

Enhancing The Bellovin and Cheswick's

Algorithm by Adding Dummy Values and

Reorder Process

 By

 Fadi Yousef Ali Eshtaiwi

 Supervised by

 Dr. Oleg Viktorov

 Master Thesis

Submitted in Partial Fulfillment of the Requirements for

the Master Degree in Computer Science

 Department of Computer Science

 Faculty of Information Technology

 Middle East University

 Amman, Jordan

 January, 2012

II

Authorization Statement

I, Fadi Yousef Ali Eshtaiwi, authorize Middle East University to supply hardcopies

and electronic copies of my thesis to libraries, establishments, or bodies and institutions

concerned with research and scientific studies upon request, according to the university

regulations.

III

Examination Committee Decision

 This is to certify that the thesis entitled “Enhancing the Bellovin and Cheswick's

Algorithm by Adding Dummy Values and Reorder Process” was successfully defended

and approved on January 23
rd

 2012.

IV

Declaration

 I do my hereby declare the present research work has been carried out by me under

the supervision of Dr. Oleg Viktorov and this work has not been submitted elsewhere for

any other degree, fellowship or any other similar title.

V

Dedication

To my father, Yousef Eshtaiwi, for being my idol in the life , my mother, for being

my sunshine, my sisters , and to my wife, Natasha , for her support, and for her great

patience.

VI

 Acknowledgements

 I would like to express my gratitude to my supervisor, Dr. Oleg Viktorov, whose

expertise, understanding, and patience, added considerably to my graduate experience. I

appreciate his vast knowledge and skill, and his patience.

 I would also like to thank my wife Natasha for the support she provided me through

my entire life and in particular, I must acknowledge her, without whose love,

encouragement and editing assistance, I would not have finished this thesis.

VII

Table of contents

Subject pages

Authorization Statement... II

Committee Decision.. III

Declaration.. IV

Dedication... V

Acknowledgments... VI

Contents.. VII

List of Figures... IX

List of Abbreviations... XII

Terminologies.. XIV

Abstract ……………………………………………………………………………………………………….. XVI

Arabic Abstract ……………………………………………………………………………………………. XVII

Chapter 1. Introduction…………………………………………………………………………………

1.1 Overview ……………………………………………………………………………………………….

1.2 Problem Statement ………………………………………………………………………………..

1.3 Objectives ……………………………………………………………………………………………...

1.3.1 Study Aim …………………………………………………………………………………………….

1.3.2 Study Objectives …………………………………………………………………………………..

1.4 Study Significance ……………………………………………………………………………………

1

1

4

 5

 5

 5

 5

VIII

Chapter 2 Literature Review…………………………………………………........................ 6

Chapter 3 Methodology……………………………………………………………………………….. 14

3.1 Background …………………………………………………………………………………………….. 14

3.2 Project Implementation Requirement …………………………………………………….. 18

3.2.1 Bloom Filters ……………………………………………….……………………………………. 19

3.2.2 Hash Functions………………………………………………………………………………….. 21

3.2.3 RSA Algorithm ……………………………………………………………………………………… 23

3.3 Flowchart ……………………………………………………………………………………………….. 27

3.4 Design and Implementation Screens………………………………………………………. 28

3.4.1 Server Screen……………………………………………………………………………………. 28

3.4.2 Client Design ……………………………………………………………………………………. 30

Chapter 4: Test and Evaluations of Application and Examples………………………. 33

4.1 Test of the Hash Function Process………………………………………………………….. 33

4.2 RSA Test …………………………………………………………………………………………………. 35

4.3 Test of the Whole Program…………………………………………………….................. 36

4.4 Critical Evaluation……………………………………………………………………………………. 41

3.5 Critical Evaluation of This Project…………………………………………………………….. 42

IX

Chapter 5 Results……………………………………………………………………………………… 43

5.2 Code Discussion ………………………………………………………………………………….. 52

Chapter 5: Conclusions……………………………………………………………………………… 77

Chapter 5: Recommendations…………………………………………………………………… 78

Appendix……………………………………………………………………………………………… 79

References ……………………………………………………………………………………………. 100

List of figures

Figure Page

Figure 1: Bellovin and Cheswick's Algorithm before Development...……… 15

Figure 2: Bellovin and Cheswick's Algorithm after Development …………. 16

Figure 3: Design Methodology…………………………………………………………………. 17

Figure 4: Example on Suggested System…………………………………………………… 18

Figure 5: Bloom Filters……………………………………………………………………………….

Figure 6: An Example of Bloom Filters ……………………………………………………….

19

20

Figure 7: Client and Server Options…………………………………………………………… 28

Figure 8: Server Screen………………………………………………………………………………. 29

Figure 9: Insert Data Message Box……………………………………………………………… 30

Figure 10: Client’s Interface………………………………………………………………………… 31

X

Figure 11: Message Box tells the Clients there is no Query…………………………. 32

Figure 12: The First Hash Value of Fadi word…………………………………………….. 34

Figure 13: The Second Hash Value of Fadi word……………………………………….. 34

Figure 14: The Third Hash Value of Fadi word……………………....................... 35

Figure 15: The Result of Encrypting Fadi Word by Using Sender’s Public Key. 36

Figure 16: The Result of Encryption the Query for Second Time…………………… 36

Figure 17: Server’s Database ………………………………………………………………………. 37

Figure 18: Searching on the Server’s Database about Fadi word………………… 38

Figure 19: The Result of Query Server’s Database on “Fadi Eshtaiwi”…………… 39

Figure 20: The Result of “Fadi Eshtaiwi Middle ” Query……………………………….. 40

Figure 21: The Result of First Hash Function of Fadi ……………………………………. 44

Figure 22: The Result of Second Hash Function of Fadi ………………………………… 45

Figure 23: The Result of Third Hash Function of Fadi …………………….............. 45

Figure 24: The Result of First Hash Function of Eshtaiwi……………………………… 46

Figure 25 The Result of Second Hash Function of Eshtaiwi…………………………. 46

Figure 26: The Result of Third Hash Function of Eshtaiwi……………………………. 47

Figure 27: Hash Vales and Dummy Values after the Reorder Process of

“Fadi”

Query………………………………………………………………….......................................

48

Figure 28: Hash Vales and Dummy Values after the Reorder Process of

“Eshtaiwi” Query……………………………………………….………………………………………….

XI

Figure 29: The Result of Querying Fadi Eshtaiwi ………………………………………… 49

Figure 30: Collision Rate at 10 words …………………………………………………………. 50

Figure 31: Collision Rate at 30 words …………………………………………………………. 51

Figure 32: Collision Rate at 40 words …………………………………………………………

Figure 33: Marks of Enhancing the Privacy in this Project ………………………….

51

52

Figure 34: Interface Buttons.. 53

Figure 35: Search Button ………………………..…………………………......................... 53

Figure 36: Insert Data……………………………………………………..............................

Figure 37: Interface Textbox ………………………………………………………………………

72

74

List of Tables

Table 1 Public and Private Keys Functions ………………..…………… 23

Table 2 Advantages and Disadvantages of Using RSA…………………….. 25

Table 3 Bloom Filters VS RSA Applications…………………………... 25

Table4 Hash Function Results…………..……………………………….. 35

Table 5 Results of Inquiry Three Words of the Database……………….. 40

Table 6 Query Time………………………………………………………… 43

Table 7 Hash Function Results……………………………………………........................ 47

XII

Table 8 Reordering Results……………………………………………………………

49

List of Abbreviations

AES Advanced Encryption Standard

DES Data Encryption Standard

FTP File Transfer Protocol

MAC Message Authentication Code

MD5 Message Digest Algorithm

TCP Transmission Control Protocol

IP Internet Protocol

UDP User Datagram Protocol

NACKs Negative acknowledges

RTP Real-Time Transport Protocol

SRM Scalable Reliable Multicast

URGC Uniform Reliable Group Communication Protocol

MFTP The Multicast File Transfer Protocol

LBRM Log-Based Receiver-reliable Multicast

STORM Structure-Oriented Resilient Multicast

MIT Massachusetts Institute of Technology

XIII

KDC key distribution center

FTP File Transfer Protocol

POP Post Office Protocol

NFS Network File System

MD5 Message-Digest Algorithm

SHA Secure Hash Algorithm

NIST National Institutes of Standards and Technologies

DSA Digital Signature Algorithm

PKE Public Key Encryption

PEKS Public key encryption with keyword search

IBE Identity Based Encryption

SUNDR Secure Un-trusted Data Repository

BFS Byzantine fault tolerant file system

BFT Bloom Finger Table

SNS Social Networking Sites

EKUB Encryption query by using public key of Receiver

EKRA Encryption query by using private key of Sender

DKRB Decryption query by using private key of Receiver

DKUA Decryption query by using public key of Sender

XIV

DKRA Decryption query by using private key of Sender

DKUB Decryption query by using public key of Receiver

 Terminologies

Security: The security of a system is the ability of the system to support the system

availability, data integrity and confidentiality. So if the system fails to support these

three characteristics or protect them, then the system amounts to a security

violation or weakness.

Network Security: The network security is the protection of a computer network

and its services from unauthorized modification, destruction, or disclosure. In other

words, the network security is the process to make sure that the data or services will

reach the target workstation and data, services will be protected from hackers.

Cryptography: it is the science and study of hiding information and secretes writings.

Digital signatures: a property that used to signing the messages.

Authentication: Only eligible and authorized voters can vote and each voter can

vote only once.

Privacy: all votes must be secret. No participant other than a voter should be able to

determine the value of the vote cast by that voter. In other words, neither election

authorities nor anyone else can link any ballot to the voter who cast it.

Protocols: a set of rules governing communication within and between computing

endpoints or entities.

Reliability: all possible steps shall be taken to avoid the possibility of fraud or

unauthorized intervention affecting the system during the whole voting process.

XV

Verification: is the act of proving or disproving the correctness of intended

algorithms underlying a system with respect to a certain formal specification or

property, using formal methods of mathematics.

Database: is a structured collection of records or data that is stored in a computer

system. A database relies upon software to organize the storage of data.

Flexibility: a system is flexible and simple, not complex.

Eligibility: is a decision making process where a population chooses an individual to

hold official offices.

XVI

Enhancing The Bellovin and Cheswick's Algorithm by Adding Dummy

Values and Reorder Process

Prepared by

 Fadi Yousef Ali Eshtaiwi

 Supervised by

 Dr. Oleg Viktorov

Abstract:

 Bellovin and Cheswick published a paper titled "Privacy-Enhanced Searches Using

Encrypted Bloom Filters" and focused on the third party problem. It is often necessary

for two or more parties that do not fully trust each other to share data selectively. They

propose a search scheme based on Bloom Filters and group ciphers encryption. A semi-

trusted third party can transform one party’s search queries to another party’s

database. Third party problem shows in the privacy and it's always a sensitive position

because it's the controller and it has all the secret of the agency or company and no one

can send any data without its permission because it has all the keys between the sender

and recipient. Third party is used in many applications nowadays except any program

authored by Microsoft is a first party application.

 Enhancing the Bellovin and Cheswick's algorithm by Adding Dummy Values and

Reorder Process will help us to increase the privacy of search process and eliminate the

"Third Party" by adding new features to Bellovin and Cheswick's algorithm.

 The new algorithm will eliminate the "Third Party" and it will be appropriate for two

or more parties that do not fully trust each other to selectively share data. So, two

intelligence agencies may wish to let each other query their databases, while only

disclosing clearly relevant documents to the other party. Even then, there may be

restrictions that must be observed. So, the first part will enter the shared database and

looking for any data it wants and no one can figure out what the information you look

for.

XVII

��ارز�	� �	���	� و�	���� ������ 	� وه
	� وإ��دة �	�� ا#"!�	 �

 إ�$اد

 ��دي ��)' ��& إ�"	�ي

 إ�!اف

 او#	* �	"�روف

+,�
 ا#

 �� �� ���Bellovin � Cheswick ������ ����� ��� !� " �##��� ���$%&�� '��(%��� �# � $��)�* +,���)���,�

 ��-�(Bloom)'�12��� "3��(#&��� �45�� �-�2� 6-7 8#��%�� . �#:�(;< ;���=�� ����>�� �#?�# @�2� A-(�

B�,� ��4�#� ��#: �4%���2�� C�?����)���-���� ��#%$�� ����# �D . ��%�% +,�-� ��#�(�#��%� E�(@� ���# +#,

'�12���)�7��5��� � ��-� �##��� 6-7 .)���#� '�7�� 6�F �� �45)����%&� @��� G�#-� ���>�� �#? �45 ;D 3#(%&%

H�$D �45I� �45�� �-�2� �4J% +#, �)���#���� ��,%% K%�� �45�� �4�D *F L�&,�� �4���� � �# � $�� K: �(#&��

 �45�� �M���%7�� �4�� �*F ���)���#��� @���% 3��� G�=#D ���% K%�� � ���2��� � �$�� �#�&��)���-���� N-%�% K%��

@��%&��� � @&���� �#� O#%�1�-� ������� .� ���$%&� G�#��, 3P�2�� ��)�� ��� Q��>%&��)��#�(% '�7 K: �(#&��� �45�

 K&�&D E�(�4�D 6-7):�&���#�� @�� �� '�� ��� N-% .

 �#�8��$ �#�(% �#�MD ���%Bellovin � Cheswick �4�D K: C#%�%�� '��7F ��#�(� �#���> �#� �:�=F A#�(�7

(#&��� �45�� ���$%&� �� �,�� � +,���)�#-�7 �# � $ �#&,% 6-7 �7�&%&�.

 ��#%$� �� �>�D �D �#��>�� �#? �#:�(;D ���%#& � �(#&��� �45�� ���$%&� �� �,�� 6-7 '�#�5�� �#�8���$�� @��%&

�4%���2�� C�?����)���#��� . ��4%���#� K%�7�� 6-7 ���%&R� �#,� ��4=�� O��� ��%45 C?�% �� I@�>��� @#�& 6-7

�%���)���%&��� �� �,�� 6-7 '����� 3�H�$<� �45-� '�: . S�� 3=� �� ��R T�D ��*��� �#�5�� �� IN�* 6-7 Q���

 ���� �#�����)���-���� �7 +,���� ���%2���)���#��� '�7�� 6�F @�$���� 6��<� �45�� ���% ��: I�#-���� U*4�)���,���

�4�7 ���%&R� �%# K%��)���-���� ��4JF .

Chapter 1

 Introduction

1.1 Overview

 The basic reasons the companies and partners care about information systems

security are that the information of customers and clients needs to be protected against

unauthorized access for legal and competitive reasons; all of the information that are

stored and referred to must be protected against accidental or deliberate modification and

must be available in a timely fashion. Finally, the poor security practices allow damage

to systems, it may be subject to criminal or civil legal proceedings; if the negligence

allows third parties to be harmed via compromised systems, there may be even more

severe legal problems.

 When information is read or copied by someone not authorized to access, the result is

known as loss of confidentiality. For some types of information, confidentiality is a very

important attribute. Examples include research data, medical and insurance records, new

product specifications and corporate investment strategies. In some locations, there may

be a legal obligation to protect the privacy of individuals. This is particularly true for

banks and loan companies; debt collectors; businesses that extend credit to their

customers or issue credit cards; hospitals, doctors’ offices, and medical testing

laboratories; individuals or agencies that offer services such as psychological counseling

or drug treatment; and agencies that collect taxes (Pesante, 2008) .

 Information is a fundamental human right and a cornerstone of a democratic society.

It lays at the foundation of the rule of law, the secret ballot, doctor-patient confidentiality,

lawyer-client privilege, the notion of private property, and the value our society places on

the autonomy of the individual. With the development of new information and

communication technologies, the ability of the state and the private sector to collect,

record and "mine" personal information has grown exponentially. As early as 1996,

Bruce Phillips, the Privacy Commissioner of Canada, warned, "We are in fact buying and

2

selling large elements of our human personae. The traffic in human information now is

immense. There is almost nothing the commercial and governmental world is not anxious

to find out about us as individuals."

 Security is a very big issue in networking and it was only interests the military, but

the Internet changed all that everything can be done in the real word it can be done

on the internet: conduct a private conversation , keep personal papers , sign letter and

contracts , vote , publish personal documents, payment and bank transactions, but all

of these required a security. Computer security is a fundamental to enabling the

technology of the internet. The limits of security are the limit of Internet. The lake of

security can produce: loss of customers, damage to brand and loss of goodwill (Schneier,

2005).

 People have attempted to hide certain data/ information that should be kept private

by substitution of the information parts with numbers, pictures and symbols; this

introduction on the encryption history highlights the chronology of Cryptography

throughout the previous centuries. Humans were interested in encryption or protecting of

their private messages for different reasons. For example, the Assyrians have been

interested in protection of their pottery manufacturing trade secrets. Also, Chinese have

been interested in protection of their silk manufacturing trade secrets. Moreover,

Germans have been interested in protection of military secrets (using their Enigma

machine which was famous). (SANS,2001).

 Information security and privacy is a very important issue for any organizations and

companies especially when there are sharing the data between them. It is necessary when

there are two or more parties that they do not trust each other and they share data between

them. For example if there are two intelligence agencies that share the data and they

wish to let each party to query the other databases without disclosing the query and know

what the other is searching for specific data (Bellovin and Rescorla , 2005).

 Sometimes it is needed to store critical data on such untrusted server of database.

Song, Wagner and Perrig have obtained a way that searches for a word that is existed in

3

an Encrypted textual document. The search speed has a linear property in the size of

documents (Doumen et al, 2004).

 Cryptography is considered as the fundamental tool of the information security.

There were many techniques and algorithm were had been used in the past in order to

make their message an ambiguous (meaningless) in order if their messages went to the

wrong hands, they will not understand anything. There are many types of cryptography

whereas if they are classical types or modern types (Stamp, 2006).

4

1.2 Problem Statement

 Bellovin and Cheswick published a paper titled" Privacy-Enhanced Searches Using

Encrypted Bloom Filters" and focused on the third party problem. They proposed an

algorithm to enhance the privacy and eliminate the third party. They used the hash

functions to hash the queries and used the bloom filters. The type of encryption that used

in their research is Pohlig-Hellman encryption. A Bloom filter is also used in their

research and shows how it's a very efficient way to store information about the existence

of a record in a database. They measured the performance of their suggested system by

two factors:

1- The speed of Pohlig-Hellman encryption

2- The ability of a site to rapidly search many Bloom filters.

Third party problem shows in the privacy and it's always a sensitive position because

it's the controller and it has all the secret of the agency or company and no one can send

any data without its permission because it has all the keys between the sender and

recipient. Third party is used in many applications nowadays except any program

authored by Microsoft is a first party application.

This research will develop the Bellovin and Cheswick's algorithm in-order to

enhance the privacy of search process by adding new features. The reason behind this

developing is making the query ambiguous and never can see what the original query by

the owners of the database and without using the third party by using two key in the

encryption process. At the end of this research, the new algorithm will be implemented

and check the query at both side and calculate the spent time of the search process in the

shared database.

5

1.3 Objectives

1.3.1 Study Aim

 The main aim of this project is eliminating the third party in the middle. The client

has no knowledge about database collection stored on server side and the server has no

knowledge about the query words.

1.3.2 Study Objectives

Eliminate the third party.

• Implement the RSA algorithm.

• Calculate the collision rate.

• Calculate the search time query.

 1.4 Study Significance

 The significance of this study is to establish a model for how to search on encrypted

data without including any third party, the main aim from this project is to query server

database without disclosing the query and without knowing server key. RSA algorithm

will be used depending on Private and Public key in order to encrypt and decrypt the

query. There are also three different hash functions which will be used to represent all of

the words that are used. The reason behind use three different hash functions is building a

bloom filter on the server side. In this project there will be a generator which is used to

generate random numbers for dummy words on the client side. Implementation this

project will show the collision rate and the search time query. The work of this project

starts by allowing both the client and the server to exchange their public keys and

transferring of the query from the client to the server will be encrypted so that no third

party is involved in this operation, to prevent the server from knowing the client query we

use a technique that is built upon dummy values and reordering of the generated hashes.

6

Chapter 2 Literature Review

Kammuller, F. and Kammuller, R. (2009) discussed an approach for enhancing the

privacy of a database enquiry; the approach solves the problem of the privacy by

performing the search instead by not disclosing the search key. They had implemented a

demonstration of the concept in Erlang (programming language) where the feasibility of

the concept was achieved through Erlang’s high scale parallelism. With the implemented

method, the security goal of keeping the data private was achieved. The achieved results

each time were evaluated for improvements. This is a simple enough extension that

merely needs to identify new file names, or more generally Internet sites, to continue the

database enquiry. The problem with the implemented method was that an observer could

infer some information about the key from the way they continued their search because

they selected the file names from the matched search results. To overcome this, they had

to cover up their search and load all possible files referenced in the previous round.

However, for the sake of efficiency, they would only really analyze those that they know

to be interesting. For the future work, they planned to exploit a rigorous translation from

Erlang to the calculus to represent their application in a calculus that is more easily

accessible to a formal analysis, and then they suggested the use of existing formalizations

of non-interference for the calculus to demonstrate information flow security.

Shiraki, T. et al. (2009) proposed a method based on P2P (Peer to Peer) user search based

on movement records which are obtained automatically by locating detection devices. In

their research, they assumed the movement records to be treated as a sequence of pairs of

spot-ID and time and they are stored in a peer for each user. A Bloom Filter was applied

to combine all movement records for one user as a fixed length bit array. To search a user

who followed specified course, they proposed an OR/AND search method which is based

on (BFT) Bloom Finger Table which extends a routing table of a Chord DHT system to

retrieve elements using Bloom Filter. Using this method, user searches based on a

sequence of locations with or without time can be realized efficiently. Moreover, in order

to reduce the number of messages for a user search, they proposed a peer-ID assignment

for BFT based on user’s geographical foothold. The number of messages for a user

7

search can be reduced by this peer-ID assignment since users who visit same places are

located closer to each other on the routing table. Evaluation results of simulations showed

reduction in the number of messages compared to a naive implementation using existing

P2P retrieval method. For the future work, they suggested the overhead of constructing

Bloom Finger Table to be reduced. In addition, another experiment performed by real

users should be evaluated for verifying the effectiveness of geographical peer-ID

assignment.

Gou, C. et al. (2010) discussed the traditional intrusion detection equipments that satisfy

the application requirements hardly as the data rates of modern networks rise. Adaptive

load balancing algorithm may make attacks undetected due to flow remapping. In their

research, they proposed an algorithm that is load-balancing based on the bloom filter.

When a packet arrives load balancing module, they first determine whether the packet

belongs to a new flow. If it is, they calculate the corresponding processing unit through

the HRW algorithm with current weights and otherwise calculate the corresponding

processing unit with the weights before adjustment. To determine whether the arriving

packets belong to the old flow or not, it needs store the identifier of processed packets in

a collection for query. Tens of thousands of flows will be generated per second in high-

speed network, so the elements preserved in the collection will be very large. The

retrieval speed of linked lists and other data structures such as self balancing binary

search trees, tries hash tables, or simple arrays is getting slower and slower as the

elements in the collection increase. Compared with the above data structures, Bloom

Filters in space and time has a huge advantage. Bloom Filters storage space and insertion

query time are constant and can be well positioned to meet the application. By analyzing

the flows whose size are within the duration of 2 ∆t can avoid flow remapping because of

weights adjustment. Experimental data they had done shows that the algorithm has the

similar load balancing effect, but with a lower rate of flow remapping.

Aïmeur, E. et al. (2010) discussed the different privacy issues raised by the current SNS

(Social Networking Sites); the problem of the simple website that allowed users to create

profiles, list friends and browse through their friends list, SNS are the place for keeping

8

in contact with old friends and meeting new familiarities. A user leaves a big trail of

personal information about him and his friends on the SNS, sometimes even without

being aware of it. This information can lead to privacy drifts such as damaging his

reputation and credibility, security risks and profiling risks. This research paper

highlighted some privacy issues raised by the growing development of SNS and identifies

clearly three privacy risks. While it may seem apriori that privacy and SNS are two

antagonist concepts, they identified some privacy criteria that SNS could fulfill also in

order to be more respectful of the privacy of their users. Moreover, they introduced the

concept of a Privacy-enhanced Social Networking Site (PSNS) and described Privacy

Watch, their first implementation of a PSNS.

Song, et al. (2002) discussed the need of data storage on the servers in an

encrypted format in order to reduce the privacy and security risks. They described their

cryptographic schemes regarding the searching problem on the encrypted data. They

presented new techniques in the field of remote searching on the encrypted data;

searching is done using untrusted server. Moreover, they provided proofs for the resulting

crypto systems. They showed the ways of supporting functionality of searching on the

encrypted data without losses in the data confidentiality. The discussed techniques/

approaches have different crucial advantages; some of the advantages are the provable

security of the techniques; techniques provide secrecy for encryption that is provable, any

untrusted server can’t learn/reach anything regarding the plaintext only and only when

the ciphertext is given. Another advantage is providing query separation for the searches

and hence no untrusted server can learn anything about the plaintext more than the results

of the searching process. Another important advantage is providing control in searching;

hence without authorization from the user, the untrusted server will not be able to search

for any arbitrary word. Note that with the discussed techniques, hidden queries are also

supported and hence the user can ask the server (untrusted) to search for a word without

any revealing of the word to the untrusted server. The presented techniques/ algorithms

are fast, simple and introduce often no communication and space overhead, all these

advantages and properties of the presented techniques are hence practical to be used

today. Their scheme of remote searching is very flexible also and can be extended easily

9

for supporting more advanced search queries. It can be concluded that the presented

scheme is very powerful for constructing secure services/ searching in the untrusted

servers/ infrastructure.

Li et al (2004) discussed the ways in which well defined consistency semantics can be

provided for an untrusted server. For data security and integrity,many non-networked file

systems used cryptographic storage. They presented the first system of its type to provide

well defined consistency semantics for an untrusted server, called as SUNDR (Secure

Untrusted Data Repository). A protocol named SUNDR was published previously but not

implemented because it didn’t address the write-after-write conflicts (had no groups).

Their presented system doesn’t require replication (place of trust in machines/ servers

other than the user’s client). Replication is used in BFS (Byzantine fault tolerant file

system) in order to insure the required integrity of the network file system. SUNDR

however provides freshness guarantees that are weaker than BFS. SUNDR system uses

hash trees to verify the integrity of a file block without any touch for the entire file

system. SUNDR uses also version vectors for detection of consistency violations. These

version vectors can detect update conflicts found between the replicas of a file system

and have been also used for securing partial orderings. Their presented file system

resembles timeline entanglement and reasons about the system states’ temporal ordering

using hash chains. The system presented guarantees provably fork consistency and

ensures the behavior of the server whether it behaves in the correct way or failure will be

detected upon communication between users. Measurements of their implemented system

show the performance which is usually close or even better than BFS file system. They

also gave a recommendation that with the reduction of the amount of trust in the server,

the presented system will increase both the people’s options for data managing and will

improve the security of the files as well.

Bellare et al. (2005) presented a strong definition of data privacy, and the constructions

for achieving them, experiments showed that for encryption schemes of public-key where

the encryption algorithm is deterministic; they obtained as a consequence type of

database encryption methods which allows fast search while providing provably privacy

10

which is strong. They explained one of their constructs, called as RSA-DOAEP, has an

added feature for length preserving, hence it is an example of a public-key cipher. This

was generalized to obtain a notion of searchable encryption schemes in an efficient

manner which permits more privacy flexibility to search the time trade-offs through a

technique that is called as “bucketization”. Obtained results can answer several questions

that were asked in the database community and can provide the foundations for the work

done over there. These are the schemes that permit fast search. Note that encryption can

be randomized, but there is a collision-resistant, deterministic function of the plaintext

which can be also computed from the cipher-text and serves as a tag, hence permitting for

the fast search based on comparison. Schemes that are based on deterministic encryption

are a special case where the security’s notion remains the same. The generalization’s

benefit is to permit the schemes with more privacy flexibility to search for time trade-

offs. They analyzed a scheme from the literature of the database which they called as

‘Hash-and-Encrypt’. It performs encryption of the plaintext with a scheme which is

randomized but includes a deterministic, collision resistant hash in the ciphertext. With

the presented scheme, there are some losses of privacy because of the lack of entropy in

the message space which can be compensated by increasing the probability (δ) of the

hash collisions; this can be done so by truncating the hash function’s output for example.

The trade-off can be explained that the receiver gets the false positives in response to a

search query required and should spend some time to shift through them to obtain the

required true answer. This technique is called ‘bucketization’ in the literature of the

database, but the security of this technique was not rigorously analyzed previously. There

implemented scheme provides privacy only for the plaintext which have high min-

entropy. This cannot be considered as a weakness of the technique but is inherent in

being efficiently searchable or deterministic. Their claim was to provide the best privacy

subject that is possible to allow for the fast search. This may refer to no privacy in some

cases but they commented that bucketization may increase the privacy when the fields of

the database being encrypted don’t have high min-entropy.

Jonker et al, (2004) sometimes it is needed to store critical data on such untrusted server

of database. Song, Wagner and Perrig have obtained a way that searches for a word that

11

exists in an Encrypted textual document. The search speed has a linear property in the

size of documents. The paper related with expansion search algorithm of the tree type

algorithm based on the algorithm of the linear searches that are proper for XML

databases. This new approach is more efficient where it exploits the structure of XML.

And also building prototype implementations for both the tree search and linear case.

Experiments show a main development in the time of search. Nowadays the need grows

to keep stored data secure on an untrusted system. Think, for instance, of a remote

database server administered by somebody else. Suppose you need the data to be secret,

then it should be encrypted. The problem then arises how to get a response for database

query. The most obvious solution is to download the whole database locally and then

perform the query. This as known is completely inefficient. Song, Wagner and Perrig

have introduced a protocol to search for word or letter in some encrypted text. The paper

will propose a new protocol that is more suitable for handling the large scale (semi-

structured) XML data. The new protocol exploits the XML tree structure. XPath queries

can be answered secure and fast. The implementations of the prototype have been

developed during the paper for both the linear and the protocol of tree search. Those

prototypes have been used for finding optimal settings for the parameters used within the

protocols and showing the increasing in the search speed by using the tree structure.

Curtmola et al (2006) published a paper in the searchable symmetric encryption (SSE)

which it aims to allow the party outsourcing the storage of the party’s data to another

party in a private field, while it maintains the ability of the party to search over it. This

problem is discussed in this search. It has been the focus of active several security

constructions and definitions have been proposed. The authors reviewed the existing

security definitions, pointing out their shortcomings, and then they will propose two new

stronger definitions. Curtmola et al, present two constructions that can show secure

under their new definitions. In addition to satisfy a stronger security guarantees, the

authors’ constructions are more efficient than the all previous of the existing

constructions. Previous work on the SSE considered the setting where only the owner of

the data is capable of submitting the search queries. The authors defined SSE in the

12

multi-user setting and they present an efficient construction. The results of this paper are

summarized as the following:

1- Review the existing security definitions that are used in the searchable encryption. It

includes the simulation-based definition in CM05 and the IND2-CKA Goh03.

2- Authors introduced new adversarial models for searchable symmetric encryption

(SSE). They refer to as non-adaptive; they consider the adversaries make their search

queries without considering the trapdoors and taking into accounts.

3- They present two constructions which the authors prove secure under the new

definitions. The first scheme will be secured only in the non-adaptive setting. On another

level, it is the most efficient SSE in the construction to date in order to be achieved. The

searches can be achieved in one of each communication round which requires an amount

of any work on the server proportional to the specific number of the documents. These

documents contain the queried word that requires constant storage on the client and linear

storage on the server.

Boneh et al, (2004) studied the problem of searching process on data which is encrypted

by using a public key technique. Consider user B who will send an email to user A an

encrypted under A’s public key. An email gateway will test whereas the email contains

the keyword “urgent". So it will route the email accordingly. On the other hand it will not

give the gateway the ability to decrypt all messages. Boneh et al defined and then

construct a mechanism that gives enable user A to provide a key to the gateway of the

email that will enable the gateway to be tested if the word “urgent" is a keyword in the

email, this will be done without learning anything else about the email. The authors refer

to this suggested mechanism as the Public Key Encryption with keyword Search. They

defined the concept of encryption using public key techniques with keyword search and

then give several constructions.

Bellovin and Rescorla, (2005) in this study cryptographic protocol was analyzed where

this protocol depends directly on the hash function. Also this study focused on SHA-1

[Nat02] and MD5 [Riv92] which are widely used. These hash functions are usually

derived by using MD4 [Riv90]. This was known to be slight [Dob96, Dob98] for a long

13

period and thus will lead to concerns that the authors might have common weaknesses. It

is clear which it will be necessary to do this in the not-too-distant. This will result a

number of challenges for certificate-based protocols in a specific way. Bellovin and

Rescorla, analyze a number of protocols which include TLS and S/MIME that will result

change in the way of implementation the change. They explain the necessary changes

and show how the conversion that will be done, and then list what the measures that

should be taken immediately.

14

Chapter 3

Methodology

3.1 Background

 This project is designed to remove the third party and enhance the privacy in the

search process by using the bloom filters. This project to be implemented will require to

design and write many functions starting with how to make a connection between client

and server. In addition, hash functions will be used in both server and client. Bloom filter

will be used to build the server’s database. The query will be encrypted and decrypted

based on RSA technique (private and public). This project will need to read many books,

journal, websites and conferences. First, the data for this thesis will be obtained by

reviewing the previous study in cryptography, bloom filters, hash functions and other

materials. The suggested algorithm required using RSA algorithm (Public and Private

Keys), bloom filters and hash functions (present the words into database).

Implementation this project will be done by using Visual basic.Net and SQL Server 2005.

Vb.net will write an appropriate to code to program all of RSA algorithm, hash functions,

adding dummy values and reorder the query. SQL server 2005 will build the server’s

database within the VB.net. The code will contain the three techniques and then the

results will be seen as the spent time of the query and the collision rate.

15

Figure 1 shows Bellovin and Cheswick's Algorithm (Before Development).

Figure 1: Bellovin and Cheswick's Algorithm.

16

Figure 2 shows Bellovin and Cheswick's Algorithm (After Development).

17

Figure 2: Bellovin and Cheswick's Algorithm (After Development).

There are many steps will be included in order to achieve this project. See Figure 3.

Figure 3: Design Methodology.

Define the Idea of

Project

Collecting Data and

Project requirements

State of the Art

Building new algorithm

Implement the suggested algorithm by

using visual basic software

Writing an appropriate Code

(Client and Server)

Run the program

Test the results

18

3.2 Project Implementation Requirement

Figure 4 shows an example of the suggested system.

19

0 1 0 0 0 1 0 1 0 0 0 0 0 1 0

X

h1(x) h2(x) hk(x)

V0 Vm-1

h3(x)

Figure 4: An Example on Suggested System.

Before implementing this project, there are many criteria which will be defined such as

Bloom filters, Hash Function and RSA algorithm in order to complete the project and

suggest an appropriate algorithm to be adopted in software field.

3.2.1 Bloom Filters

 Bloom filters can be defined as a structure of compact data for the probabilistic

representation to support the membership queries (i.e. queries that ask: “Is the first

element X in set Y?”). This representation in compact form is the payoff to be used in

allowing the small rate of false positives in the membership queries, which is, queries

could be incorrectly recognized an element as member of the set such as X set.

 Consider that there is a set A = {a1,a2,…,an}where n is number of elements. Bloom

filter describes the membership information of A using a bit vector V of length m. For

this, there will be k hash functions, h1, h2,…,hk. Figure 5 shows the bloom filter:

Figure 5: Bloom Filter.

20

The Implementation of Bloom Filters in this Project

 Bloom filters represent the database of the server. The bloom filter will contain

the data that the client will search in . So the bloom filter can be considered as table

with three columns: id, enc_id and enc_num. id can be considered as pointer for each

raw in the database and each data to be inserted by the administrator will take a raw

in the table. So, if the administrator inserts data to the bloom filter (server’s data

base), the program will hash the inserted data first and then the result of hash function

will be considered as encrypted ID. The program was designed to insert the hashed

data in sequence. Figure 6 shows the bloom filter in this project as example. For

example: if the administrator inserts “HEY” to database and the result of hash

function was 94754, the program will insert new raw to database and set the value

(enc_num) equal 1. See Figure 6.

Figure 6: An Example of Bloom Filter.

Collision Rate

Collision rate can be shown in bloom filters and these criteria can be calculated based on

the following equations, (Ripeanu and Iamnitchi, 2002).

Calculating the collision rate depends on the following equations

P0= (1- kn
……………………… (1)

Where:

n = number of primary Keys (the number of keys in this project are two).

m = size of document (number of words).

k = number of hash functions (number of used hash function are three).

And then calculate the error (Perr) which equal

21

Perr= (1-P0)
 k

………………………. (2)

Database Dictionary Feature

Database will contain three columns: id, enc_id and en_num.

The following points will show the common SQL terms and phrases

 - CREATE DATABASE: this order creates a new blank database by using SQL 2005. - CREATE TABLE: creates a new table to store database within this table (this table is

the bloom filter). - SELECT: this command to call the database to extract that data that meet with the

required data. - IDENTITY: to count the ID within the table that was created (steps of counting can be

specified when the bloom filter created. - PRIMARY KEY: is a unique member which avoids the Repetition in one column (any

table created should be have a primary key). - INSERT: to add data for the table that was created, during this order one can determine

the number of columns required to add data (such as add data for column 2). - DELETE: to delete the data from the database when a new data will be inputted. - FROM: specify the table that will be used to be (edit data, insert data, select data

and delete data). - WHERE: to specify the column that will be used in search process.

3.2.2 Hash Functions

 A hash function can be defined as a reproducible method of turning various kinds of

data into a small number (relatively) which it could serve as a digital "fingerprint" of the

data used in this project. Cryptographic hash functions can be used for many purposes in

the applications connected with information security, the hash function will be in this

project used to build the bloom filters. This can be done by converting all words on a

collection of documents into digital format (digital numbers).

22

 Hash functions are designed to be fast and to yield few hash collisions in expected

input domains. In hash tables and data processing, collisions inhibit the distinguishing of

data, making records more costly to find.

 A hash function must be deterministic. For example, if there are two hashes

generated by the same hash function they will be different and then the two inputs were

different in the same way.

 Using a hash function will be useful to detect errors in transmission of the

straightforward. The hash functions are computed for the data at the sender side and then

the value of this hash is sent with the data. The hash functions are performed again the

receiving end and if the hash values do not match, this means there is an error occurred at

point during the transmission. This is process called a “redundancy check”.

Cryptographic grade of hash functions is used in common as integrity a check values to

identify files and verify their integrity.

The Implement of Hash Function in this Project

 Hash function had been used in both client and server in this project. Hash function

had been used to provide the security by presenting all data in digital format neither than

string format.

 Hash function code is built function in VB.net software and the following code is

applied in this project in order to hash the data in both client and server:

numHashedTxt1 = objHash.Hash1(arr(i))

If numHashedTxt1 < 0 Then

numHashedTxt1 = numHashedTxt1 * -1

numHashedTxt1 =

Strings.Right(Convert.ToString(numHashedTxt1),

Convert.ToString(numHashedTxt1).Length - 5)

Else

numHashedTxt1 =

Strings.Right(Convert.ToString(numHashedTxt1),

Convert.ToString(numHashedTxt1).Length - 5)

End If

23

 The technique that is used in this project is converting the inserted text to numbers

by built functions in the VB.net environment. The length of each hash value is five digits.

So, if the result of two hash value exists the program will not be added to the data base in

the server side, the program will not add a new line (new ID).

3.2.3 RSA Algorithm

 This algorithm was developed in 1977 by three students Rivest, Shamir, and

Adleman. This algorithm is the most commonly used authentication algorithm and

encryption, the mathematical details of the RSA algorithm used in obtaining public and

private keys. (Rivest et al, 1987) The algorithm will involve multiplying two large

prime numbers and then through the additional operations deriving a set of two

numbers which constitutes the public key and the private key. Both the public and the

private keys will be needed to be used in the encryption and decryption but the private

key is known by the owner that ever needs to know it. While using the RSA algorithm,

the private key will never need to be sent across the Internet. Table 1 shows the

functions of public and private key (Davis, 2003).

Table 1: Public and Private Keys Functions.

To do this Use whose Kind of

key

Send an encrypted signature Use the

sender's

Private

key

Send an encrypted message Use the

receiver's

Public

key

Decrypt an encrypted signature (and

authenticate the sender)

Use the

sender's

Public

key

Decrypt an encrypted message Use the

receiver's

Private

key

 The basic idea of this encryption is multiplying two prime numbers together. So, it is

simple to perform a multiplication process for two numbers together and it will be very

simple within computers. But it will be very difficult factoring the numbers.

24

Example:

 If someone is asked to multiply two number together (85614 and 34987), he can use

the calculator to multiply and find 2995377018. But factoring number (reverse problem)

is much harder.

 If the given number was, it’s very difficult to factor the number and find they are

85614 and 34987. The computer can perform the factoring process quickly by trying the

most of the possible combinations. The computer firstly, has to check something that is of

the order of the size of the square-root of the number to be factored. So the square root of

2995377018 is 54730. Computer will not take a long time to try out 54730 possibilities

but this for ten digits. So, if the result of multiplied two numbers together is 400 digits

and the square-root will be 200 digits and it’s needed for a very long time (lifetime of the

universe enough for 18 digits). For example if a computer can perform a one

million factorizations per second, in the universe’s lifetime it could

check 1024 possibilities. But for a 400 digit, there are 10200 possibilities.

 RSA encryption works as finding two huge prime numbers, p and (100 or

maybe 200 digits each). P and q have to be secret because they will be the

private key. P and q will be multiplied (N=p*q).

The Cracking of RSA Algorithm

 RSA algorithms varied based on the size of keys (number of bits). Many of RSA had

been cracked such as 512bit and 768-bit RSA (Kleinjung, 2010).

 In March 2, 2010, The Kaspersky Lab Security New Services published an article

titled “RSA 2010: Experts Expect Several Ciphers to Be Cracked Soon”. This article

discussed that the cryptographers are expecting several cryptographic systems that

are in use today will be broken in the near future. Rivest (one of the inventors of the RSA

algorithm) said in the Cryptographers Panel session at the RSA Conference, he expected

25

that RSA 1024 will be broken within a decade. Rivest mentioned that the people should

start moving to 2048 soon (Fisher, 2010).

Table 2: Advantages and Disadvantages of Using RSA.

1- The primary advantage is

increased security and

convenience while the private

keys will never need to be

revealed or transmitted to anyone.

A
d

v
a

n
ta

g
es

2- RSA systems can provide a

digital signature which means the

message cannot be repudiated.

D
is

a
d

v
a

n
ta

g
es

Speed is the most disadvantage of

using RSA. Speed of RSA algorithm

depends on many criteria:

1- The size of Public and

Private Key.

2- Multiplication Techniques:

Fast techniques such as FFT

(Fast Fourier Transform) can

perform the multiplication

process fast.

Table 3: Bloom Filters VS RSA Applications

Bloom Filters RSA

Counting filters: it’s used to provide a way to

implement the delete operation on a Bloom filter

without involving any recreating process for the

filter afresh.

Send an encrypted signature

Data synchronization: Bloom filters that could

associate a value with each element that had been

inserted, implementing an associative array

Send an encrypted message

Bloomier filters: used in the association a value

in the each element which had been inserted.

Decrypt an encrypted signature (and

authenticate the sender)

Compact approximators: it is used in the lattice-

based of Bloom filters in general.

Decrypt an encrypted message

Stable Bloom Filters: used as a variant of Bloom

filters in the streaming data. The main idea is

26

giving the ability to the bloom continuously

information to make room for the recent elements

when there is no way to store the entire history of

a stream.

• Dummy Values

 The point of adding dummy values in the client’s query is making the query

ambiguous and the server has no idea what the client are looking for.

For example if the client query the server by “hello”, the program will have this word and

the server can do this too. So, where is the privacy here??!! .

 Dummy values plays a very important role in this project. The client will add a

dummy value in specific order to be removed correctly after the server sends the results.

The following example shows how the dummy value will be added to the query.

Client query: “Hello”

Hello

digest by calculate Hash function

Hello (6, 13,19),

Add dummy value (2, 9, 15)

Reorder the digest query randomly

(2, 6, 13, 9, 19, 15)

 From the example it can be seen the query became two words rather than one, so the

server will think that the client searches for two words not one.

27

3.3 Flowchart shows Bellovin and Cheswick's Algorithm (After Development).

28

3.4 Design and Implementation Screens

 This project will require using two types of software to be implemented: VB.net

and SQL server 2005. Vb.net will be used to program the client and server screens and

SQL server will be used to create the server’s database.

The program has two main sides: server and client. See Figure 7.

Figure 7: Client and Server Options.

3.4.1 Server Screen

 The server page has many functions and the data base can be built through it. At the

beginning the server will be empty until the server uploads file in text format or type the

text that will present the server. This page contains a textbox and three buttons. Textbox

allows the user to insert a text to the server’s database. Figure 8 shows the server’s

screen.

Save Button: this button will add the test to the server’s database.

Clear Database: this button will clear all the data in the database.

Close Button: this button will close the program.

29

Figure 8: Server Screen.

 If the administrator (person who is responsible to add data to the database) clicked

the save button and the textbox is empty, the program will present a message box that

tells the administrator there is no data can be added to the database. See Figure 9.

30

Figure 9: Insert Data Message Box.

3.4.2 Client Design

 The client can query the data base through writing the words in TextBox and clicks

Search Button. The program will perform six steps beginning with hashing the query, add

dummy values, and reorder the dummy values plus the hash values of the query and then

two encryption processes with different keys (Public and Private). Figure 10 shows the

client interface. It also contains Result box. This box contains two rows: Result and

status. It will show the result if the query is found or not.

31

Figure 10: Client’s Interface.

If the client queries the server’s database, the program will show message box telling the

client there is no query which will perform on the server’s database. See Figure 11.

32

Figure 11: Message Box tells the Clients there is no Query.

33

Chapter 4

Test and Evaluations of Application and Examples

 The program will be tested in order to check if the program is correctly designed and

programmed. The test process will require creating database in order to allow the client

query the server’s database for specific words. While the client queries the server’s

database, it must type the word that is looking for in the textbox and then click search.

 Search button presents the whole program. If the client clicked in the search button

the program will act like the following:

1- Hashing the client query.

2- Add dummy values.

3- Reorder the query.

4- Encryption the query (public key)

5- Encryption the query (private key).

The test process will include each main process in the project.

4.1 Test the Hash Function Process

 At the beginning, the program will hash the query. Figure 12 shows how the program

will hash the “Fadi” word for one time. The type of the hash function that is used is

Object.GetHash() and this is a built function in Microsoft visual basic.net (VB.net).

34

Figure 12: The First Hash Value of Fadi word.

It also will hash “Fadi” for second time and the result shown in figure 13.

Figure 13: The Second Hash Value of Fadi word.

35

 The program will hash “Fadi” for the third time as shown in the Figure 14.

Figure 14: The Third Hash Value of Fadi word.

Table 4 shows the result of hash functions for three times with “Fadi” word.

Hash functions Results

1
st

 Hash function of “Fadi” 95584

2
nd

Hash process of “Fadi” 95212

3
rd

 Hash process of “Fadi” 94884

Table 4: Hash Function Results.

4.2 RSA Test (public and private).

 Before the client sends the query to the server, this query must be encrypted by two

different keys (public and private). The input of RSA function will be as the following:

 Hash values + dummy values= input of RSA function. RSA function consists of

formula which applies many procedures to get the result. Figure 15 shows the result of

encrypting process of “Fadi” by using server’s public key.

36

Figure 15: Result of Encrypting “Fadi” word by Using Sender’s Public Key.

 Another encryption must be tested in order to ensure that the query is encrypted two

times by two different keys. Figure 16 shows the result of encryption the query for

second time by using client’s private key.

Figure 16: The Result of Encryption the Query for Second Time.

4.3 Test of the Whole Program

 The whole program will be tested in order to check the program meets the

proposed objectives and working correctly. Before starting with testing the program,

it’s needed to create the server’s database. This test will be implemented by creating

the server’s database by inserting data that represents the data which the client will

37

query. The database contains “Fadi” but it doesn’t contain “Eshtaiwi”. Figure 17

shows the server’s database.

Figure 17: Server’s Database.

 The client will query the server’s database by searching in the database on “Fadi”

word and the results were perfect. Figure 18 and 19 show the result of query the

server’s database by “Fadi” word.

38

Figure 18: Searching on the Server’s Database about “Fadi Eshtaiwi” word.

39

Figure 19: The Result of Query Server’s Database on “Fadi Eshtaiwi”.

The client also can query the server’s database about “Fadi Eshtaiwi”, the server’s

database just contains “Fadi Eshtaiwi” but it doesn’t contain “MIDDEL”. Let us see

how the program will act. Figure 20 shows the result of “Fadi Eshtaiwi MIDDEL”

query.

40

Figure 20: The Result of “Fadi Eshtaiwi MIDDLE” Query.

Inquiry by words Results

Fadi Found

Eshtaiwi Found

MIDDLE Not Found

Table 5 : Results of inquiry three words of the database.

41

4.4 Critical Evaluation

 This type of evaluation is concerned with the ability to critically evaluate the

information. In this project, PROMPT approach will be used to critical evaluation of

information which refers to Provenance, Relevance, Objectivity, Method, Presentation,

and Timeliness.

1- Provenance: this project depends on many ideas in the enhancement of privacy

field. Many researchers studied how to enhance the privacy by using bloom filters

and hash functions. Bellovin and Cheswick (2005) enhanced the privacy by using

bloom filter and hash functions. This project developed this idea by many

features starting with the dummy values and the reordering process of query.

There are many sources used in this project such as RSA code.

2- Relevance: the quality of information that is used in this project is high level

quality because all information was gathered from scientific papers and

conferences. It also include the date of publishing thee papers .All requirements of

this project are clearly identified. In addition, all information is related to the

subject of this project (enhancement the privacy for search process) and the aim

that is trying to do (remove third party).

3- Objectivity: this project met its objectives and they are followed correctly in

order to meet the main aim. All information doesn’t conflict with each other and

they are tending to implement all the requirements.

4- Methods: the methods applied in this project are “bottom-up approach”, where

the project is divided into sub system and each one will do specific function such

as the hash function that will hash the query in both server and client. The method

was implemented as it was deigned and it given the supposed results.

42

5- Presentation: all information in this project was presented in clear structure

based on the project-handbook. Presentation includes font color, font size, font

type, images and diagrams.

6- Timeliness: it is concerned with the date of producing or publishing the data in

this project and it depends on the information need.

3.5 Critical Evaluation of This Project:

This project met the proposed aim which is removing the third part and enhances the

privacy in search process. There are many activities that were followed in order to

achieve the main aim. They include many processes beginning with gathering data

and revision of the literature review in this field. All requirements are fully defined

and then designed to be implemented by using Microsoft VB.bet and SQL server. The

result of each process was tested to ensure that every function was built correctly and

gives the specific outputs. The entire system was tested with many quires and the

results were correctly.

43

Chapter 5

Results

 This project is designed to implement a new suggested system in order to remove

the third party by using two programs: VB.net and SQL server 2005. In this project,

client could query server’s database and search for anything without knowing anything

about what is the client is looking for. Hash function is used to represent all the data in

both client and server. The client queries the database for “Fadi Eshtaiwi” and the results

were found for “Fadi” and “Eshtaiwi” and not found for “MIDDEL”.

 Microsoft VB.net has many built functions that have been used in this project.

Object.GetHash is one of these built functions.It was very a useful function because it

was used in both client and server. VB.bet also has the ability to communicate with the

SQL server 2005 in order to build the server’s database. Con.ConnectionString is used to

make this connection.Classes in the VB.net were used to build the common functions

that are used in both client and server such as the encryption, decryption and hash

functions. Calculating the spent time of query for Fadi is done in three ways and see how

the size of document has effects on the time.The following table shows the query’s spent

time. The results of spent time for querying multiple size of documents as shown in Table

6.

Table 6: Query Time.

Search in Spent time

200 words 00:00:26

400 words 00:01:36

1000 words 00:02:50

 Searching for “Fadi” in document with size 200 required for 26 milliseconds to find

it. While searching for the same word in document with size 1000 words required for two

seconds and 50 milliseconds. So, while the document is increasing, the required time for

query will increase too much. Adding to the server’s database too much of data may

occur down in the server. So, the program is designed to prevent the copy and paste from

44

any document into the server in order to enhance the security. The collision rate can be

shown in the bloom filter but in this project there were no collisions because there were

three hash functions which are used in this project. So, the database is built in a way to

prevent to duplicate the hash value. So, it’s impossible to find two words that have the

same hash values in the database.

 The results of this project will be as result of querying the server database and the

query is about words generated by the client. This project aimed to enhance the privacy

of searching process between the two parties by using bloom filters. The client’s query is

“ Fadi Eshtaiwi ”, applied on this project in order to check that the system working as it is

designed. The database has the following data: search, using, bloom, filter and “Fadi”.

After decrypting the query at the server’s side, the query will consist of:

1- Hash values of the query. Figure 21, 22 and 23 show the result of hashing “Fadi”.

Figure 24, 25 and 26 show the result of hashing “Eshtaiwi”.

Figure 21: The Result of First Hash Functions of Fadi.

45

Figure 22: The Result of Second Hash Functions of Fadi.

Figure 23: The Result of Third Hash Functions of Fadi.

46

Figure 24:The Result of First Hash Functions of Eshtaiwi.

Figure 25: The Result of Second Hash Functions of Eshtaiwi.

47

Figure 26: The Result of Third Hash Functions of Eshtaiwi.

Table 7 shows the result of hash functions for three times with “Fadi” and

“Eshtaiwi” word.

Table 7: Hash Function Results.

Hash functions Results

1
st

 Hash function of “Fadi” 95584

2
nd

Hash process of “Fadi” 95212

3
rd

 Hash process of “Fadi” 94884

1
st

Hash function of “Eshtaiwi” 45965

2
nd

Hash process of “Eshtaiwi” 45135

3
rd

 Hash process of “Eshtaiwi” 44573

2- Dummy Values and Reorder the Query

 The query will contain also the dummy values and then the program will reorder the

query. So the result if the query that will enter the server’s database and search on it is

shown in the figure 27 and 28. Figure 27 shows the dummy values added to the query

after the reordering process of “Fadi” and Figure 28 shows the dummy values added to

the query after the reordering process of “Eshtaiwi”.

48

 Figure 27: Hash Vales and Dummy Values after the Reorder Process of “Fadi” Query.

Figure 28: Hash Vales and Dummy Values after the Reorder Process of “Eshtaiwi”

Query.

49

Table 8 shows the results of reordering process for query “Fadi” and “Eshtaiwi”

added to dummy values.

Table 8: Reordering Results.

Reordered hash function with dummy values Result

“Fadi” + Dummy values 549558454952129488454

“Eshtaiwi” + Dummy values 544596654451354457354

 The server will not know what the client is searching about because the dummy

values and reorder process will make the query ambiguous. Sever will perform the search

process by dividing the query into five digits and return 1 if exists 1 or 0 if doesn’t exist.

The result of querying “Fadi Eshtaiwi Middel” shows in Figure 29.

Figure 29: The Result of Querying Fadi Eshtaiwi Middle.

50

Collision Rate

Collision rate can be calculated in this project based on equation (1) and (2)

P0= (1- kn
………………… (1)

Perr= (1-P0)
 k
………………… (2)

Where:

n= number of primary Keys (the number of keys in this project are two)

m= size of document (number of words)

k= number of hash functions (number of used hash function are three)

And then calculate the error (Perr) which equal

The collision rate will be calculated for m=10 words as follows:

P0= (1- 3*2= 0.531441

Perr= (1-0.531441) 3
= 0.0169

Equation 2 and 3 are implemented in the project and the results are shown in figures 30,

31 and 32.

Figure 30 shows the collision rate at the size equal 10 words.

Figure 30: Collision Rate at 10 words.

51

Figure 31 shows the collision rate at the size equal 30 words.

Figure 31: Collision Rate at 30 words.

Figure 32 shows the collision rate at the size equal 40 words.

Figure 32: Collision Rate at 40 words.

Marks of enhancing the privacy in this project .

First Mark:

Adding the dummy values:

This feature will enhance the privacy by making the server unable to know what the

client is looking up. This will be useful if there are organizations in their databases.

Second Mark:

Reordering the process:

After hashing the query and adding dummy values, the query will be reordered in order to

make the query is meaningless when it arrives to the server’s database.

The previous two marks are shown in Figure33.

52

Figure 33: Marks of Enhancing the Privacy in this Project.

5.2 Code Discussion

This is the first code form will appear to the user in this project. There are three buttons

in this interface. Client button was programmed by Button1_Click object to link the user

to the client form.

Server button was programmed by Button2_Click object to link the user to the server

form. Public Class frmMain

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button1.Click

 Dim frm As New frmClient

 frm.Show()

 End Sub

 Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button2.Click

 Dim frm As New frmServer

 frm.Show()

 End Sub

 Private Sub Button3_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button3.Click

 Application.Exit()

 End Sub

End Class

53

Figure 34: Interface Buttons.

The function of Close button (Button3_Click) will exit from the application and stop for

run process.

Client Code

The main idea to write an appropriate code to program the client is starting with design

the client’s interface.

Figure 35: Search Button.

54

In this interface, search button (btnSearch_Click) and when the client clicks the search

button many procedures will be executed.

Public Class frmClient

 Dim objHash As New clsHash

 Dim dumValues(3) As Integer

 Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button2.Click

 Me.Close()

 End Sub

 Private Sub btnSearch_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles btnSearch.Click

If txtClient.Text <> "" Then

 On Error Resume Next

 Dim cipherX As String

 Dim objCheck As New checkEncData

 Dim resp As String

 Dim returno As String

 Dim result As Boolean

pBar.Value = 0

 If txtClient.Text <> String.Empty Then

The following code will check if the client clicked Search button without inserting any

word. If the user inserts data, the following code will be executed. Many variables and

classes are identified to be used in many functions in the client side.

pBar is identified for the searching time process, the default value of this object is

zero. This bar will start loading when the user clicks on search button.

55

 Dim line As String = txtClient.Text

 Dim arr() As String

 arr = Split(line, " ")

 Dim arrLength As Integer = CInt(arr.Length)

 Dim numHashedTxt1(arrLength) As Integer

 Dim numHashedTxt2(arrLength) As Integer

 Dim numHashedTxt3(arrLength) As Integer

 stlbl.Visible = True

 pBar.Visible = True

 stlbl.Text = "Searching..."

 pBar.Minimum = 0

 pBar.Maximum = 100

 For i = 0 To (CInt(arr.Length - 1))

 pBar.Value = pBar.Value + 10 * (i + 1)

 '**

 '** Get Hash1

 '**

 numHashedTxt1(i) = objHash.Hash1(arr(i))

numHashedTxt1(i) = CInt(CStr(numHashedTxt1(i)).Replace("0", "9"))

There is an array; the inserted data will be set in this array as string. The array will be

the input of the hash procedure. There are three hash functions in clsHash.vb class

(clsHash.vb will be explained later). Each word will pass through these hash functions.

Each hash function various than the other one (each hash hash function has various

code).

Through execution of this code, there was a problem with the first digit of the hash

value. This problem is shown when the first digit is equal zero and the program will

drop it. So, this problem is solved by replacing the zero to 9 if the first digit is equal 0.

The result of the hash function could be negative and that’s not logical. The

following code checks the result of hash function and if the hash value is less than

zero, the hash value will be multiplied by -1.

56

 If numHashedTxt1(i) < 0 Then

 numHashedTxt1(i) = numHashedTxt1(i) * -1

 If numHashedTxt1(i).ToString.Length < 5 Then

 For y As Integer = 1 To

numHashedTxt1(i).ToString.Length - 1

 numHashedTxt1(i) =

CInt(CStr(numHashedTxt1(i)) & "1")

 Next

 End If

 numHashedTxt1(i) =

Strings.Right(Convert.ToString(numHashedTxt1(i)),

Convert.ToString(numHashedTxt1(i)).Length -

(Convert.ToString(numHashedTxt1(i)).Length - 5))

 Else

 If numHashedTxt1(i).ToString.Length < 5 Then

 For y As Integer = 1 To

numHashedTxt1(i).ToString.Length - 1

 numHashedTxt1(i) =

CInt(CStr(numHashedTxt1(i)) & "1")

 Next

 End If

 numHashedTxt1(i) =

Strings.Right(Convert.ToString(numHashedTxt1(i)),

Convert.ToString(numHashedTxt1(i)).Length -

(Convert.ToString(numHashedTxt1(i)).Length - 5))

 End If

 '**

 '** Get Hash2

 '**

 numHashedTxt2(i) = objHash.Hash2(arr(i))

 numHashedTxt2(i) =

CInt(CStr(numHashedTxt2(i)).Replace("0", "9"))

 If numHashedTxt2(i) < 0 Then

 numHashedTxt2(i) = numHashedTxt2(i) * -1

 If numHashedTxt2(i).ToString.Length < 5 Then

 For y As Integer = 1 To

numHashedTxt2(i).ToString.Length - 1

 numHashedTxt2(i) =

CInt(CStr(numHashedTxt2(i)) & "1")

 Next

 End If

 numHashedTxt2(i) =

Strings.Right(Convert.ToString(numHashedTxt2(i)),

Convert.ToString(numHashedTxt2(i)).Length -

(Convert.ToString(numHashedTxt2(i)).Length - 5))

 Else

 If numHashedTxt2(i).ToString.Length < 5 Then

 For y As Integer = 1 To

numHashedTxt2(i).ToString.Length - 1

 numHashedTxt2(i) =

CInt(CStr(numHashedTxt2(i)) & "1")

 Next

 End If

57

 numHashedTxt2(i) =

Strings.Right(Convert.ToString(numHashedTxt2(i)),

Convert.ToString(numHashedTxt2(i)).Length -

(Convert.ToString(numHashedTxt2(i)).Length - 5))

 End If

 '**

 '** Get Hash3

 '**

 numHashedTxt3(i) = objHash.Hash3(arr(i))

 numHashedTxt3(i) =

CInt(CStr(numHashedTxt3(i)).Replace("0", "9"))

 If numHashedTxt3(i) < 0 Then

 numHashedTxt3(i) = numHashedTxt3(i) * -1

 If numHashedTxt3(i).ToString.Length < 5 Then

 For y As Integer = 1 To

numHashedTxt3(i).ToString.Length - 1

 numHashedTxt3(i) =

CInt(CStr(numHashedTxt3(i)) & "1")

 Next

 End If

 numHashedTxt3(i) =

Strings.Right(Convert.ToString(numHashedTxt3(i)),

Convert.ToString(numHashedTxt3(i)).Length -

(Convert.ToString(numHashedTxt3(i)).Length - 5))

 Else

 If numHashedTxt3(i).ToString.Length < 5 Then

 For y As Integer = 1 To

numHashedTxt3(i).ToString.Length - 1

 numHashedTxt3(i) =

CInt(CStr(numHashedTxt3(i)) & "1")

 Next

 End If

 numHashedTxt3(i) =

Strings.Right(Convert.ToString(numHashedTxt3(i)),

Convert.ToString(numHashedTxt3(i)).Length -

(Convert.ToString(numHashedTxt3(i)).Length - 5))

 End If

 Next i

58

 '**

 '** Add dummy values

 '**

 For c = 0 To 2

 Dim rnd1 As New Random

 Dim x As Integer = rnd1.Next(10, 99)

 dumValues(c) = x

 Next

 '**

 '** Add results on the listview

 '**

 Dim itm1 As New ListViewItem

 Dim numHashedTxt(numHashedTxt1.Length) As String

 For b As Integer = 0 To numHashedTxt1.Length - 2

 numHashedTxt(b) = dumValues(0).ToString &

numHashedTxt1(b).ToString & dumValues(1).ToString &

numHashedTxt2(b).ToString & numHashedTxt3(b).ToString &

dumValues(2).ToString

 Dim xHashed As String = String.Empty

 xHashed = numHashedTxt(b).ToString

The query after hashing process, it’s needed to generate dummy values. The

following code will generate three values and each value is two digits. The

result of dummy value will be saved to dumValues array.

Based on the inserted data in the textbox, the hash values will be added to

the dummy values. The result of adding hash values and dummy values will

be saved into array and then reorder the whole values.

59

 '**

 '** Generation public and private keys

 '**

 GetKeys()

 cipherX = EncryptRSA(xHashed)

The following code will generate public and private keys for the client.

GetKeys () is a function will call the globalVars.vb which is responsible for

three procedures: generate keys, encryption and decryption.

The following code will call encryption function from globalVars.vb class

and this function is called EncryptRSA ().

xHashed = hash values + dummy valus + reorder process

xHashed will be passed to the EncryptRSA () in order to be encrypted and

the result of this process encryption will be saved into cipherX variable.

Now the client is finished the first stage which included:

• Client interface (textbox, search buttons and searching bar)

• Hashing the query

• Adding dummy value

• Reorder the query

• Encryption the query by using public and private keys.

After finishing these steps, the query is ready to send to the server.

60

resp = objCheck.checkData(cipherX)

 returno = objCheck.getOnes(resp)

 Dim splitReturno() As String =

Strings.Split(returno, "|")

 If splitReturno(0) = "1" Then

 result = True

 Else

 result = False

 End If

 If result = False Then

 itm1 = lstView.Items.Add(arr(b).ToString)

 itm1.SubItems.Add("Not Found!")

 itm1.SubItems(0).ForeColor = Color.Red

 ElseIf result = True Then

 itm1 = lstView.Items.Add(arr(b).ToString)

 itm1.SubItems.Add("Found")

 ' itm1.SubItems.Add(splitReturno(1))

 itm1.SubItems(0).ForeColor = Color.Green

 End If

 Next b

 End If

 stlbl.Text = "Done"

 pBar.Value = 100

 Else

MsgBox("Please Insert Data")

 End If

 End Sub

The following is connected with the first process in the client code, if

the user clicked search without inserting any data in the textbox, the

application will show a message “please insert data”

The following code will call many functions from checkEncData.vb class

and this function is called objCheck.checkData (). By calling this function,

decrypt the query, connection the client with server and search for the suery

in the server’s database. After finishing these steps, the function will return

the result in 0 nd 1 format.

61

 Private Sub frmClient_Load(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles MyBase.Load

 Me.Height = 523

 lstView.Columns.Add("Word", 300, HorizontalAlignment.Left)

 lstView.Columns.Add("Status", 100, HorizontalAlignment.Center)

 ' lstView.Columns.Add("Table Name", 100,

HorizontalAlignment.Center)

 End Sub

End Class

Hash Code

Imports Microsoft.VisualBasic

Imports System.IO

There are many classes built in this project. Each class has many functions and we can call

these functions.

The following code is responsible for the hash processes. Hash function is a built function

in the Microsoft visual basic and it had been used in this project. There are three hash

functions and each one has different equations than the others.

The following equation is for the first hash function:

h = h + Asc(Mid(val, i, 1))

62

Public Class clsHash

'------------- get hash code 1 -------------

Public Function Hash1(ByVal val As String) As Int32

Return val.GetHashCode()

End Function

'------------- get hash code 2 -------------

 Public Function Hash2(ByVal val As String) As Int32

 Dim h As Integer

 Dim i As Integer

 h = 0

 For i = 1 To Len(val)

 h = h + Asc(Mid(val, i, 1))

 Next i

 Return (h + val.GetHashCode())

 End Function

'------------- get hash code 3 -------------

 Public Function Hash3(ByVal val As String) As Int32

 Dim h As Integer

 Dim i As Integer

 h = 0

 Dim values As Char() = val.ToCharArray()

 For i = 1 To Len(val)

 h = h + Asc(values(0)) + Asc(values(values.Length() - 1))

 Next i

 Return (h + val.GetHashCode())

 End Function

End Class

 Designing the server interface required textbox and three buttons:

63

Textbox: will let the admin to insert data to the server’s database.

Save button: save the inserted data into the server’s database after hashing process.

Clear data: remove all the data that was inserted from the database.

Close: stop running the application and exit.

Programming the server required to identify many variables.

64

Server Code

Imports System.String

Imports System.Text

Imports Microsoft.VisualBasic

Imports System.IO

Imports System.Data

Imports System.Data.SqlClient

Imports System.Security.Cryptography

Imports System.Diagnostics

Imports System.Security

Public Class frmServer

 Dim objHash As New clsHash

 Private Sub btnEncrypt_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles btnEncrypt.Click

 If txtServer.Text <> "" Then

 Dim con As New SqlConnection()

 Dim com As New SqlCommand()

 ' -------- Get Random Name from Function Name GetRandomName

 Dim TablName As String = "enctbl" 'getRandomName()

 ' Dim createTbl As String

 con.ConnectionString = "Data Source =(Local); Initial

Catalog = en_db; Integrated Security = True;"

 If con.State = Data.ConnectionState.Closed Then

 con.Open()

 End If

 com.Connection = con

To allow the admin to insert the data to the database, it’s needed to establish a

connection between the admin and database.

The following code will establish this connection.

After the establishment of the connection, this connection has to be open in order to

transmit the data between the admin and the database.

65

 Dim line As String = txtServer.Text

 Dim arr() As String

 arr = Strings.Split(line, " ")

 For i = 0 To (CInt(arr.Length - 1))

 ' Dim hashedTxt As String

 Dim numHashedTxt1 As Integer

 Dim numHashedTxt2 As Integer

 Dim numHashedTxt3 As Integer

 '--------------------- Get Hash1 ----------------

 numHashedTxt1 = objHash.Hash1(arr(i))

 numHashedTxt1 = CInt(CStr(numHashedTxt1).Replace("0",

"9"))

 If numHashedTxt1 < 0 Then

 numHashedTxt1 = numHashedTxt1 * -1

 If numHashedTxt1.ToString.Length < 5 Then

 For y As Integer = 1 To

numHashedTxt1.ToString.Length - 1

 numHashedTxt1 = CInt(CStr(numHashedTxt1) &

"1")

 Next

 End If

 numHashedTxt1 =

Strings.Right(Convert.ToString(numHashedTxt1),

Convert.ToString(numHashedTxt1).Length -

(Convert.ToString(numHashedTxt1).Length - 5))

 Else

 If numHashedTxt1.ToString.Length < 5 Then

 For y As Integer = 1 To

numHashedTxt1.ToString.Length - 1

 numHashedTxt1 = CInt(CStr(numHashedTxt1) &

"1")

 Next

 End If

 numHashedTxt1 =

Strings.Right(Convert.ToString(numHashedTxt1),

Convert.ToString(numHashedTxt1).Length -

(Convert.ToString(numHashedTxt1).Length - 5))

 End If

There is an array; the inserted data by admin will be set in this array as string. The

array will be the input of the hash procedure. There are three hash functions in

clsHash.vb class. Each word will pass through these hash functions. Each hash

function is various than the other one (each hash hash function has various code).

66

 '--------------------- Get Hash2 ---------------

 numHashedTxt2 = objHash.Hash2(arr(i))

 numHashedTxt2 = CInt(CStr(numHashedTxt2).Replace("0",

"9"))

 If numHashedTxt2 < 0 Then

 numHashedTxt2 = numHashedTxt2 * -1

 If numHashedTxt2.ToString.Length < 5 Then

 For y As Integer = 1 To

numHashedTxt2.ToString.Length - 1

 numHashedTxt2 = CInt(CStr(numHashedTxt2) &

"1")

 Next

 End If

 numHashedTxt2 =

Strings.Right(Convert.ToString(numHashedTxt2),

Convert.ToString(numHashedTxt2).Length -

(Convert.ToString(numHashedTxt2).Length - 5))

 Else

 If numHashedTxt2.ToString.Length < 5 Then

 For y As Integer = 1 To

numHashedTxt2.ToString.Length - 1

 numHashedTxt2 = CInt(CStr(numHashedTxt2) &

"1")

 Next

 End If

 numHashedTxt2 =

Strings.Right(Convert.ToString(numHashedTxt2),

Convert.ToString(numHashedTxt2).Length -

(Convert.ToString(numHashedTxt2).Length - 5))

 End If

 '--------------------- Get Hash3 -----------------

 numHashedTxt3 = objHash.Hash3(arr(i))

 numHashedTxt3 = CInt(CStr(numHashedTxt3).Replace("0",

"9"))

 If numHashedTxt3 < 0 Then

 numHashedTxt3 = numHashedTxt3 * -1

 If numHashedTxt3.ToString.Length < 5 Then

 For y As Integer = 1 To

numHashedTxt3.ToString.Length - 1

 numHashedTxt3 = CInt(CStr(numHashedTxt3) &

"1")

 Next

 End If

 numHashedTxt3 =

Strings.Right(Convert.ToString(numHashedTxt3),

Convert.ToString(numHashedTxt3).Length -

(Convert.ToString(numHashedTxt3).Length - 5))

 Else

 If numHashedTxt3.ToString.Length < 5 Then

 For y As Integer = 1 To

numHashedTxt3.ToString.Length - 1

 numHashedTxt3 = CInt(CStr(numHashedTxt3) &

"1")

 Next

67

 End If

 numHashedTxt3 =

Strings.Right(Convert.ToString(numHashedTxt3),

Convert.ToString(numHashedTxt3).Length -

(Convert.ToString(numHashedTxt3).Length - 5))

 End If

 Dim numHashedTxt As String

 numHashedTxt = numHashedTxt1.ToString &

numHashedTxt2.ToString & numHashedTxt3.ToString

'--------------------- Insert Hash1 ----------------

Dim rd As SqlDataReader

Dim isExist As Boolean

com.CommandType = CommandType.Text

com.CommandText = "SELECT * FROM " & TablName & " WHERE enc_id ='" &

numHashedTxt1.ToString & "'"

 rd = com.ExecuteReader()

 isExist = Convert.ToBoolean(rd.Read)

 rd.Close()

If Not isExist Then

com.CommandType = Data.CommandType.Text

com.CommandText = "INSERT INTO " & TablName & "(enc_id, enc_num) VALUES

('" & numHashedTxt1.ToString & "', '1')"

com.ExecuteNonQuery()

End If

 '--------------------- Insert Hash2 ---------------

com.CommandType = CommandType.Text

After hashing the inserted data by the admin, the first hash value will be inserted

into the database. This procedure will be implanted three times.

The program will check the hash value before inserting it because if this hash value

exists in the database, it will not save because it already exists.

68

com.CommandText = "SELECT * FROM " & TablName & " WHERE enc_id ='" &

numHashedTxt2.ToString & "'"

rd = com.ExecuteReader()

isExist = Convert.ToBoolean(rd.Read)

rd.Close()

If Not isExist Then

com.CommandType = Data.CommandType.Text

com.CommandText = "INSERT INTO " & TablName & "(enc_id, enc_num) VALUES

('" & numHashedTxt2.ToString & "', '1')"

 com.ExecuteNonQuery()

 End If

 '--------------------- Insert Hash3 -----------------

 com.CommandType = CommandType.Text

com.CommandText = "SELECT * FROM " & TablName & " WHERE enc_id ='" &

numHashedTxt3.ToString & "'"

 rd = com.ExecuteReader()

 isExist = Convert.ToBoolean(rd.Read)

 rd.Close()

 If Not isExist Then

com.CommandType = Data.CommandType.Text

com.CommandText = "INSERT INTO " & TablName & "(enc_id, enc_num) VALUES

('" & numHashedTxt3.ToString & "', '1')"

 com.ExecuteNonQuery()

 End If

 Next i

 '--

 If con.State = Data.ConnectionState.Open Then

 con.Close()

 End If

 Else

 MsgBox("Please Insert Data")

 End If

 txtServer.Text = ""

After the admin finishing of inserting the data, the connection will be

closed. The following code will close the connection between the admin

and database.

69

 End Sub

 '--

Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button2.Click

 'Dim frm As New frmMain

 'frm.Show()

 Me.Close()

 End Sub

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button1.Click

 Dim con As New SqlConnection()

 Dim com As New SqlCommand()

If MsgBox("Are you sure you want to clear the database?",

MsgBoxStyle.YesNo, "Clear Database") = MsgBoxResult.No Then

 Exit Sub

 End If

con.ConnectionString = "Data Source =(Local); Initial Catalog = en_db;

Integrated Security = True;"

 If con.State = Data.ConnectionState.Closed Then

 con.Open()

 End If

com.Connection = con

com.CommandText = "DELETE FROM enctbl"

com.ExecuteNonQuery()

 con.Close()

If the admin clicked the close button, the following code will be executed

and the result of this event is topping the process and closes the application.

If the admin clicked the Clear database button, the program will show the

admin message box (Yes /No) in order to inform his request because all the

data will be deleted. The following code will be executed and the result of

this event is “Empty Database”.

70

 End Sub

End Class

checkEncData.vb

Imports Microsoft.VisualBasic

Imports System.Data.SqlClient

Public Class checkEncData

 Private deCipherX As String = String.Empty

 Public Function checkData(ByVal ciphered As String) As String

 deCipherX = DecryptRSA()

 Dim tempnewDeCipherX1 As String = String.Empty

 Dim tempnewDeCipherX2 As String = String.Empty

checkEncData.vb is a class which has many functions. Each function will

execute a specific process.

Functions include:

• Decryption the encrypted data by calling functions from globalVars.vb class.

• Search for the hash values in the database.

• Return the result (0 or 1).

DecryptRSA() will get the encrypted data from the client’s query and then decrypt it and

return the plain text and put it in the variable (deCipherX).

71

 Dim FoundHashes(2) As String

 '**

 '** Dividing hash to three sets of five numbers

 '**

Dim divDeCipher(2) As String

Dim adds As Integer

For z As Integer = 0 To 2

adds = z * 5

divDeCipher(z) = Strings.Mid(newDeCipherX, adds + 1, 5)

Next

Dim con As New SqlConnection

Dim com As New SqlCommand

Dim rd As SqlDataReader

Dim xx As String = String.Empty

Dim dataTable() As String

Dim isExist As Boolean

con.ConnectionString = "Data Source =(Local); Initial Catalog = en_db;

Integrated Security = True;"

 If con.State = Data.ConnectionState.Closed Then

 con.Open()

 End If

com.Connection = con

com.CommandText = "SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES

WHERE TABLE_TYPE = 'BASE TABLE' ORDER BY TABLE_NAME"

 rd = com.ExecuteReader

Try

While rd.Read

xx = xx & rd.GetString(0) & "|"

End While

rd.Close()

con.Close()

dataTable = Strings.Split(xx, "|")

After decryption the query, the program will open the connection and search for the

hash values.

72

 '***

 '** Searching Results

 '***

If con.State = Data.ConnectionState.Closed Then

con.Open()

End If

com.Connection = con

For j As Integer = 0 To dataTable.Length - 1

If dataTable(j) = String.Empty Then Exit For

For s As Integer = 0 To 2

com.CommandType = CommandType.Text

com.CommandText = "SELECT * FROM " & dataTable(j).ToString & " WHERE "

& dataTable(j).ToString & ".enc_id = '" & divDeCipher(s) & "'"

 rd = com.ExecuteReader()

 isExist = Convert.ToBoolean(rd.Read)

 rd.Close()

 If isExist Then

 FoundHashes(s) = "1"

 Else

 FoundHashes(s) = "0"

 End If

 Next

Dim myFoundHashes As String = String.Empty

For u As Integer = 0 To FoundHashes.Length - 1

myFoundHashes = myFoundHashes & FoundHashes(u).ToString

Next

Return myFoundHashes

Next

Catch ex As Exception

Throw ex

End Try

con.Close()

End Function

Public Function getOnes(ByVal foundHash As String) As String

Dim splitResult() As String = Strings.Split(foundHash, "|")

If InStr(splitResult(0), "0", CompareMethod.Text) Then

The following code will search the hash values. If the hash values exist,

the program will return 1. Otherwise, the program will return 0.

73

Return "0"

Else

Return "1" '|" & splitResult(1).ToString

End If

End Function

End Class

globalVars.vb

Imports System.IO

Imports System.Text

Imports Microsoft.VisualBasic

Public Module Globals

 Public text_to_encrypt As String

 Public pubKey, priKey As String

 Dim TDES As TripleDES

 Public Sub GetKeys()

 Try

 pubKey = String.Empty

 priKey = String.Empty

 TDES = New TripleDES

 TDES.GetKeysForRSA(pubKey, priKey)

 Catch ex As Exception

 Throw ex

 End Try

End Sub

Public Function EncryptRSA(ByVal text As String) As String

Dim txtEnc As Byte()

frmServer.txtEnc.Text = String.Empty

Try

Dim tData As New StringBuilder

Dim arrlis As ArrayList

TDES = New TripleDES

text_to_encrypt = text

arrlis = TDES.EncryptRSA(text, pubKey)

The following code will give value for both public and private keys to be used in the

encryption process. These values are set by TripleDES.vb class based on specific

equations.

After getting the public and private keys from TripleDES.vb class, the

program will use these keys in the encryption.

74

For j As Integer = 0 To arrlis.Count - 1

txtEnc = CType(arrlis(j), Byte())

For i As Integer = 0 To txtEnc.Length - 1

frmServer.txtEnc.AppendText((Chr(txtEnc(i))))

Next i

Next j

 Dim innerString As String = frmServer.txtEnc.Text

Return innerString

Catch ex As Exception

Throw ex

End Try

End Function

Public Function DecryptRSA() As String

Dim txtEnc As Byte()

frmClient.txtEnc.Text = String.Empty

Try

Dim tData As New StringBuilder

Dim arrlis As ArrayList

TDES = New TripleDES

arrlis = TDES.EncryptRSA(text_to_encrypt, pubKey)

For j As Integer = 0 To arrlis.Count - 1

txtEnc = CType(arrlis(j), Byte())

txtEnc = TDES.DecryptRSA(txtEnc, priKey)

For i As Integer = 0 To txtEnc.Length - 1

frmClient.txtEnc.AppendText((Chr(txtEnc(i))))

Next i

Next j

Dim innerString As String = frmClient.txtEnc.Text

Return innerString

Catch ex As Exception

Throw ex

End Try

The following code will be used in the decryption process of the encrypted

data. This function will get the public and private keys from TripleDES.vb

class. After getting the keys, the encrypted will pass through many

procedures to decrypt the data. The details of RSA algorithm will be

discussed in the TripleDES.vb class.

75

End Function

End Module

TripleDES.vb

Imports System

Imports System.IO

Imports System.Security.Cryptography

Imports System.Text

Public Class TripleDES

Shared publicKey As String 'The public key only

Shared privateKey As String

Shared xmlKeys As String 'A combination of both the public and private

keys

Dim key3DES() As Byte = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,

15, 16, 17, 18, 19, 20, 21, 22, 23, 24}

Dim key() As Byte = {1, 2, 3, 4, 5, 6, 7, 8}

Dim iv() As Byte = {65, 110, 68, 26, 69, 178, 200, 219}

Public Sub New()

Dim rsa As New RSACryptoServiceProvider

xmlKeys = rsa.ToXmlString(True)

publicKey = rsa.ToXmlString(False)

End Sub

Public Sub New(ByVal encType As String)

Select Case encType

Case "3DES"

Case "RSA"

Case Else

End Select

End Sub

In this class, public and private keys will be generated for both encryption and

decryption processes. GetKeys()will call the GetKeysForRSA function.

The code of GetKeysForRSA function to provide the EncryptRSA function with the

public and private keys.

After hashing the data, the result of hash values added to dummy values and

reordering the whole query will be the input of the encryption function. The

following code will do the encryption process. Public also will be encrypted.

76

Public Function Encrypt(ByVal plainText As String, ByVal encType As

String) As Byte()

Dim utf8encoder As UTF8Encoding = New UTF8Encoding

Dim inputInBytes() As Byte = utf8encoder.GetBytes(plainText)

Dim tdesProvider As Object

Dim cryptoTransform As Object

Select Case encType

Case "DES"

tdesProvider = New DESCryptoServiceProvider

cryptoTransform = tdesProvider.CreateEncryptor(Me.key, Me.iv)

Case "3DES"

tdesProvider = New TripleDESCryptoServiceProvider

cryptoTransform = tdesProvider.CreateEncryptor(Me.key3DES, Me.iv)

End Select

Dim encryptedStream As MemoryStream = New MemoryStream

Dim cryptStream As CryptoStream = New CryptoStream(encryptedStream,

cryptoTransform, CryptoStreamMode.Write)

cryptStream.Write(inputInBytes, 0, inputInBytes.Length)

cryptStream.FlushFinalBlock()

encryptedStream.Position = 0

Dim result(encryptedStream.Length - 1) As Byte

encryptedStream.Read(result, 0, encryptedStream.Length)

cryptStream.Close()

Return result

End Function

Public Function Decrypt(ByVal inputInBytes() As Byte, ByVal decType As

String) As String

Dim utf8encoder As UTF8Encoding = New UTF8Encoding

Dim tdesProvider As Object

Dim cryptoTransform As Object

Select Case decType

Case "DES"

tdesProvider = New DESCryptoServiceProvider

cryptoTransform = tdesProvider.CreateDecryptor(Me.key, Me.iv)

Collision Rate calculation code

Dim m As String = (arr.Length - 1)

Dim aa As String = (1 - (1 - (1 / m)) ^ 6) ^ 3

The encrypted data will be encrypted and extract the public and private keys

in the server and client. The decryption process in this project is involved in

many places. The client will call this function two times and the server once.

77

Chapter 6

Conclusions

 Bloom filters (server’s database in this project) can be built by using hashing

function which provides the hash values to the server’s database and then it will be

secured. The proposed system can solve the third party problem. There are three eight

encryption/decryption processes in this project which mean the security is very high

level. Through this project, the third party has been removed and the client has the ability

to enter the server’s database without knowing what the client is looking for. RSA is used

in this project in order to encrypt the query because it’s a very strong algorithm technique

and no one can crack the query after encrypt it by two different keys. The size of the

document can affect the performance of this project. So if the document size is increased,

the required time to find the query will increase. Using three hash functions will decrease

or prevent the collision rate in this project and the program is not designed to have a word

with the same hash values. “Eshtaiwi” word doesn’t exist in the server’s database, so the

program return is not found. Copy and Paste is not supported in this project because may

be any client can attach a huge number of data and this will occur down in the server.

SQL server 2005 is very good software to build the database and it can be used in many

applications and the server’s database in this project is dynamic and that is a good feature

that can be provided by SQL server 2005. So the administrator can insert data as possible

as (this is determined by SQL server program).

 The proposed system will enhance the privacy during the search process in the

bloom filters. Information security and privacy is a very important issue for any

organizations and companies especially when they are sharing the data between them. It

is necessary when there are two or more parties that do not trust each other and they are

share data between them. For example if there are two intelligence agencies that share the

data and they wish to let each party query the other databases without disclosing the

query and know what the other is searching for specific data. (Bellovin and Rescorla ,

2005).

78

Chapter 7

Recommendations

• Implement this project in the real world especially in two parties that don’t fully

trust each other.

• This project is designed by using VB.net so it’s recommended to use another

software package because VB.net in the server interface doesn’t allow the admin

to perform copy/past feature and the admin must insert the data by typing which

will take long time.

• This project uses three hash functions. So, it’s recommended to use two hash

functions rather three. Each word in this project will yield three hash values, so

the number of hash values is huge and requires a huge of database. SQL server

2005 is limited space.

• The server’s database in this project is built by typing the text in the specific

textbox. So it’s recommended to change the method of inserting data to the

server’s database by uploading files. This feature will allow the admin to upload

the data as file whereas .txt, .doc and .pdf. This feature wasn’t adopted in this

project in order to prevent attaching huge file which brings the server down.

79

Appendix

Menu Code
Public Class frmMain

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button1.Click

 Dim frm As New frmClient

 frm.Show()

 End Sub

 Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button2.Click

 Dim frm As New frmServer

 frm.Show()

 End Sub

 Private Sub Button3_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button3.Click

 Application.Exit()

 End Sub

End Class

80

Client Code

Public Class frmClient

 Dim objHash As New clsHash

 Dim dumValues(3) As Integer

 Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button2.Click

 ' Dim frm As New frmMain

 ' frm.Show()

 Me.Close()

 End Sub

 Private Sub btnSearch_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles btnSearch.Click

 If txtClient.Text <> "" Then

 Dim timee As String = Date.Now

 On Error Resume Next

 Dim cipherX As String

 Dim objCheck As New checkEncData

 Dim resp As String

 Dim returno As String

 Dim result As Boolean

 pBar.Value = 0

 If txtClient.Text <> String.Empty Then

 Dim line As String = txtClient.Text

 Dim arr() As String

 arr = Split(line, " ")

 Dim arrLength As Integer = CInt(arr.Length)

 Dim numHashedTxt1(arrLength) As Integer

 Dim numHashedTxt2(arrLength) As Integer

 Dim numHashedTxt3(arrLength) As Integer

 stlbl.Visible = True

 pBar.Visible = True

 stlbl.Text = "Searching..."

 pBar.Minimum = 0

 pBar.Maximum = 100

 For i = 0 To (CInt(arr.Length - 1))

 pBar.Value = pBar.Value + 10 * (i + 1)

 '**

 '** Get Hash1

 '**

 numHashedTxt1(i) = objHash.Hash1(arr(i))

 numHashedTxt1(i) =

CInt(CStr(numHashedTxt1(i)).Replace("0", "9"))

 If numHashedTxt1(i) < 0 Then

 numHashedTxt1(i) = numHashedTxt1(i) * -1

 If numHashedTxt1(i).ToString.Length < 5 Then

81

 For y As Integer = 1 To

numHashedTxt1(i).ToString.Length - 1

 numHashedTxt1(i) =

CInt(CStr(numHashedTxt1(i)) & "1")

 Next

 End If

 numHashedTxt1(i) =

Strings.Right(Convert.ToString(numHashedTxt1(i)),

Convert.ToString(numHashedTxt1(i)).Length -

(Convert.ToString(numHashedTxt1(i)).Length - 5))

 Else

 If numHashedTxt1(i).ToString.Length < 5 Then

 For y As Integer = 1 To

numHashedTxt1(i).ToString.Length - 1

 numHashedTxt1(i) =

CInt(CStr(numHashedTxt1(i)) & "1")

 Next

 End If

 numHashedTxt1(i) =

Strings.Right(Convert.ToString(numHashedTxt1(i)),

Convert.ToString(numHashedTxt1(i)).Length -

(Convert.ToString(numHashedTxt1(i)).Length - 5))

 End If

 '**

 '** Get Hash2

 '**

 numHashedTxt2(i) = objHash.Hash2(arr(i))

 numHashedTxt2(i) =

CInt(CStr(numHashedTxt2(i)).Replace("0", "9"))

 If numHashedTxt2(i) < 0 Then

 numHashedTxt2(i) = numHashedTxt2(i) * -1

 If numHashedTxt2(i).ToString.Length < 5 Then

 For y As Integer = 1 To

numHashedTxt2(i).ToString.Length - 1

 numHashedTxt2(i) =

CInt(CStr(numHashedTxt2(i)) & "1")

 Next

 End If

 numHashedTxt2(i) =

Strings.Right(Convert.ToString(numHashedTxt2(i)),

Convert.ToString(numHashedTxt2(i)).Length -

(Convert.ToString(numHashedTxt2(i)).Length - 5))

 Else

 If numHashedTxt2(i).ToString.Length < 5 Then

 For y As Integer = 1 To

numHashedTxt2(i).ToString.Length - 1

 numHashedTxt2(i) =

CInt(CStr(numHashedTxt2(i)) & "1")

 Next

 End If

 numHashedTxt2(i) =

Strings.Right(Convert.ToString(numHashedTxt2(i)),

Convert.ToString(numHashedTxt2(i)).Length -

(Convert.ToString(numHashedTxt2(i)).Length - 5))

82

 End If

 '**

 '** Get Hash3

 '**

 numHashedTxt3(i) = objHash.Hash3(arr(i))

 numHashedTxt3(i) =

CInt(CStr(numHashedTxt3(i)).Replace("0", "9"))

 If numHashedTxt3(i) < 0 Then

 numHashedTxt3(i) = numHashedTxt3(i) * -1

 If numHashedTxt3(i).ToString.Length < 5 Then

 For y As Integer = 1 To

numHashedTxt3(i).ToString.Length - 1

 numHashedTxt3(i) =

CInt(CStr(numHashedTxt3(i)) & "1")

 Next

 End If

 numHashedTxt3(i) =

Strings.Right(Convert.ToString(numHashedTxt3(i)),

Convert.ToString(numHashedTxt3(i)).Length -

(Convert.ToString(numHashedTxt3(i)).Length - 5))

 Else

 If numHashedTxt3(i).ToString.Length < 5 Then

 For y As Integer = 1 To

numHashedTxt3(i).ToString.Length - 1

 numHashedTxt3(i) =

CInt(CStr(numHashedTxt3(i)) & "1")

 Next

 End If

 numHashedTxt3(i) =

Strings.Right(Convert.ToString(numHashedTxt3(i)),

Convert.ToString(numHashedTxt3(i)).Length -

(Convert.ToString(numHashedTxt3(i)).Length - 5))

 End If

 Next i

 MsgBox(timee)

 '**

 '** Randomize dummy values

 '**

 For c = 0 To 2

 Dim rnd1 As New Random

 Dim x As Integer = rnd1.Next(10, 99)

 dumValues(c) = x

 Next

 '**

 '** Add results on the listview

 '**

 Dim itm1 As New ListViewItem

 Dim numHashedTxt(numHashedTxt1.Length) As String

 For b As Integer = 0 To numHashedTxt1.Length - 2

 numHashedTxt(b) = dumValues(0).ToString &

numHashedTxt1(b).ToString & dumValues(1).ToString &

83

numHashedTxt2(b).ToString & numHashedTxt3(b).ToString &

dumValues(2).ToString

 Dim xHashed As String = String.Empty

 xHashed = numHashedTxt(b).ToString

 GetKeys()

 cipherX = EncryptRSA(xHashed)

 MsgBox(cipherX)

 ' text_to_encrypt = objCheck.checkData(cipherX)

 resp = objCheck.checkData(cipherX) 'DecryptRSA()

 returno = objCheck.getOnes(resp)

 Dim splitReturno() As String =

Strings.Split(returno, "|")

 If splitReturno(0) = "1" Then

 result = True

 Else

 result = False

 End If

 If result = False Then

 itm1 = lstView.Items.Add(arr(b).ToString)

 itm1.SubItems.Add("Not Found!")

 itm1.SubItems(0).ForeColor = Color.Red

 ElseIf result = True Then

 itm1 = lstView.Items.Add(arr(b).ToString)

 itm1.SubItems.Add("Found")

 ' itm1.SubItems.Add(splitReturno(1))

 itm1.SubItems(0).ForeColor = Color.Green

 End If

 Next b

 End If

 stlbl.Text = "Done"

 pBar.Value = 100

 Else

 MsgBox("Please Insert Data")

 End If

 End Sub

 Private Sub frmClient_Load(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles MyBase.Load

 Me.Height = 523

 lstView.Columns.Add("Word", 300, HorizontalAlignment.Left)

 lstView.Columns.Add("Status", 100, HorizontalAlignment.Center)

 ' lstView.Columns.Add("Table Name", 100,

HorizontalAlignment.Center)

 End Sub

End Class

84

Hash Code

Imports Microsoft.VisualBasic

Imports System.IO

Public Class clsHash

'------------- get hash code 1 -------------

Public Function Hash1(ByVal val As String) As Int32

Return val.GetHashCode()

End Function

'------------- get hash code 2 -------------

 Public Function Hash2(ByVal val As String) As Int32

 Dim h As Integer

 Dim i As Integer

 h = 0

 For i = 1 To Len(val)

 h = h + Asc(Mid(val, i, 1))

 Next i

 Return (h + val.GetHashCode())

 End Function

'------------- get hash code 3 -------------

 Public Function Hash3(ByVal val As String) As Int32

 Dim h As Integer

 Dim i As Integer

 h = 0

 Dim values As Char() = val.ToCharArray()

 For i = 1 To Len(val)

 h = h + Asc(values(0)) + Asc(values(values.Length() - 1))

 Next i

 Return (h + val.GetHashCode())

 End Function

End Class

85

Server Code

Imports System.String

Imports System.Text

Imports Microsoft.VisualBasic

Imports System.IO

Imports System.Data

Imports System.Data.SqlClient

Imports System.Security.Cryptography

Imports System.Diagnostics

Imports System.Security

Public Class frmServer

 Dim objHash As New clsHash

 Private Sub btnEncrypt_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles btnEncrypt.Click

 If txtServer.Text <> "" Then

 Dim con As New SqlConnection()

 Dim com As New SqlCommand()

 ' -------- Get Random Name from Function Name GetRandomName

 Dim TablName As String = "enctbl" 'getRandomName()

 ' Dim createTbl As String

 con.ConnectionString = "Data Source =(Local); Initial

Catalog = en_db; Integrated Security = True;"

 If con.State = Data.ConnectionState.Closed Then

 con.Open()

 End If

 '------------- Create Table In database ----------------

 com.Connection = con

 Dim line As String = txtServer.Text

 Dim arr() As String

 arr = Strings.Split(line, " ")

 For i = 0 To (CInt(arr.Length - 1))

 ' Dim hashedTxt As String

 Dim numHashedTxt1 As Integer

 Dim numHashedTxt2 As Integer

 Dim numHashedTxt3 As Integer

 '--------------------- Get Hash1 ----------------

 numHashedTxt1 = objHash.Hash1(arr(i))

 numHashedTxt1 = CInt(CStr(numHashedTxt1).Replace("0",

"9"))

 If numHashedTxt1 < 0 Then

 numHashedTxt1 = numHashedTxt1 * -1

86

 If numHashedTxt1.ToString.Length < 5 Then

 For y As Integer = 1 To

numHashedTxt1.ToString.Length - 1

 numHashedTxt1 = CInt(CStr(numHashedTxt1) &

"1")

 Next

 End If

 numHashedTxt1 =

Strings.Right(Convert.ToString(numHashedTxt1),

Convert.ToString(numHashedTxt1).Length -

(Convert.ToString(numHashedTxt1).Length - 5))

 Else

 If numHashedTxt1.ToString.Length < 5 Then

 For y As Integer = 1 To

numHashedTxt1.ToString.Length - 1

 numHashedTxt1 = CInt(CStr(numHashedTxt1) &

"1")

 Next

 End If

 numHashedTxt1 =

Strings.Right(Convert.ToString(numHashedTxt1),

Convert.ToString(numHashedTxt1).Length -

(Convert.ToString(numHashedTxt1).Length - 5))

 End If

 '--------------------- Get Hash2 ---------------

 numHashedTxt2 = objHash.Hash2(arr(i))

 numHashedTxt2 = CInt(CStr(numHashedTxt2).Replace("0",

"9"))

 If numHashedTxt2 < 0 Then

 numHashedTxt2 = numHashedTxt2 * -1

 If numHashedTxt2.ToString.Length < 5 Then

 For y As Integer = 1 To

numHashedTxt2.ToString.Length - 1

 numHashedTxt2 = CInt(CStr(numHashedTxt2) &

"1")

 Next

 End If

 numHashedTxt2 =

Strings.Right(Convert.ToString(numHashedTxt2),

Convert.ToString(numHashedTxt2).Length -

(Convert.ToString(numHashedTxt2).Length - 5))

 Else

 If numHashedTxt2.ToString.Length < 5 Then

 For y As Integer = 1 To

numHashedTxt2.ToString.Length - 1

 numHashedTxt2 = CInt(CStr(numHashedTxt2) &

"1")

 Next

 End If

 numHashedTxt2 =

Strings.Right(Convert.ToString(numHashedTxt2),

Convert.ToString(numHashedTxt2).Length -

(Convert.ToString(numHashedTxt2).Length - 5))

 End If

87

 '--------------------- Get Hash3 -----------------

 numHashedTxt3 = objHash.Hash3(arr(i))

 numHashedTxt3 = CInt(CStr(numHashedTxt3).Replace("0",

"9"))

 If numHashedTxt3 < 0 Then

 numHashedTxt3 = numHashedTxt3 * -1

 If numHashedTxt3.ToString.Length < 5 Then

 For y As Integer = 1 To

numHashedTxt3.ToString.Length - 1

 numHashedTxt3 = CInt(CStr(numHashedTxt3) &

"1")

 Next

 End If

 numHashedTxt3 =

Strings.Right(Convert.ToString(numHashedTxt3),

Convert.ToString(numHashedTxt3).Length -

(Convert.ToString(numHashedTxt3).Length - 5))

 Else

 If numHashedTxt3.ToString.Length < 5 Then

 For y As Integer = 1 To

numHashedTxt3.ToString.Length - 1

 numHashedTxt3 = CInt(CStr(numHashedTxt3) &

"1")

 Next

 End If

 numHashedTxt3 =

Strings.Right(Convert.ToString(numHashedTxt3),

Convert.ToString(numHashedTxt3).Length -

(Convert.ToString(numHashedTxt3).Length - 5))

 End If

 Dim numHashedTxt As String

 numHashedTxt = numHashedTxt1.ToString &

numHashedTxt2.ToString & numHashedTxt3.ToString

 '--------------------- Insert Hash1 ----------------

 Dim rd As SqlDataReader

 Dim isExist As Boolean

 com.CommandType = CommandType.Text

 com.CommandText = "SELECT * FROM " & TablName & " WHERE

enc_id ='" & numHashedTxt1.ToString & "'"

 rd = com.ExecuteReader()

 isExist = Convert.ToBoolean(rd.Read)

 rd.Close()

 If Not isExist Then

 com.CommandType = Data.CommandType.Text

 com.CommandText = "INSERT INTO " & TablName &

"(enc_id, enc_num) VALUES ('" & numHashedTxt1.ToString & "', '1')"

 com.ExecuteNonQuery()

 End If

88

 '--------------------- Insert Hash2 ---------------

 com.CommandType = CommandType.Text

 com.CommandText = "SELECT * FROM " & TablName & " WHERE

enc_id ='" & numHashedTxt2.ToString & "'"

 rd = com.ExecuteReader()

 isExist = Convert.ToBoolean(rd.Read)

 rd.Close()

 If Not isExist Then

 com.CommandType = Data.CommandType.Text

 com.CommandText = "INSERT INTO " & TablName &

"(enc_id, enc_num) VALUES ('" & numHashedTxt2.ToString & "', '1')"

 com.ExecuteNonQuery()

 End If

 '--------------------- Insert Hash3 -----------------

 com.CommandType = CommandType.Text

 com.CommandText = "SELECT * FROM " & TablName & " WHERE

enc_id ='" & numHashedTxt3.ToString & "'"

 rd = com.ExecuteReader()

 isExist = Convert.ToBoolean(rd.Read)

 rd.Close()

 If Not isExist Then

 com.CommandType = Data.CommandType.Text

 com.CommandText = "INSERT INTO " & TablName &

"(enc_id, enc_num) VALUES ('" & numHashedTxt3.ToString & "', '1')"

 com.ExecuteNonQuery()

 End If

 '--

 Next i

 If con.State = Data.ConnectionState.Open Then

 con.Close()

 End If

 Else

 MsgBox("Please Insert Data")

 End If

 txtServer.Text = ""

 End Sub

 Function getRandomName() As String

 Dim ref As String

 Dim random1 As New Random

 Dim dt As DateTime = DateTime.Now

 If dt.Millisecond.ToString.Length = 1 Then

 ref = ref + "00" + dt.Millisecond.ToString

 ElseIf dt.Millisecond.ToString.Length = 2 Then

89

 ref = ref + "0" + dt.Millisecond.ToString

 Else

 ref = ref + dt.Millisecond.ToString

 End If

 ref = ref + random1.Next(10000, 99999).ToString

 Return ref

 End Function

 Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button2.Click

 'Dim frm As New frmMain

 'frm.Show()

 Me.Close()

 End Sub

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button1.Click

 Dim con As New SqlConnection()

 Dim com As New SqlCommand()

 If MsgBox("Are you sure you want to clear the database?",

MsgBoxStyle.YesNo, "Clear Database") = MsgBoxResult.No Then

 Exit Sub

 End If

 con.ConnectionString = "Data Source =(Local); Initial Catalog =

en_db; Integrated Security = True;"

 If con.State = Data.ConnectionState.Closed Then

 con.Open()

 End If

 com.Connection = con

 com.CommandText = "DELETE FROM enctbl"

 com.ExecuteNonQuery()

 con.Close()

 End Sub

End Class

90

checkEncData.vb

Imports Microsoft.VisualBasic

Imports System.Data.SqlClient

Public Class checkEncData

 Private deCipherX As String = String.Empty

 Public Function checkData(ByVal ciphered As String) As String

 deCipherX = DecryptRSA()

 Dim newDeCipherX As String = String.Empty

 Dim tempnewDeCipherX1 As String = String.Empty

 Dim tempnewDeCipherX2 As String = String.Empty

 Dim FoundHashes(2) As String

 newDeCipherX = Strings.Right(deCipherX, deCipherX.Length - 2)

'**Cut front dummy

 newDeCipherX = Strings.Left(newDeCipherX, newDeCipherX.Length -

2) '**Cut rare dummy

 tempnewDeCipherX1 = Strings.Left(newDeCipherX,

newDeCipherX.Length - 12) '**Front

 tempnewDeCipherX2 = Strings.Right(newDeCipherX,

newDeCipherX.Length - 7) '**End

 newDeCipherX = tempnewDeCipherX1 & tempnewDeCipherX2 '** Pure

Hash

 '**

 '** Dividing hash to three sets of five numbers

 '**

 Dim divDeCipher(2) As String

 Dim adds As Integer

 For z As Integer = 0 To 2

 adds = z * 5

 divDeCipher(z) = Strings.Mid(newDeCipherX, adds + 1, 5)

 Next

 Dim con As New SqlConnection

 Dim com As New SqlCommand

 Dim rd As SqlDataReader

 Dim xx As String = String.Empty

 Dim dataTable() As String

 Dim isExist As Boolean

 con.ConnectionString = "Data Source =(Local); Initial Catalog =

en_db; Integrated Security = True;"

 If con.State = Data.ConnectionState.Closed Then

 con.Open()

 End If

 com.Connection = con

91

 com.CommandText = "SELECT TABLE_NAME FROM

INFORMATION_SCHEMA.TABLES WHERE TABLE_TYPE = 'BASE TABLE' ORDER BY

TABLE_NAME"

 rd = com.ExecuteReader

 Try

 While rd.Read

 xx = xx & rd.GetString(0) & "|"

 End While

 rd.Close()

 con.Close()

 dataTable = Strings.Split(xx, "|")

 '***

 '** Searching Results

 '***

 If con.State = Data.ConnectionState.Closed Then

 con.Open()

 End If

 com.Connection = con

 For j As Integer = 0 To dataTable.Length - 1

 If dataTable(j) = String.Empty Then Exit For

 For s As Integer = 0 To 2

 com.CommandType = CommandType.Text

 com.CommandText = "SELECT * FROM " &

dataTable(j).ToString & " WHERE " & dataTable(j).ToString & ".enc_id =

'" & divDeCipher(s) & "'"

 rd = com.ExecuteReader()

 isExist = Convert.ToBoolean(rd.Read)

 rd.Close()

 If isExist Then

 FoundHashes(s) = "1"

 Else

 FoundHashes(s) = "0"

 End If

 Next

 Dim myFoundHashes As String = String.Empty

 For u As Integer = 0 To FoundHashes.Length - 1

 myFoundHashes = myFoundHashes &

FoundHashes(u).ToString

 Next

 '** Returning hash search result for this word with the

table name before

 Return myFoundHashes '& "|" & dataTable(j).ToString

'EncryptRSA(myFoundHashes & "|" & dataTable(j).ToString)

 Next

 Catch ex As Exception

 Throw ex

92

 End Try

 con.Close()

 End Function

 Public Function getOnes(ByVal foundHash As String) As String

 Dim splitResult() As String = Strings.Split(foundHash, "|")

 If InStr(splitResult(0), "0", CompareMethod.Text) Then

 Return "0"

 Else

 Return "1" '|" & splitResult(1).ToString

 End If

 End Function

End Class

93

globalVars.vb

Imports System.IO

Imports System.Text

Imports Microsoft.VisualBasic

Public Module Globals

 Public text_to_encrypt As String

 Public pubKey, priKey As String

 Dim TDES As TripleDES

 Public Sub GetKeys()

 Try

 pubKey = String.Empty

 priKey = String.Empty

 TDES = New TripleDES

 TDES.GetKeysForRSA(pubKey, priKey)

 Catch ex As Exception

 Throw ex

 End Try

 End Sub

 Public Function EncryptRSA(ByVal text As String) As String

 Dim txtEnc As Byte()

 frmServer.txtEnc.Text = String.Empty

 Try

 Dim tData As New StringBuilder

 Dim arrlis As ArrayList

 TDES = New TripleDES

 text_to_encrypt = text

 arrlis = TDES.EncryptRSA(text, pubKey)

 For j As Integer = 0 To arrlis.Count - 1

 txtEnc = CType(arrlis(j), Byte())

 For i As Integer = 0 To txtEnc.Length - 1

 frmServer.txtEnc.AppendText((Chr(txtEnc(i))))

 Next i

 Next j

 Dim innerString As String = frmServer.txtEnc.Text

 Return innerString

 Catch ex As Exception

 Throw ex

 End Try

 End Function

 Public Function DecryptRSA() As String

 Dim txtEnc As Byte()

 frmClient.txtEnc.Text = String.Empty

 Try

 Dim tData As New StringBuilder

 Dim arrlis As ArrayList

94

 TDES = New TripleDES

 arrlis = TDES.EncryptRSA(text_to_encrypt, pubKey)

 For j As Integer = 0 To arrlis.Count - 1

 txtEnc = CType(arrlis(j), Byte())

 txtEnc = TDES.DecryptRSA(txtEnc, priKey)

 For i As Integer = 0 To txtEnc.Length - 1

 frmClient.txtEnc.AppendText((Chr(txtEnc(i))))

 Next i

 Next j

 Dim innerString As String = frmClient.txtEnc.Text

 Return innerString

 Catch ex As Exception

 Throw ex

 End Try

 End Function

End Module

95

TripleDES.vb

Imports System

Imports System.IO

Imports System.Security.Cryptography

Imports System.Text

Public Class TripleDES

 Shared publicKey As String 'The public key only

 Shared privateKey As String

 Shared xmlKeys As String 'A combination of both the public and

private keys

 Dim key3DES() As Byte = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,

14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24}

 Dim key() As Byte = {1, 2, 3, 4, 5, 6, 7, 8}

 Dim iv() As Byte = {65, 110, 68, 26, 69, 178, 200, 219}

 Public Sub New()

 Dim rsa As New RSACryptoServiceProvider

 xmlKeys = rsa.ToXmlString(True)

 publicKey = rsa.ToXmlString(False)

 End Sub

 Public Sub New(ByVal encType As String)

 Select Case encType

 Case "3DES"

 Case "RSA"

 Case Else

 End Select

 End Sub

 Public Function Encrypt(ByVal plainText As String, ByVal encType As

String) As Byte()

 Dim utf8encoder As UTF8Encoding = New UTF8Encoding

 Dim inputInBytes() As Byte = utf8encoder.GetBytes(plainText)

 Dim tdesProvider As Object

 Dim cryptoTransform As Object

 Select Case encType

 Case "DES"

 tdesProvider = New DESCryptoServiceProvider

 cryptoTransform = tdesProvider.CreateEncryptor(Me.key,

Me.iv)

 Case "3DES"

 tdesProvider = New TripleDESCryptoServiceProvider

 cryptoTransform =

tdesProvider.CreateEncryptor(Me.key3DES, Me.iv)

 End Select

 Dim encryptedStream As MemoryStream = New MemoryStream

 Dim cryptStream As CryptoStream = New

CryptoStream(encryptedStream, cryptoTransform, CryptoStreamMode.Write)

96

 cryptStream.Write(inputInBytes, 0, inputInBytes.Length)

 cryptStream.FlushFinalBlock()

 encryptedStream.Position = 0

 Dim result(encryptedStream.Length - 1) As Byte

 encryptedStream.Read(result, 0, encryptedStream.Length)

 cryptStream.Close()

 MsgBox(result)

 Return result

 End Function

 Public Function Decrypt(ByVal inputInBytes() As Byte, ByVal decType

As String) As String

 Dim utf8encoder As UTF8Encoding = New UTF8Encoding

 Dim tdesProvider As Object

 Dim cryptoTransform As Object

 Select Case decType

 Case "DES"

 tdesProvider = New DESCryptoServiceProvider

 cryptoTransform = tdesProvider.CreateDecryptor(Me.key,

Me.iv)

 Case "3DES"

 tdesProvider = New TripleDESCryptoServiceProvider

 cryptoTransform =

tdesProvider.CreateDecryptor(Me.key3DES, Me.iv)

 End Select

 Dim decryptedStream As MemoryStream = New MemoryStream

 Dim cryptStream As CryptoStream = New

CryptoStream(decryptedStream, cryptoTransform, CryptoStreamMode.Write)

 cryptStream.Write(inputInBytes, 0, inputInBytes.Length)

 'cryptStream.Flush()

 cryptStream.FlushFinalBlock()

 decryptedStream.Position = 0

 Dim result(decryptedStream.Length - 1) As Byte

 decryptedStream.Read(result, 0, decryptedStream.Length)

 cryptStream.Close()

 Dim myutf As UTF8Encoding = New UTF8Encoding

 Return myutf.GetString(result)

 End Function

 Public Function EncryptRSA(ByVal plainText As String, ByVal key As

String) As ArrayList

 Dim rsa As New RSACryptoServiceProvider

 rsa.UseMachineKeyStore = True

 Dim EncryptedStrAsByt() As Byte

 Dim encrAl As New ArrayList

 Dim maxLimit As Integer = 58

 rsa.FromXmlString(key)

 Dim strs() As String

 If (plainText.Length > maxLimit) Then

 Dim splitText As String

97

 For counter As Integer = 0 To plainText.Length

 If (plainText.Length - counter < maxLimit) Then

 splitText = plainText.Substring(counter,

plainText.Length - counter)

 Else

 splitText = plainText.Substring(counter, maxLimit)

 End If

 EncryptedStrAsByt =

rsa.Encrypt(System.Text.Encoding.Unicode.GetBytes(splitText), False)

 encrAl.Add(EncryptedStrAsByt)

 counter = counter + (maxLimit - 1)

 Next

 Else

 EncryptedStrAsByt =

rsa.Encrypt(System.Text.Encoding.Unicode.GetBytes(plainText), False)

 encrAl.Add(EncryptedStrAsByt)

 End If

 Return encrAl

 End Function

 Public Function DecryptRSA(ByVal inputBytes() As Byte, ByVal key As

String) As Byte()

 Dim rsa As New RSACryptoServiceProvider

 rsa.UseMachineKeyStore = True

 rsa.FromXmlString(key)

 Dim DecryptedStrAsByte() As Byte = rsa.Decrypt(inputBytes,

False)

 publicKey = String.Empty

 privateKey = String.Empty

 Return DecryptedStrAsByte

 End Function

 Public Shared Function Encrypt(ByVal plainText As String, _

 ByVal passPhrase As String, _

 ByVal saltValue As String, _

 ByVal hashAlgorithm As String, _

 ByVal passwordIterations As Integer,

_

 ByVal initVector As String, _

 ByVal keySize As Integer) _

 As String

 Dim initVectorBytes As Byte() =

Encoding.ASCII.GetBytes(initVector)

 Dim saltValueBytes As Byte() =

Encoding.ASCII.GetBytes(saltValue)

 Dim plainTextBytes As Byte() =

Encoding.UTF8.GetBytes(plainText)

 Dim password As PasswordDeriveBytes = New

PasswordDeriveBytes(passPhrase, _

 saltValueBytes, _

 hashAlgorithm, _

98

 passwordIterations)

 Dim keyBytes As Byte() = password.GetBytes(keySize / 8)

 Dim symmetricKey As RijndaelManaged = New RijndaelManaged

 symmetricKey.Mode = CipherMode.CBC

 symmetricKey.Padding = PaddingMode.PKCS7

 Dim encryptor As ICryptoTransform =

symmetricKey.CreateEncryptor(keyBytes, initVectorBytes)

 Dim memoryStream As MemoryStream = New MemoryStream

 Dim cryptoStream As CryptoStream = New

CryptoStream(memoryStream, _

 encryptor, _

 CryptoStreamMode.Write)

 cryptoStream.Write(plainTextBytes, 0, plainTextBytes.Length)

 cryptoStream.FlushFinalBlock()

 Dim cipherTextBytes As Byte() = memoryStream.ToArray()

 memoryStream.Close()

 cryptoStream.Close()

 Dim cipherText As String =

Convert.ToBase64String(cipherTextBytes)

 Encrypt = cipherText

 End Function

 Public Shared Function Decrypt(ByVal cipherText As String, _

 ByVal passPhrase As String, _

 ByVal saltValue As String, _

 ByVal hashAlgorithm As String, _

 ByVal passwordIterations As Integer,

_

 ByVal initVector As String, _

 ByVal keySize As Integer) _

 As String

 Dim initVectorBytes As Byte() =

Encoding.ASCII.GetBytes(initVector)

 Dim saltValueBytes As Byte() =

Encoding.ASCII.GetBytes(saltValue)

 Dim cipherTextBytes As Byte() =

Convert.FromBase64String(cipherText)

 Dim password As PasswordDeriveBytes = New

PasswordDeriveBytes(passPhrase, _

 saltValueBytes, _

 hashAlgorithm, _

 passwordIterations)

 Dim keyBytes As Byte() = password.GetBytes(keySize / 8)

 Dim symmetricKey As RijndaelManaged = New RijndaelManaged

99

 symmetricKey.Mode = CipherMode.CBC

 symmetricKey.Padding = PaddingMode.PKCS7

 Dim decryptor As ICryptoTransform =

symmetricKey.CreateDecryptor(keyBytes, initVectorBytes)

 Dim memoryStream As MemoryStream = New

MemoryStream(cipherTextBytes)

 Dim cryptoStream As CryptoStream = New

CryptoStream(memoryStream, _

 decryptor, _

 CryptoStreamMode.Read)

 Dim plainTextBytes As Byte()

 ReDim plainTextBytes(cipherTextBytes.Length)

 Dim decryptedByteCount As Integer =

cryptoStream.Read(plainTextBytes, _

 0, _

 plainTextBytes.Length)

 memoryStream.Close()

 cryptoStream.Close()

 Dim plainText As String =

Encoding.UTF8.GetString(plainTextBytes, _

 0, _

 decryptedByteCount)

 Decrypt = plainText

 End Function

 Public Sub GetKeysForRSA(ByRef pubKey As String, ByRef priKey As

String)

 Try

 Dim rsa As New RSACryptoServiceProvider

 rsa.UseMachineKeyStore = True

 pubKey = rsa.ToXmlString(False)

 priKey = rsa.ToXmlString(True)

 rsa = Nothing

 Catch ex As Exception

 Throw ex

 End Try

 End Sub

End Class

100

References - Aimeur, E., Gambs, S., and Ho, A. (2010). Towards a privacy-enhanced social

networking site. Proceedings of ARES, 172-179.

 - Bellare, M., Boldyreva, A. and Adam O’Neill, A., (2007). Deterministic and

efficiently searchable encryption, CRYPTO ’07 Proceedings. Lecture Notes in

Computer Science, 4622, 535–552.

 - Bellovin, M. and Rescorla, K. (2005). Deploying. Deploying a new hash

algorithm. Technical Report CUCS-036-05, Dept. of Computer Science,

Columbia University.

 - Bellovin, M. and Cheswick, W. (2004). Privacy-enhanced searches using

encrypted bloom filters. Columbia University, 1-16, Technical Report CUCS-034-

07.

 - Bellovin, M. and Rescorla, K. (2007). Privacy-enhanced searches using

encrypted bloom filters, Technical Report CUCS-034-07.

 - Bonch, D. Dicrescenzo, G. (2004). Public key encryption with keyword search,

Published by Stanford University, Stanford, USA.

 - Curtmola, R., Garay, J., Kamara, S. and Ostrovsky, R. (2005). Searchable

symmetric encryption: improved definitions and efficient constructions. Published

by Department of Computer Science, Johns Hopkins University, USA.

 - Caralli, R. and Wilson, W. (2004). The challenges of security management.

Networked systems survivability program, SEI. [cited 2007 12th March] .

 - Davis, T. (2003) RSA Encryption, published by Hill, NY.

101 - Doumen, J. Brinkman, R. Feng, L. Hartel, P.H. and Jonker, W. (2004). Efficient

tree search in encrypted data. University of Twente, Enschede, the Netherlands, 1-

10.

 - Fisher, D. RSA (2010). Experts expect several ciphers to be cracked soon.

[online] available: http://threatpost.com/en_us/blogs/experts-expect-several-ciphers-

be-cracked-soon-030210 [accessed September 16, 2010] .

 - FIPs. (1995). Secure hash standard, Federal Information Processing Standards

Publication.

 - Gou, C. Zhao, R. and Diao, J. (2010). A load-balancing scheme based on bloom

filters, IEEE. Issue Date: 22-24 Jan. 2010, Future Networks, 2010. ICFN '10.

Second International Conference, 404 – 407.

 - Kammuller, F. and Kammuller, R. (2009). Enhancing privacy implementations of

database enquiries. Issue Date: 24-28 May. 2009, Venice, Mestre, Italy.

 - Kleinjung, T. Aoki, K. Franke, J. Lenstra, A. K. Thomé, E. Bos, J. W. Gaudry, P.

Kruppa, A. Montgomery, P.L. Osvik, D.A. te Riele, H. Timofeev, A.

Zimmermann, P.(2010). Factorization of a 768-bit RSA modulus.

 - Leeuw, K.M. and Jan Bergstra, J. (2007). The History of Information Security: A

Comprehensive Handbook, Elsevier Science, 251-284.

 - Li, J. Krohn, M. Mazi`eres, D. and Shasha, D. (2004). Secure untrusted data

repository (SUNDR). USENIX Association. NYU Department of Computer

Science, 1-15 .

 - Needham, R. and Schroeder, M. (1978). Using encryption for authentication in

large networks of computers, Communications of the ACM, 21(12).

102

 - Needham, R. and Schroeder, M. (1987). Authentication revisited, ACM Operating

Systems Review, 21(1).

 - Pesante, L. (2008) Introduction to information security, Carnegie Mellon

University, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA, 1-3.

 - Prince, A. (2002). Murach's Beginning Visual Basic .NET. (1st edition), Mike

Murach & Associates.

 - Rivest, R., Shamir, A. and Adleman, L. (1978). A method for obtaining digital

signatures and public-key cryptosystems. Communications of the ACM,

 21(2), 120-126. - SANS Institute, (2001). History of encryption: Version 2, published by: SANS.

 - Schneier, B. (1996). Applied cryptography: protocols, algorithms, and source

code in C, (2nd edition), NJ: John Wiley & Sons .

 - Schneier, B. (2005) Managed security monitoring: Network security for the 21st

century, NJ: John Wiley & Sons .

 - Shiraki, T. Teranishi, Y. Takeuchi, S. Harumoto, K. and Nishio, S. (2009). A

Bloom filter-based user search method based on movement records for P2P

network, IEEE, National Institute of Information and Communications

Technology, 1- 4.

 - Song, D., Wagner, D. and Perrig, A. (2000). Practical techniques for searches on

encrypted data, in Proc. 2000 IEEE Symp. On Security and Privacy (SP '00), Los

Alamitos, CA: IEEE Computer Society, 2000, 44-55.

 - Stamp, M. (2006). Information Security. NJ: John Wiley and Sons.

103 - Willis, T. (2004). Beginning VB.NET Databases. (1st edition), Wrox Press.

