are valid ways for defining XML FDs, but the tuple-based approach has

clearer semantics and is conceptually similar to the relational FD notion (Yu &

Jagadish, 2008).

32

In this section we define the XML Functional Dependency (XFD) as given by (Lee et

al., 2002; Yan & Lv, 2006) and then introduce our definition with some improvement

to there definition.

Definition 3.2.1: Functional Dependency for XML (XFD) (Yan & Lv, 2006)

Given XSD),,,,,(CrootFASECEX = then the functional dependency defined as:

]),.....,[],....,[,(11 ymyxnxh PPPPPXFD →= where:

hP is the header path of XFD which defines the longest common repeatable path for

both the left hand side (LHS) and the right hand side (RHS), and it is starting with the

root node. The header path specifies the scope of XFD in which the constraint holds,

and defines the node set in which the functional dependency holds.

The scope of XFD specified by last element of header path, such that CEPlast h ∈)(.

If φ≠hP and rootPh ≠ , then the scope of XFD is called local which means that the

scope of functional dependency is the sub-tree rooted)(hPlast ; otherwise, when

rootPh = then it is called a global functional dependency which holds the scope

overall the schema X.

xnx PP ,.....,1 is called the left hand side paths of the XFD which determine the other

side, and SASECEPlast xi ∪∪∪∈)(.

ymy PP ,.....,1 is called the right hand side of the XFD which functionally depend on the

left side, and SASECEPlast yi ∪∪∪∈)(.

Which mean, for any two instance of tree tuples t1, t2 identified by the XFD header

hP , if all LHS tree tuples agree on their values, then they must also agree on the value

of the RHS tree tuples such as: xixi PtPt .. 21 = imply yiyi PtPt .. 21 = .

33

Definition 3.2.2 Our Improvement Definition of XFD

Here we made some improvement to the above XFD definition to suit the

hierarchical structure of XML schema by using the XPath expression and adding the

level of last element of each path. The last element of the paths for both sides may be

located in the same level or at different levels which are important in specifying

dependency in hierarchical schema. We represented the XFD as follows:

Given XSD),,,,,(CrootFASECEX = then the functional dependency defined as:

]),/,......,.,1/[.],/,......,.,1/[.,(...1...1...1...1 iiiih lymlylxnlxPXFD →= , where:

hP is the header path of XFD which defines the longest common repeatable path that

is a prefix of both left hand side and right hand side and it is starting with the root

node. The header path specifies the scope of XFD in which the constraint holds, and

defines the node set in which the functional dependency holds.

The scope of XFD is specified by last element of header path, such as in the previous

definitions.

ii lxnlx ...1...1 ,/,.....,.,1/. are the set of last elements of paths for the left hand side of the

XFD which determine the other side, and represent)(1xPlast ,…. ,

)(xnPlast respectively.

il ...1 is to specify the level of the last element of the paths, where bounded from 1 to i.

ii lymly ...1...1 ,/,.,.........,1/. are the set of last elements of paths for the right hand side of

the XFD which functionally depend on the left hand side, and represent)(1yPlast ,….,

)(ymPlast respectively.

il ...1 is to specify the level of the last element of the paths, where bounded from 1 to i.

34

Our definition of XFD is necessary and sufficient to specify the constraint that

enriches the XML schema. It defines the syntax and semantics precisely by allow

dealing with not only string values but also elements of both types (complex elements

and the simple elements) in the XSD schema. Furthermore, specifying the level of

elements can help in capture the type of dependency as we will clarify in section 3.3.

The characteristics of functional dependency are useful for determining

redundancy and normalization process, in some case if a specific value of left hand

side are repeated in several tuples in table for some reason then the value of right hand

side in these tuples are forced to be the same, such case may cause data redundancy

which lead to some anomaly (Ahmad & Ibrahim, 2009).

Example 3.2.2.1: Let's consider the constraints information in the XSD schema for

school management database shown in Figure 2.2 is as follows:

1- In the total document, the student number determines student name and age.

2- All in the school, course no determine course name.

3- In some departments, the room number determines the office name which valid in

the entire document.

4- The department’s name determines the address of the office (supposed that every

department locates in a certain building.

By applying the definition of XFD, the data constraints of XSD schema in

Figure 2.2 can be represented the functional dependency in the following forms:

XFD(1)])4,/,.4,/.4,/[.,///(lagelSnamelSnostudentcoursedepartmentschool →

XFD(2)])3,/.3,/[.,//(lCnamelCnocoursedepartmentschool →

XFD(3)])3,/.3,_/[.,//(lOnamelnoroomofficedepartmentschool →

XFD(4)])3,///.2,/[.,/(laddressofficeldnamedepartmentschool →

35

The XFD(1) imples that this XFD holds over the sub-trees rooted at student,

this functional dependency states that student number (Sno) in level 4 can uniquely

determines student name (Sname) and student age (age), in the same level and under

the same sub-tree student; XFD(2) implies that the course number(Cno) in level 3

uniquely determines course name (Cname) in level 3 under the sub-tree rooted at

Course; XFD(3) states that the room number (room-no) in level 3 can uniquely

determines office name (Oname) in the same level and holds under the sub-tree rooted

at the node office; and XFD(4) states that department name(Dname) in level 2 under

sub-tree department can uniquely determines the element of the RHS (address) which

is in level 3 and under sub-tree office.

To apply our definition of functional dependency according to XML tuple

definition, consider the XFD(1) of Example 3.2.1

XFD(1)])4,/,.4,/.4,/[.,///(lagelSnamelSnostudentcoursedepartmentschool →

We defined a set of paths instances for school database in section 2.2.3.2.

Let the left hand side path that ends with Sno is

 p(x1)=school/department/course/student/Sno

and the two paths of the right hand side are:

 p(y1)=school/department/course/student/Sname,

 p(y2)=school/department/course/student/age

and we define two tuples in Example 2.3.1 as follows

t1(X)= (n0,n1,CIS,n3,10,Database, n6, 1, Ahmad, 35, B, n34,100, Secratry, Build-1)

t2(X)= (n0,n1,CIS,n3,10,Database, n11, 2, Faris, 40, A, n34, 100, Secratry, Build-1)

From the definition of functional dependency we have: for any two instances

of tuples t1, t2 identified by the XFD header path hP , if the last element of paths for

36

LHS in two tuples are agree on their values, then they must also agree on the values of

the last elements of paths for RHS in the same tuples such as

)/.(.)/.(. 21 ii xtxt = imply)/.(.)/.(. 21 ii ytyt =

For our example)/.(.1 ixt = 1 and)/.(.2 ixt = 2, which is mean the student number for

tuple 1 not equal the student number for tuple 2, and hence student name in tuple1 not

equal student name in tuple2 ()/.(.1 iyt = Ahmad) ≠ ()/.(.2 iyt =Faris).

So the functional dependency is achieved according to the constraint, which specify

that for each student has unique student number.

Example 3.2.2.2: In similar manner we define the functional dependency to flat XML

document for lease property database in Example 2.5.1 as follows:

XFD (1)

])2,/,.2,/.2,/,.2,/[.

,/(

lfinishrentlstartrentlpropertyNolclientNo

propertyleaseroot

−−→

−

XFD (2)

])2,/.2,/[./(lCnamlclientNopropertleaseroot →−

XFD (3)

])2,/,.2,/,.2,/,.2,/.

2,/[./(

lOnamelOwnernolpricerentlPaddress

lpropertyNopropertyleaseroot

−→

−

XFD (4)

])2,/.2,/[./(lOnamelOwnernopropertyleaseroot →−

With the help of identified functional dependencies we identify a primary key

for the schema which are clientNo, and propertyNo, both of them in level 2. In

XFD(1) the elements start date of rent property (rent-start) in level 2 and finish date of

rent property (rent-finish) in the same level depend fully on the composite keys

(clientNo & propertyNo). XFD(2) the client number (clientNo) in level 2 uniquely

determines client name (Cname) in the same level. XFD (3) the property number

(propertyNo) in level 2 determines property address (Paddress), rental price (rent-

37

price), the owner number (Ownerno), and the owner name (Oname) which are all in

the same level 2.

3.2.3 Discussion about Definition of XFD

When comparing our XFD definition with previous researches definitions we

can conclude the following:

- It is a good idea to extend the concept of relational model to define XFD such as in

((Arenas & Libkin, 2004); (Yu & Jagadish, 2008)), but it is important to consider the

structural difference between the two models, since the hierarchical structure makes

the information items related to XFD may appear at different levels of XML tree.

Thus with our definition we reflect the feature of hierarchical structure by specifying

the level number.

-It is important to specify the way to express the involved information items. Many

researches ((Lee et al, 2002); (Vincent et al, 2004); (Yan & Lv, 2006)) using the path

to express the node of XML document, but with expressive power of XPath language

we can determine richer cases that involved information items; furthermore we can

capture a set of nodes with complex and simple type in order to define the value

equality for element nodes which is important in determining XFD.

-((Yu & Jagadish, 2008); (Ahmad & Ibrahim, 2009)) proposed that the XML

documents has scope due to the nested tree structure of XML schema specifies by

Global and local, and our definition also capture this characteristics.

-Finally, the functional dependency in relational data model consider string values

only as relational attributes are simple data types, while our definition consider string

values and complex element nodes as XML schemas not only have simple data types

but also nodes of complex types.

38

3.3 Types of Dependencies

3.3.1 Types of Functional Dependencies for Flat XML Schema

As mentioned in Chapter 2, the flat XML schema representation consists of

single complex element under the root which contains many children of simple

elements. We analogous the flat XML schema to relational database structure, by

considering the single complex element as a table, and its children nodes as attributes

of the relational table. Therefore we extend some thoughts of normalization in

relational database.

The following definitions of XFDs for flat XML schema, which we adopted

from (Lv & Yan, 2007) are given. We have introduced some modifications to those

XFDs to make them suitable to the hierarchical structure of XML schema.

3.3.1.1 Partial XFD for Flat XML Schema (PXFD/F)

Definition 3.3.1.1 PXFD/F

Let P1, Pn are two paths that ends with key elements x1 and xn respectively

and the levels for both keys are li, so x1, xn consider as composite keys, then the Full

XML Functional Dependency in Flat schema (FXFD/F) is:

Let]),/,....,.,1/.,/,.,1/[.(liymliylixnlixPXFD h →=

Where all last elements of the paths in the RHS are depend on both specified keys.

Therefore the Partial XML Functional Dependency in Flat schema (PXFD/F) is:

]),/.,........,,1/.,1/[.(liymliylixPh →

Which means the elements in the RHS functionally depends on part of the composite

keys. Example 3.3.1.1 clarifies the full and partial XFD for flat XML schema

39

Example 3.3.1.1: The XFD (1) in Example 3.2.2.2 is full XFD (FXFD/F)

])2,/,.2,/.2,/,.2,/[./(lfinishrentlstartrentlpropertyNolclientNopropertyleaseroot −−→−

While XFD(2) and XFD(3) are both Partial XFD (PXFD/F)

])2,/.2,/[./(lCnamlclientNopropertleaseroot →− , and

])2,/,.2,/,.2,/,.2,/.2,/[./(lOnamelOwnernolpricerentlPaddresslpropertyNopropertyleaseroot −→−

Hence the schema has redundancy due to the anomalies in partial functional

dependency which is clear in tree representation in figure (2.6) that the client name

(Saad) and (Fahad) are redundantly stored in document which may lead to update

anomaly, for example if we wish to update client name (Fahad) that has number

(C30), we have to update in the three sub-tree nodes (lease-property). The same

redundancies appear through the third functional dependency.

3.3.1.2 Transitive XFD for Flat XML Schema (TXFD/F)

Definition 3.3.1.2 TXFD/F

Let the paths Px ends with x elemnt, Py ends with y element, and Pz ends with

z element, and the levels for all final elements of paths are li

Let]),/.,/[.,(liylixPXFD h →= and]),/.,/[.,(lizliyPXFD h →= then

]),/.,/[.,(lizlixPXFD h →=

Which means that the path ends with element z is transitively depends on the path that

ends with the element x. In another word the non key element transitively determines

another non key element. This type of functional dependency is called Transitive

XFD for Flat schema (TXFD/F). Example 3.3.1.2 clarifies the TXFD/F.

40

Example 3.3.1.2: The XFD (4) in Example 3.2.2.2 about lease property database

])2,/.2,/[./(lOnamelOwnernopropertyleaseroot →− is (TXFD/F).

The non-key element owner number (Owner-no) transitively determines other non-

key element owner name (Oname), which cause clear redundancy in the document in

Figure 2.6, that may lead to update anomalies. For example, if we want to update the

name of an owner, such as the owner name (Rami) that has number (O90), we have to

update these elements in all repeated sub-tree of (lease-property). If we update only in

one sub-tree and not in the other, the XML database would be in an inconsistent state.

3.3.2 Types of Dependency for Hierarchical XML Schema

Zhao et al., (2009) classified XFD in hierarchical schema to Absolute and

relative. They proposed that the functional dependency that has the elements of both

sides in the same level is absolute functional dependency. While if the elements of

both sides in different level is relative dependency, which means that the elements of

RHS relatively depend on elements of the LHS.

3.3.2.1 Absolute XML Functional Dependency for Hierarchical Schema

(AXFD/H)

AXFD/H holds in hierarchical schema if there is a dependency between

simple elements of the same corresponding complex element at the nodes in the

bottom of schema. This notion adopted from (Arenas & Libkin, 2004; Zhao et al.,

2009)

Definition 3.3.2.1 AXFD/H

Let's consider the]),/,......,.,1/[.],/,......,.,1/[.,(...1...1...1...1 iiiih lymlylxnlxPXFD →= is

absolute functional dependency when

41

1) The last element of the header path is the element that represents the root of sub

 tree that contains elements of both sides of dependency

2) The level of the last element of the paths in both sides of dependency is the same

 and refers to terminal level in the schema

The XFD(1) for the schema in Figure 2.2 of an example 3.2.2.1 is an absolute

functional dependency.

XFD(1)])4,/,.4,/.4,/[.,///(lagelSnamelSnostudentcoursedepartmentschool →

The header path ends with the element student, which is the sub tree root to the

elements Sno, Sname, and age. This dependency specifies that each student must have

student number as identifier key that determines the name of student and the age.

While the same student takes many courses in the department, then his name and age

repeated for each course. That means redundancy in the name and age.

 3.3.2.2 Relative XML Functional Dependency (RXFD)

The relative dependency holds when a subset of its LHS is a key from

different level. That mean the RHS elements depend on LHS elements in different

levels (Zhao et al., 2009). We integrated this definition with the definition of (Wu et

al., 2002), so we classified relative dependency into two definitions: Relative

Transitive XFD and Relative Full/Partial XFD.

3.3.2.2.1 Relative Transitive XFD (RTXFD/H)

Definition 3.3.2.2.1 (RTXFD/H)

Transitive functional dependencies between complex elements occur if there is

an attribute or a simple element node has dependency with another simple element

node from different level.

42

Let the paths Px ends with x element in level i, Py ends with y element in level

i+1, and Pz ends with z element in level i+1,

Let's]),/.,/[.,(1+→= iih lYlXPXFD &]),/.,/[.,(11 ++ →= iih lZlYPXFD then

]),/.,/[.,(1+→= iih lZlXPXFD

This definition means the element (x) in level i transitively determines the element (z)

in level i+1.

The transitive XFD between complex elements occur if theirs simple element

has dependency with another simple element node from different level.

Example 3.3.2.2.1

Consider the schema in Figure 2.2 of an example 3.2.2.1 has the following functional

dependencies:

])3,//.2,/[.,/(lnoroomofficeldnamedepartmentschool −→ ,

])3,//.3,//[.,/(laddressofficelnoroomofficedepartmentschool →−

These two functional dependencies represent the XFD(4)

])3,///.2,/[.,/(laddressofficeldnamedepartmentschool → ,

which assert the transitive dependency. Where the key (dname) in level 2 under the

complex element department is relatively determines the simple element (address) in

level 3 under complex element office. It is obvious from the corresponding level that

the element dname is not in the same level of the RHS element address.

The relative dependency can cause redundancy when violated. In Figure 2.5

the tree representation of XML document for school management database, when the

department name (CIS) has many offices nodes, the room number (100) which is the

room name (secrtary) is located in building (buld-1), and the same department (CIS)

has office with room number (101) which is the room named (lab) located in building

(buld-1). So in the department (CIS), the address of offices will repeat in each office

43

node, which is mean redundancy in repeating the address. In next chapter we remedy

this redundancy.

3.3.2.2.2 Relative Full and Partial XFD (RFXFD and RPXFD)

Definition 3.3.2.2.2 (RFXFD and RPXFD)

Let 321 ,/,.,/,.,/,.,/. +++ iiii lSlZlYlX be last elements of paths Px, Py, Pz, and Ps

in levels i, i+1, i+2,and i+3 respectively, and the elements x, y, z are keys for their

parent complex elements. The following XFD is definition of relative full functional

dependency (RFXFD/H).

Let]),/.,/,.,/,.,/[.,(321 +++ →= iiiih lSlZlYlXPXFD is relative full XFD, then

]),/.,/[.,(3+→= iih lSlXPXFD or]),/.,/,.,/[.,(321 +++ →= iiih lSlZlYPXFD is Relative

Partial XML functional dependency (RPXFD/H). In the first relative partial XFD we

have one key element in the LHS, such case is considered as special case of relative

transitive, hence we determine the XFD that has more than one key element part of

composite key in deferent level as RTXFD.

That means when the document has many keys for complex elements located at

different levels, then if any simple element depends on more than one key part of the

composite keys in other level, then it is relative partial XFD.

As the example of school management document dose not contain the RTXFD

redundancy we consider another example shows in Figure 3.1 a tree representation of

XML document for typical Project-Supplier-Part database which consists of the root

element (PSJ), complex element (project) under the root, each project element has

project name(Pname) as a key and another complex element (supplier), each supplier

element has supplier name (Sname) as a key and a complex element (part) as final

complex element, each part element has part number (PartNo) as key and two simple

44

elements (price) and (quantity).Suppose we have a constraint that a supplier must

supply a part at the same price regardless of projects. This information is useful to

anyone using this XML database as it can alert them to violation of this integrity

constraint. The following two XDF are defined for the schema in Figure 3.1:

XFD(1)

])4,//.4,//,.3,/sup/,.2,//[.,(lQuantitypartlPartNoPartlSnameplierlPnameprojectPSJ →

XFD(2)

])4,Pr//.4,//,.3,/sup/[.,/(licePartlPartNoPartlSnameplierprojectPSJ →

The first functional dependency represents relative full XFD. The second

functional dependency represents relative partial XFD, which states that the price

depend on supplier name and part number regardless of project. This dependency is

violated as clear in the instance in Figure 3.1. Supplier "ABC Trading" sells part

number "P700" at price "80" to project "Garden", but sells the same part to project

"Road Work" at price "10".

 Figure 3.1: Tree representation for Project-Supplier-Part database

45

3.4 Normal Form for XML

We now give the definition of XML Normal Form (XNF) based on defined

dependencies.

Given XSD),,,,,(CrootFASECEX = , and a set of XFD over the schema X.

The schema X is in normal form if and only if:

1) X has at least one key.

2) There is no non-trivial Absolute Partial or Transitive XFD for flat schema.

3) There is no non-trivial Absolute XFD for hierarchical schema.

4) There is no non-trivial Relative Transitive XFD.

5) There is no non-trivial Relative Partial XFD.

6) For any trivial XFD of the form]),/.,/[.,(liYliXPh → satisfied by schema X,

 where X and Y are last elements of LHS paths and RHS paths respectively, then

 either X is a key or Y is part of the key in schema X.

46

Chapter 4

XML Schema Normalization

The main goal of normalization process is to convert an initial schema into

one in a normal form to reduce anomalies and redundancies in the XML document. In

this chapter, we present normalization rules that we used to transform the un-normal

form of XSD into a normal one. We also, present the flowchart of normalization

process and the case tool we developed to automate the process of XML database

normalization. Finally, we present examples to illustrate how the XSD is restructured

to XNF.

4.1 Introduction

As XML increasingly has become the more common for representation and

natively storing of data on the web, it is unavoidable that the problem of storing

redundant data, modifying, and maintaining are become touching for many

applications. The problem of redundant data and operation anomalies occur in XML

documents if their type structure are not well-formed. To avoid these problems, it is

important to begin with building an XML application with designing a good XML

schema (Pankowski & Pilka, 2008).

Similar to relational database design, normalization rules are used to help

designers to design a good XML schema which can follow either of two

methodologies: the conceptual approach (Wu et al, 2001; Zainol & Wang, 2010) or

the normalization theory approach (Arenas & Libkin, 2004; Yu & Jagadish, 2008).

Although normalization theory of relational database has matured, there is no such

mature and systematic theory for XML world and it can not be applied directly in

47

XML schema due to the different in structural nature of XML from relational

database. The hierarchical, irregular structure of XML make the task of designing

XML documents becomes more challenging than in relational database (Lv & Yan,

2007).

The goal of normalization design of XML database schema is to convert an

initial poorly designed schema into one of normal forms which eliminate

redundancies and update anomalies (Wu, 2004). In our research we integrated

normalization rules proposed by number of researchers, and used these rules to design

and implement a case tool to perform the process of normalization of XML schema

design.

4.2 Normalization Rules

 In (Arenas & Libkin, 2004) an XNF decomposition algorithm was proposed

that combines two basic ideas: creating a new element, and moving an attribute.

These two ideas are the basic for the following elimination rules.

Rule-1: Eliminate Absolute XFD (EAXFD)

This type of elimination is used when there is a redundancy caused by a non-

trivial PXFD/F, TXFD/F, and AXFD/H which holds between the elements under the

same sub tree node.

Suppose X is a simple element key, and Y is a simple element, and both are

under a complex element CE which means have the same level.

To eliminate the redundancy caused by]),/.,/[.,(liYliXPAXFD h →= , we do the

following:

1- Create a new complex element name (new-CE), under the root.

48

2- Replicate the simple element key in LHS, and simple element node in RHS.

3- Make them as children to node (new-CE).

4- Make the copy of the LHS as key under the (new-CE).

5- Delete the simple element of RHS from original location.

Rule-1 procedure is illustrated by Example in Sub-Section 4.5.1.

Rule-2: Eliminate Relative Transitive XFD (ERTXFD/H)

This type of elimination works with the non-trivial Relative Transitive XFD

that has one element key in LHS.

Let's]),/.,/[.,(niih lYlXPXFD +→= &]),/.,/[.,(ninih lZlYPXFD ++ →= then

]),/.,/[.,(niih lZlXPXFD +→= is RTXFD/H

To eliminate redundancy caused by non-trivial RTXFD/H, we do the following:

1- Replicate the Right hand side of XFD which is in level i+n.

2- Put it in the same level of the LHS element which is i.

3- Delete it from original location.

Rule-2 procedure is illustrated by Example in Sub-Section 4.5.2.

Rule-3: Eliminate Relative Partial XFD (ERPXFD/H)) (Enhancement based on the

rule of decomposition algorithm (Arenas & Libkin, 2004))

This type of elimination works with the non-trivial Relative Partial XFD.

If]),/.,/,.,/,.,/[.,(221 +++ →= iiiih lSlZlYlXPXFD then

]),/.,/,.,/[.,(221 +++ →= iiih lSlZlYPXFD is Relative Partial XML functional

dependency (RPXFD/H).

To eliminate redundancy caused by non-trivial RPXFD/H, we do the following:

1- Create new element-1 under the root.

49

2- Replicate the elements 1,/. +ily , 2,/. +ilZ , and 2,/. +ilS with its sequence level of

hierarchy.

3- Put the element 1,/. +ily under the new element.

4- Create new element-2 under new element-1.

5- Put the elements 2,/. +ilZ and 2,/. +ilS under new element-2.

6- Make the elements 1,/. +ily and 2,/. +ilZ in the new location as keys.

7- Delete the RHS element 2,/. +ilS from original location.

Rule-3 procedure is illustrated by Example in Sub-Section 4.5.3

50

4.3 Normalization Process

The flowchart of the normalization process is shown in Figure 4.1.

Read from file.xsd

CE,,Celv,SE,Selve

Ceno=+1

Start

Read until end of file

View list of

Complex element , level

Simple element, level

Select keys from SE list,

count kno and view them

Determine the header

path of XFD,count XFDno

Select elements of the

LHS

Count the LHS elements

number, Lno

Select elements of the

RHS

View the XFD

CEno=1Flat schema Y Hierarchical

schema
N

Lno < kno

XFD is

partial

Until end of insert XFD

For F=1 to XFDno

Y

N

Full XFD

Y

Rule-1

XFD is

transitive

N

Y

F=F+1

F=XFDno Y

View new (Flat

schema, or

Hierarchical schema)

For F =1 to XFDno

Lno < kno

 LHS Els Lv

=

 RHS Els Lv

Y

N

 Lno=1

Y

Y

Lno>1Y

N

F=XFDno

N

Y

F=F+1

End

N

Rule-2

Rule-3

N

LHS = K

or

 subset K

N

Y

N

N

 Figure 4.1: Flowchart of XSD Normalization process

51

 4.4 XML Normalizer

 Normalization in XML databases is an important stage in schema design. The

process of doing that manually makes it difficult and takes so much time; furthermore

the human may make mistakes in doing normalization.

 In our thesis we have developed a case tool, called XML Normalizer that helps

designers to perform the XML database schemas normalization quickly and

accurately. This saves time and effort of XML database designers and thus frees them

focus on other aspects of the XML database design process.

The main objectives of XML Normalizer are:

- To perform XML normalization process accurately.

- To reduce the time needed in perform the process of XML normalization.

- To avoid human error through normalize the XML schema process.

The XML Normalizer uses the three rules we presented in Section 4.2 to perform the

normalization to XNF. A complete demo of the XML Normalizer is given in

Appendix A.

4.5 Normalization Examples

In this section, we present examples to illustrate how the XSD is restructured

according to XNF.

4.5.1 Example of Flat Schema Normalization

Consider the tree representation of XML document about lease property

database shown in Figure 2.6, which has clear data redundancy due to the partial

52

dependencies XFD (2):])2,/.2,/[.,/(lCnamlclientNopropertleaseroot →− and XFD

(3):
])2,/,.2,/,.2,/,.2,/.

2,/[.,/(

lOnamelOwnernolpricerentlPaddress

lpropertyNopropertyleaseroot

−→

−

, also it has transitive redundancy through

XFD (4)])2,/.2,/[.,/(lOnamelOwnernopropertyleaseroot →− .

We apply rule-1 to eliminate these redundancies. To remedy XFD (2) the platform

creates new element-1 under the root, copy (clientNo) and (Cname), put them under

the new element-1, make (clientNo) as a key for new elemet-1, and delete Cname

from lease-property complex element. To remedy XFD (3) the platform create new

element-2 under the root, copy (propertyNo), (Paddress), (rent-price), (Ownerno), and

(Oname), put them under new element-2, mark (propertyNo) as a key to new elemet-2

node, and delete (Paddress), (rent-price), (Ownerno), and (Oname) from lease-

property node. Finally to remedy the transitive XFD (4), the platform creates new

element-3 under the root, copy (Ownerno), and (Oname), put them under the new

element-3, make (Ownerno) as a key to new element-3, and delete (Oname) from

orginal location. The schema now is in normal form. Figure 4.2 shows an un-

normalized XSD schema for lease property database and Figure 4.3 shows the

normalized XSD schema for lease property database after applying elimination rules.

53

1

ClientNo

PropertyNo

Cname

Paddress

Rent-start

Rent-finish

Rent-price

Owner-no

Oname

Lease-property Root

 Figure 4.2: An un-normalized XSD schema for lease property database

 Figure 4.3: Normalized XSD schema for lease property database after applying rule-1

54

4.5.2 Example of Hierarchical Schema Normalization

The XSD schema in Figure 2.2 about part of school management database

contains redundant data, where the information about the student’s name and age is

repeated every time, student takes new course and the address of room office is

repeated for each office in department, because they are in the same department.

Hence according to the constraint given

 XFD(1)])4,/,.4,/.4,/[.,///(lagelSnamelSnostudentcoursedepartmentschool →

XFD(2)])3,/.3,/[.,//(lCnamelCnocoursedepartmentschool →

XFD(3)])3,/.3,_/[.,//(lOnamelnoroomofficedepartmentschool →

XFD(4)])3,///.2,/[.,/(laddressofficeldnamedepartmentschool →

The XFD (1) is absolute dependency which causes redundancy. To remedy

this problem the platform apply rule-1, create new element-1 under the root, copy

(Sno), (Sname), and (age), put them under the new element-1, mark (Sno) as key in

new element-1, delete (Sname), and (age) from original location. The other constraint

that causes redundancy is XFD (4) that the department name determines the address

of the office which is here in other level, means it is a relative transitive dependency.

The address of the room is redundantly stored with each room in the same

department. To remedy this redundancy, the platform copy (address), put it in the

same level of the LHS of (dname) which mean under complex element department,

and delete it from its original location. Figure 4.4 shows an XML document for un-

normalized school schema and Figure 4.5 shows XML document for normalized

school schema after applying elimination rules.

55

 Figure 4.4: XML document for un-normalized school schema

 Figure 4.5: XML document for normalized school schema

56

Example 4.5.3: Example of Hierarchical Schema normalization that apply rule-3

Consider Project-supplier-part database shown in Figure 3.1. The database has

two functional dependencies; the second one is representing relative partial XFD:

XFD(2):

])4,Pr//.4,//,.3,/sup/[.,/(licePartlPartNoPartlSnameplierprojectPSJ → , which

states that the price depends on supplier name and part number regardless of project.

This dependency is violated as clear in the instance in Figure 3.1. Supplier "ABC

Trading" sells part number "P700" at price "80" to project "Garden", but sells the

same part to project "Road Work" at price "10". To remedy this redundancy apply

Rule-3, create new element-1 under the root, copy (Sname), (PartNo), and (Price), put

(Sname) under the new elemet-1, create new element-2 under new element-1, put

(PartNo) and (Price) under the new element-2, delete the (Price) from original

location. Figure 4.6 shows the tree representation of XML document for normalized

Project-supplier-part database. It is obvious now that supplier "ABC Trading" sells

part number "P700" at the same price "80" to all projects according to specified

constraint.

PSJ

project project

Supplier SupplierSupplier

Part Part PartPart

Garden

ABC Trading P700 80

500

Road Work

ABC Trading DEF Ltd P100

200 P700 5000

P100 12

1000

Pname Pname

Sname Sname

PartNo PartNo PartNoPartNo

PricePrice

Quantity QuantityQuantityQuantity

Supplier Supplier

Part Part Part

Price

10

ABC Trading DEF Ltd

P700 P100P100

 Figure 4.6 A tree representation of XML document for Project-supplier-part

 database after applying rule-3.

57

Chapter 5

Conclusions and Future Work

5.1 Conclusion

The development of new Web application that requires efficient design and

maintenance of large amounts of data makes it increasingly important to design good

XML database to prevent data redundancies and update anomalies.

 In this thesis, we used XSD as a schema for XML database as it is

improvement over DTD and has more capability than DTD such as the ability to

specify type constraints and keys constraint.

 We improved the definition of XML functional dependency (XFD) according to

the hierarchical structure of XSD schema through using XPath language and

considering the level of the element. It is improvement upon previous proposals by

defining the syntax and semantics precisely and captures a comprehensive set of XML

data redundancies, more than that it considers string values and element nodes as

XML schemas not only have simple data types but also nodes of complex types. The

main goal of identifying XFD is to detect the possible redundancy they may cause and

thus prevent this redundancy.

 We propose an XML Normal Form (XNF), to determine the redundancy issue

related to XFD. Our proposed normal form are generalizes to BCNF in relational

database, it is also preserves the hierarchical structure for both the XSD schema and

XML document, and satisfies user requirement.

 Finally, we define set of normalization rules that eliminate redundancies, then

design and implement the process of XML normalization through a semi-automated

XML Normalizer tool. The XML Normalizer is very useful for designer to perform

58

the XML database schemas normalization quickly and accurately. This may save the

time and effort of XML database designers and thus let them focus on other phase of

the XML schema design process. Furthermore, it helps avoid human error through

manually normalization process of the XML schema.

 We evaluate our approach through examples of XML database. The results

demonstrate that the XML schema generated by XML Normalizer contribute to a

normal form schema. The effect of normalization process on XSD appears clearly in a

large document with a huge amount of data, while it can not be tangible in the same

document with a little amount of data.

 Another important issue to consider is that "if the normalization process or

Normalizer gives a unique solution?", it is well known in normalization of relational

schema that the decomposition process does not guarantee unique results as it depends

on the order in which the dependencies are examined. However, the restructuring

process does not necessarily give a unique results, it does provide an insights into the

normalization process for XML schema.

59

5.2 Future Work

Our work on normalizing XML schema is based on some rules that detect data

redundancies. The XML data redundancies have a richer semantics than redundancies

in the relational context. The main problem for XML normalization is that no standard

rule for normalization in XML. Although it is mature in other database model, it is not

mature yet in XML database. Hence, there is much future work in this area.

1- It is worth to investigate of other types of redundancy such as those caused by

multi-valued dependencies. The XML normalizer tool can then be extended to

deal with various anomalies that may exist in hierarchical XML schema.

2- There is more complex situation where the redundancy is harder or impossible

to recognize; hence it is desirable to investigate the problem of Normalization

by taking into account the degree of relationship between elements.

3- It would be interesting to improve the XML Normalizer tool to implement the

automated discovering of functional dependency and keys before

normalization process.

4- It is also worth to investigate about inference rules for XML functional

dependency and add it to implementation.

5- Finally, It is more interesting to evaluate the normal form on real XML

dataset.

60

REFERENCES

Ahmad K. & Ibrahim H., (2008), 'Functional Dependencies and Inference Rules for

XML', Information Technology, ITSim. International Symposium on, IEEE, pp.1-6

Ahmad K. & Ibrahim H. (2009), 'Inferring Functional Dependencies for XML

Storage', International Conference on Electrical Engineering and Informatics,

IEEE, PP 387-392.

Arenas M.& Libkin L. (2003), 'An Information-Theoretic Approach to Normal Form

for Relational and XML Data', ACM, PODS, PP.15-26.

Arenas M.& Libkin L. (2004), 'A Normal Form for XML Documents', ACM,

Transactions on Database Systems, Vol. 29, No 1, PP 195-232.

Arenas M.,(2005). 'Design principles for XML Data', (PHD Dissertation), University

of Toronto.

Arenas M. (2006), 'Normalization Theory for XML', SIGMOD Record, Vol.35, No.

4, PP.57-64.

Bray T., Paoli J., Sperberg-McQueen C., & Maler E. (2000), ' Extensible Markup

Language (XML) 1.0 (Second Edition)', (On-Line), Available at:

http://www.w3.org/TR/2000/REC-xml-20001006,

Accessed in: October 2011

Buneman P., Davidson S., Fan W., Hara C., and Tan W., (2001), 'Keys for XML',

WWW10, Hong Kong, ACM.

Chen H. & Liao H. (2010), 'An Overview of Functional Dependencies in XML',

International Conference on Education Technology (ICEIT), IEEE International
Conference , PP 174-178,.

Clark J. & DeRose S., (1999), 'XML Path Language (XPath)Version 1.0', W3C

Recommendation 16 November 1999, (On-Line), Available at:

http://www.w3.org/TR/xpath/

Accessed in: October 2011

Connolly T., & Begg C., (2010), 'Database Systems A Practical Approach to Design,

Implementation, and Management', 5
th

 Ed., Pearson Education, Inc., PP. 365-405.

Date C., (2004), 'An Introduction to Database Systems', 8
th

 Ed., Pearson Education,

Inc.,pp.333-402.

Deitel P.J. & Deitel H.M. (2005), 'XML and RSS', Internet & World Wide Web How

to Program', 4th Ed., Pearson Education,Inc., New Jersey, PP. 508-532.

61

Elmasri R. & Navathe Sh. (2007), 'Fundamentals of Database Systems', 5
th

Ed.,

Pearson Addison Wesley, PP 325-367.

Lee M., Ling T, & Low W.,(2002), 'Designing Functional Dependencies for XML',

Springer, Advances in Database Technology, Lecture Notes in Computer Science

LNCS, Vol. 2287, PP.124-141.

Libkin L., (2007), 'Normalization Theory for XML', Springer-Verlag Berlin

Heidelberg, LNCS, pp. 1-13.

Lv T., & Yan P.(2007), 'XML Normal Forms Based on Constraint-Tree-Based

Functional Dependencies', Springer, Lecture Notes in Computer Science LNCS, Vol.

4537, PP.348-357.

Lv T.,& Yan P. (2008),'Removing XML Data Redundancies by Constrain-tree-based

Functional Dependencies', IEEE, ISECS International Colloquium on Computing,

Communication, Control, and Management, PP.595-599.

Michel F., (2007), 'Representation of XML Schema Components', Master Thesis,

University of California, Berkeley

Necasky M. & Pokorny J (2007), 'Extending E-R for Modelling XML Keys', IEEE,

PP 236-241.

Pankowski T., & Pilka T. (2008), 'Dealing with Redundancies and Dependencies in

Normalization of XML data', IEEE, Proceedings of the International

Multiconference on Computer Science and Information Technology, PP.543-550.

Pankowski T. & Pilka T. (2009), 'Transformation of XML Data into Normal Form',

Informatica 33, PP.417-430.

Provost W., (2002), 'Normalizing XML, Part1', (On-Line), Available at:

http://www.xml.com/pub/a/2002/11/13/normalizing.html

Accessed in 6/29/2011.

Provost W., (2002), 'Normalizing XML, Part2', (On-Line), Available at:

http://www.xml.com/pub/a/2002/12/04/normalizing.html

Accessed in 6/29/2011.

Shahriar S. & Liu J.(2008), 'On Defining Keys for XML', Workshops.70, IEEE, PP

86-91.

Shipman J., (2009), 'Constructing a Document Type Definition (DTD) for XML',

new mexico technology, (On-Line), Available at:

 http://infohost.nmt.edu/tcc/help/pubs/dtd/dtd.pdf

Accessed in: August 2011

Tan Z., Xu J., Wang W., & Shi B. (2005), 'Strong Normalized XML Documents in

Normalized Relations', IEEE, The Fifth International Conference on Computer and

Information Technology, PP.123-129.

62

Thompson H., Beech D., Maloney M., & Mendelsohn N. (2004), 'XML Schema.

W3C Recommendation', (On-Line), Available at:

http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/ ,
Accessed in: August 2011

Vincent M., Liu J., & Liu C. (2004), 'Strong Functional Dependencies and Their

Application to Normal Forms in XML', ACM, Transactions on Database Systems,

Vol. 29, No. 3, PP.445–462.

Wu X., Ling T., Lee M., & Dobbie G.,(2001), 'Designing Semistructured Databases

Using ORA-SS Model', Proceedings of the 2
nd

 International Conference on Web

Information Systems Engineering (WISE), IEEE, Computer Society.

Wu X., Ling T, Lee S., Lee M., & Dobbie G. (2002), 'NF-SS:A Normal Form for

Semistructured Schema', Springer, LNCS 2465, PP.292-305.

Wu Y, (2004), 'Normalization Design of XML Database Schema for Eliminating

Redundant Schema and Satisfying Lossless Join', Proceedings of the IEEE/ ACM

International Conference on Web Intelligence, PP 660-663.

Xia L., Fei-yue Y., Hong-juan Y., & Wen-tao P. (2006), ' Functional Dependency

Maintenance and Lossless Join Decomposition in XML Model Decomposition',

IEEE, Proceedings of the Second International Conference on Semantics,

Knowledge, and Grid (SKG '06), PP 77-80 .

Yan P. & Lv T. (2006), 'Functional Dependencies in XML Documents', APWeb

Workshops, LNCS 3842, Springer- Verlag Berlin Heidelberg, PP 29-37

Yu C., & Jagadish H., (2008), 'XML schema refinement through redundancy

detection and normalization', VLDB Journal 'The International Journal on Very

Large Data Bases', Vl. 17, no. 2, Springer, pp 203-223.

Zainol Z., & Wang B.,(2010), 'XML Document Design via GN-DTD', European

Journal of Scientific Research, Vol.44, No.2, pp.314-336.

Zhang Y. (2004). Multivalued Dependencies and a Normal Form for XML, Master

thesis, University of Toronto

Zhao X., Xin J., & Zhang E. (2009), 'XML functional Dependency and Schema

Normalization', IEEE, Hybrid Intelligent Systems, Ninth International Conference

, PP.307-312.

63

APPENDICES

Appendix A: XML Normalizer

 In this section we show how to follow the bottom-up approach for using

normalization technique in which the XML database is designed based on the

information taken from the data source, then specify the keys and functional

dependencies by the designer to apply the normalization rules to get a good XML

database with an accurate representation of data that has suitable set of relations.

Our tool is semi-automated the process of XML schema normalization. XML

Normalizer is a case tool that has a Graphical User Interface (GUI) which is

implemented by using Visual Basic under visual studio 2008, it is very simple and

easy to use. The following are steps of using the tool after launching the application:

- The user should first press Browse Button

- The user selects the schema code file and presses the Read Schema button.

- The platform will analyze and parse the schema code to show hierarchical tree

of entered schema; a list of complex elements name, a list of simple elements

name and their levels respectively.

- The user selects the keys from the list of simple element in GUI and press the

Insert Key button.

- Entering the header path.

- Select the left hand side elements then press Add to LHS button.

- Select the right hand side elements then press Add to RHS button.

- Finally, press the Normalization button,

Figure 1 shows the GUI of XML Normalizer. The main function for each button is

described below:

Browse Button: Used to load the file that contains the XSD code which saved

previously.

Read Schema Button: Used to analyze and parse the schema code then display the

tree structure of loaded schema, a list of complex elements with their levels, a list of

simple elements with their levels.

Insert Key button: used to display the list of keys selected from the list of simple

elements.

64

Add to LHS Button: used to display left hand side elements of functional

dependency selected from list of complex elements or list of simple elements.

Add to RHS Button: Select right hand side elements from list of simple elements,

then display the functional dependency as: header path, LHS � RHS

Normalization Button: The platform first checks the type of XML representation

which is either flat or hierarchical representation, then a specific algorithm

implemented to perform the normalization process and finally display the tree of

normalized schema

When the platform determine flat schema, it starts check the functional

dependency, if the functional dependency is partial XFD or transitive XFD or one of

the LHS is not key element then it calls Rule-1 procedure which is about EAXFD

process. EAXFD procedure starts to create a new complex element under the root,

copy the LHS and the RHS of the XFD and make them as children of the new

complex element, make the LHS element as a key for the new complex element, and

delete the RHS elements from the original location. The checking process of XFD is

repeated for all the entered XFD to remedy the redundancy caused by anomalous

dependency.

Otherwise when the platform determines hierarchical schema, it starts

checking the functional dependency if both sides are in the same level and under the

same complex element node in the bottom of the tree, then call Rule-1 procedure

about EAXFD process. Otherwise if the elements of XFD are in different levels then

checks if the functional dependency, is Relative Transitive XFD then call Rule-2

procedure s about ERTXFD/H process, or is Relative Partial XFD then call Rule-3

procedure about ERPXFD/H process.

If the LHS contains one element key or non key or complex element then call

Rule-2 procedure.

New Button: used to begin a new GUI for XML normalizer.

Exit Button: To quit form the application.

Figure 1 Shows GUI for XML normalizer

Figure 2 Shows GUI for Lease Property database normalization process presented in

Example 4.5.1.

Figure 3 Shows GUI for School management database normalization process

presented in Example 4.5.2.

Figure 4 Shows GUI for Project-supplier-part database normalization process

presented in Example 4.5.3 that use rule-3 in normalization process.

65

 Figure 1: GUI for XML normalizer

66

 Figure 2: GUI for Lease Property database normalization process presented

in Example 4.5.1

67

 Figure 3: GUI for School management database normalization process

presented in Example 4.5.2

68

Figure 4: GUI for Project-supplier-part database normalization process presented in

Example 4.5.3

69

Appendix B: Implementation of normalizing flat XML

representation
PublicSub flatXML()

Dim strComplexElementRoot AsString = gridComplexElement.Item("Name",

0).Value

Dim strCurrentLHS AsString = ""

Dim strCurrentRHS AsString = ""

For i AsInteger = 0 To gridLHS.Rows.Count - 1

 strCurrentLHS = gridLHS.Item(0, i).Value

 strCurrentRHS = gridRHS.Item(0, i).Value

 strCurrentLHS = strCurrentLHS.Substring(5)

 strCurrentRHS = strCurrentRHS.Substring(5)

Dim strLHSArray AsString() = strCurrentLHS.Split(",")

Dim strRHSArray AsString() = strCurrentRHS.Split(",")

// Remedy Transitive & Partial Dependency

If strLHSArray.Length < gridKeysList.Rows.Count Then

 TreeView1.Nodes(0).Nodes.Add("new element"& i + 1,

"new element"& i + 1)

For j AsInteger = 0 To strLHSArray.Length - 1

Dim addedNode AsNew TreeNode

 addedNode.Text = strLHSArray(j)

 addedNode.Name = strLHSArray(j)

 addedNode.ImageIndex = 1

 TreeView1.Nodes(0).Nodes("new element"& i +

1).Nodes.Add(addedNode)

' TreeView1.Nodes(0).Nodes("new element" & i +

1).Nodes(strLHSArray(j)).ImageIndex = 0

Next

For l AsInteger = 0 To strRHSArray.Length - 1

Dim selectedNode As TreeNode = GetNode(strRHSArray(l),

TreeView1.Nodes)

 TreeView1.Nodes.Remove(selectedNode)

 TreeView1.Nodes(0).Nodes("new element"& i +

1).Nodes.Add(strRHSArray(l))

Next

ElseIf strLHSArray.Length = gridKeysList.Rows.Count Then

// If key not subset or equal the elemet of LHS

For x AsInteger = 0 To strLHSArray.Length - 1

If strLHSArray(x) <> gridKeysList.Item("Name", x).Value Then

 TreeView1.Nodes(0).Nodes.Add("new element"& i

+ 1, "new element"& i + 1)

For j AsInteger = 0 To strLHSArray.Length - 1

Dim addedNode AsNew TreeNode

 addedNode.Text = strLHSArray(j)

 addedNode.Name = strLHSArray(j)

 addedNode.ImageIndex = 1

 TreeView1.Nodes(0).Nodes("new element"& i + 1).Nodes.Add(addedNode)

Next

For l AsInteger = 0 To strRHSArray.Length - 1

Dim selectedNode As TreeNode=GetNode(strRHSArray(l), TreeView1.Nodes)

 TreeView1.Nodes.Remove(selectedNode)

 TreeView1.Nodes(0).Nodes("new element"& i +

1).Nodes.Add(strRHSArray(l))

Next

ExitFor

EndIf

Next

EndIf

Next

EndSub

70

Appendix C: Implementation of normalizing hierarchical XML

representation
PublicSub hierarchicalXML()

// checks the level of both sides of XFD

For j AsInteger = 0 To strLHSArrayLevel.Length - 1

If j = 0 Then

 strLevelValue = strLHSArrayLevel(j)

Else

If strLevelValue <> strLHSArrayLevel(j) Then

 boolLevelsEquals = False

ExitFor

EndIf

EndIf

Next

If boolLevelsEquals And strRHSArrayLevel.Length > 0 Then

For j AsInteger = 0 To strRHSArrayLevel.Length - 1

If strLevelValue <> strRHSArrayLevel(j) Then

 boolLevelsEquals = False

ExitFor

EndIf

Next

EndIf

// To remedy the absolut dependency

If boolLevelsEquals Then'Check if all levels in RHS as LHS are equals

If strLHSArrayLevel(0) <> 2 Then

If strLHSArrayLevel(0) <> 3 Then

 TreeView1.Nodes(0).Nodes.Add("new element"&

intNewRootCounter, "new element"& intNewRootCounter)

For j AsInteger = 0 To strLHSArrayNames.Length - 1

Dim addedNode AsNew TreeNode

 addedNode.Text = strLHSArrayNames(j)

 addedNode.Name = strLHSArrayNames(j)

 addedNode.ImageIndex = 1

 TreeView1.Nodes(0).Nodes("new element"&

intNewRootCounter).Nodes.Add(addedNode)

Next

For l AsInteger = 0 To strRHSArrayNames.Length - 1

Dim selectedNode As TreeNode = GetNode(strRHSArrayNames(l),

TreeView1.Nodes)

 TreeView1.Nodes.Remove(selectedNode)

 TreeView1.Nodes(0).Nodes("new element"&

intNewRootCounter).Nodes.Add(strRHSArrayNames(l))

Next

 intNewRootCounter += 1

EndIf

EndIf

ElseIf strLHSArrayLevel.Length < gridKeysList.Rows.Count Then

// Remedy the Relative transative dependency

If strLHSArrayNames.Length = 1 Then

Dim strNodeID AsString = ""

Dim strNodeName AsString = strLHSArrayNames(0)

Dim strNodeLevel AsString = strLHSArrayLevel(0)

Dim strNodeParenID AsString = ""

Dim strNodeParentName AsString = ""

Dim strTypeOfLHS AsString = ""

71

For a AsInteger = 0 To gridComplexElement.Rows.Count - 1

If gridComplexElement.Item("Name", a).Value = strNodeName Then

 strTypeOfLHS = "Complex"

ExitFor

EndIf

Next

If strTypeOfLHS = ""Then

 strTypeOfLHS = "Simple"

EndIf

// if LHS is complex element

If strTypeOfLHS = "Complex"Then

For b AsInteger = 0 To strRHSArrayNames.Length - 1

Dim nodeDeletedNode As TreeNode = GetNode(strRHSArrayNames(b),

TreeView1.Nodes)

 TreeView1.Nodes.Remove(nodeDeletedNode)

Dim nodeComplexNode As TreeNode = GetNode(strNodeName,

TreeView1.Nodes)

nodeComplexNode.Nodes.Add(strRHSArrayNames(b))

Next

ElseIf strTypeOfLHS = "Simple"Then

For c AsInteger = 0 To gridSimpleElement.Rows.Count - 1

If gridSimpleElement.Item("Name", c).Value = strNodeName Then

 strNodeID =

gridSimpleElement.Item("NodeID", c).Value

 strNodeParenID =

gridSimpleElement.Item("ParentID", c).Value

EndIf

Next

For d AsInteger = 0 To gridComplexElement.Rows.Count - 1

If gridComplexElement.Item("NodeID", d).Value = strNodeParenID Then

 strNodeParentName =

gridComplexElement.Item("Name", d).Value

EndIf

Next

For d AsInteger = 0 To gridSimpleElement.Rows.Count - 1

If gridSimpleElement.Item("NodeID", d).Value = strNodeParenID Then

 strNodeParentName =

gridSimpleElement.Item("Name", d).Value

EndIf

Next

If strNodeParenID = 1 Then

 strNodeParentName = "Schema:"

EndIf

If strNodeParentName <>""Then

Dim nodeParenLHSNode As TreeNode = GetNode(strNodeParentName,

TreeView1.Nodes)

For e AsInteger = 0 To strRHSArrayNames.Length - 1

Dim nodeDeletedRHSNode As TreeNode = GetNode(strRHSArrayNames(e),

TreeView1.Nodes)

TreeView1.Nodes.Remove(nodeDeletedRHSNode)

nodeParenLHSNode.Nodes.Add(strRHSArrayNames(e))

72

Next

EndIf

Dim boolLHSElementIsKey AsBoolean = False

For f AsInteger = 0 To gridKeysList.Rows.Count - 1

If strNodeName = gridKeysList.Item("Name", f).Value Then

 boolLHSElementIsKey = True

EndIf

Next

// if LHS is not key

IfNot boolLHSElementIsKey Then

Dim boolNodeExistInKeyToBeAdded AsBoolean = False

For g AsInteger = 0 To listKeyToBeAddedNodeID.Count - 1

If listKeyToBeAddedNodeID.Item(g) = strNodeID Then

 boolNodeExistInKeyToBeAdded =

True

EndIf

Next

IfNot boolNodeExistInKeyToBeAdded Then

 listKeyToBeAddedNodeID.Add(strNodeID)

 listKeyToBeAddedParentNodeID.Add(strNodeParenID)

 listKeyToBeAddedName.Add(strNodeName)

 listKeyToBeAddedLevel.Add(strNodeLevel)

EndIf

EndIf

EndIf

// Remedy the relative partial dependency

ElseIf strLHSArrayLevel.Length = 2 Then

Dim strNodeID AsString = ""

Dim strNodeName AsString = strLHSArrayNames(0)

Dim strNodeLevel AsString = strLHSArrayLevel(0)

Dim strNodeParenID AsString = ""

Dim strNodeParentName AsString = ""

Dim nodeParenNode As TreeNode = GetNode("Schema:", TreeView1.Nodes)

Dim addedNode AsNew TreeNode

 addedNode.Text = "new element "& i

 addedNode.Name = "new element "& i

 nodeParenNode.Nodes.Add(addedNode)

Dim nodeParenNode1 As TreeNode = GetNode("new element "& i,

TreeView1.Nodes)

Dim addedNode1 AsNew TreeNode

 addedNode1.Text = strLHSArrayNames(0)

 addedNode1.Name = strLHSArrayNames(0)

 addedNode1.ImageIndex = 1

 nodeParenNode1.Nodes.Add(addedNode1)

Dim nodeParenNode2 As TreeNode = GetNode("new element "& i,

TreeView1.Nodes)

Dim addedNode2 AsNew TreeNode

 addedNode2.Text = "new element child "& i

 addedNode2.Name = "new element child "& i

 nodeParenNode2.Nodes.Add(addedNode2)

Dim nodeParenNode3 As TreeNode = GetNode("new element child "& i,

TreeView1.Nodes)

Dim addedNode3 AsNew TreeNode

 addedNode3.Text = strLHSArrayNames(1)

 addedNode3.Name = strLHSArrayNames(1)

 nodeParenNode3.Nodes.Add(addedNode3)

For e AsInteger = 0 To strRHSArrayNames.Length - 1

73

Dim nodeDeletedRHSNode As TreeNode = GetNode(strRHSArrayNames(e),

TreeView1.Nodes)

 TreeView1.Nodes.Remove(nodeDeletedRHSNode)

 nodeParenNode3.Nodes.Add(strRHSArrayNames(e))

Next

Dim boolLHSElementIsKey AsBoolean = False

For f AsInteger = 0 To gridKeysList.Rows.Count - 1

If strNodeName = gridKeysList.Item("Name", f).Value Then

 boolLHSElementIsKey = True

EndIf

Next

IfNot boolLHSElementIsKey Then

Dim boolNodeExistInKeyToBeAdded AsBoolean = False

For g AsInteger = 0 To listKeyToBeAddedNodeID.Count - 1

If listKeyToBeAddedNodeID.Item(g) = strNodeID Then

 boolNodeExistInKeyToBeAdded = True

EndIf

Next

For c AsInteger = 0 To gridSimpleElement.Rows.Count - 1

If gridSimpleElement.Item("Name", c).Value = strNodeName Then

 strNodeID =

gridSimpleElement.Item("NodeID", c).Value

 strNodeParenID =

gridSimpleElement.Item("ParentID", c).Value

EndIf

Next

For c AsInteger = 0 To gridComplexElement.Rows.Count - 1

If gridComplexElement.Item("Name", c).Value = strNodeName Then

 strNodeID =

gridComplexElement.Item("NodeID", c).Value

 strNodeParenID =

gridComplexElement.Item("ParentID", c).Value

EndIf

Next

For d AsInteger = 0 To gridComplexElement.Rows.Count - 1

If gridComplexElement.Item("NodeID", d).Value = strNodeParenID Then

 strNodeParentName =

gridComplexElement.Item("Name", d).Value

EndIf

Next

For d AsInteger = 0 To gridSimpleElement.Rows.Count - 1

If gridSimpleElement.Item("NodeID", d).Value = strNodeParenID Then

 strNodeParentName =

gridSimpleElement.Item("Name", d).Value

EndIf

Next

IfNot boolNodeExistInKeyToBeAdded Then

 listKeyToBeAddedNodeID.Add(strNodeID)

listKeyToBeAddedParentNodeID.Add(strNodeParenID)

 listKeyToBeAddedName.Add(strNodeName)

 listKeyToBeAddedLevel.Add(strNodeLevel)

EndIf

EndIf

