

An Enhanced Steady State Genetic Algorithm
Model for Misuse Network Intrusion Detection

System

نموذج محسن للخوارزمیة الجینیة المستقرة لاكتشاف التطفل في
الشبكات الحاسوبیة

By:

Firas Mohammad Ahmad AlAbsi

Supervisor:

Prof. Reyadh Shaker Naoum

A master thesis submitted in Partial Fulfillment of the
Requirements for the Master Degree in Computer Science

Computer Science Department
Faculty of Information Technology

Middle East University

(Jul 2012)

II

III

IV

Acknowledgments

I would like to extend my sincerest thanks and appreciation to my

father and my mother, who supported me in my scientific life, and who I

will not forget their virtue all my life. And I would like to extend my

sincerest thanks and appreciation to my wife (Hala) who encouraged me

and helped me to overcome the difficulties. I also commend my daughter

who missed my time in order to finish this work. All my love to my

brothers: Hosam, Moayad, Moaath and my sister Doaa.

I Admit that this work would not being accomplished without the

effort of Prof Reyadh Shaker Naoum, who clarified the domain of this

work to me. He has the right to be kind enough to accept my sincere

respect and appreciation.

Finally, special thanks to the management of Middle East University,

which established a customized environment for learning to its students.

To whom helped me, and was with me in heart and mind: I love you.

V

شكر وتقدیر

إلى والدي ووالدتي، اللذان كانوا عمادا لي في أتقدم بجزیل الشكر والتقدیر
ا حییت، كما أتقدم بجزیل الشكر نسى فضلھما علي مأمسیرتي العلمیة، واللذان لا

لزوجتي ھالة التي شجعتني وكافحت معي وساعدتني في تذلیل الصعوبات، كما أثني
على طفلتي ریماس التي حرمتھا الكثیر من وقتي حتى أنجز ھذا العمل، وكل المحبة

 .لإخوتي حسام ومؤید ومعاذ وأختي دعاء
ھد الأستاذ الدكتور ریاض وأقر وأعترف أن ھذا العمل لم یكن لینجز بدون ج

شاكر نعوم، الذي أوضح لي معالم ھذا الطریق، فلھ الحق في أن یتقبل مني فائق
 .الاحترام والتقدیر

وفي النھایة، شكر خاص لإدارة جامعة الشرق الأوسط التي توفر بیئة تعلیمیة
 .متمیزة لطلابھا

 .إني أحبكم: وكان معي قلبا وقالبا أقول.. إلى كل من ساعدني

VI

Dedication

I dedicate this work to my father, my mother, my wife and partner of my life

(Hala), my daughter (Remas), my brothers and sister; for their love, understanding and

support. They were the light in my path. Without them nothing of this would have been

possible. Thank you for everything. I love you!

VII

Table of Contents

Authorization Statement II

Examination Committee Decision III

Acknowledgements IV

شكر وتقدیر V

Dedication VI

Table of Contents VII

List of Tables XI

List of Figures XIII

List of Equations XIII

List of Abbreviations XIV

List of Appendices XV

Abstract XVI

الملخص XVII

Chapter One: Introduction 1

1.1 Preface 1

1.2 Problem Identification 1

1.3 Contributions 2

1.4 Significance 2

1.5 Limitations 3

1.6 Thesis Outline 3

Chapter Two: Theoretical Background and Literature Review 5

2.1 Overview 5

VIII

2.2 Theoretical Background 5

2.2.1 Intrusion Detection System 5

2.2.2 Intrusion Detection System Taxonomy Elements 6

2.2.3 Intrusion Detection Evaluation 10

2.2.4 Network Attacks 11

2.3 Genetic Algorithm 13

2.4 Steady State Genetic Algorithm Elements 16

2.5 Literature Review and Related Work 23

Chapter Three: Methods and Procedures 27

3.1 Overview 27

3.2 Methodology 27

Proposed Solution Model 29

3.3 The algorithm of Steady State Genetic Algorithm 30

3.4 Proposed Model Structure 30

3.4.1 Environment 30

3.4.1.1 Training Data Set 31

3.4.1.2 Testing Data Set 31

3.4.2 Detector 31

3.4.3 Distinct Rules Database 32

3.4.4 Rules Evaluation 33

3.4.5 Stedy State Genetic Algorithm Unit 33

3.4.6 Rules Pool 34

3.4.7 Testing Classifier 35

3.5 Population 35

IX

Chapter Four: Experimental Results 39

4.1 Overview 39

4.2 KDD Cup 99 39

4.3 Selecting the most Significant Features 40

4.4 Fitness Function 43

4.4.1 Fitness Results 47

4.4.2 Discussion of Fitness Results 47

4.4.3 Comparing Strategy 48

4.4.4 Comparing Results 50

4.5 Tracing the Selection Process 50

4.5.1 Trace with Roulette Wheel Selection 52

4.5.2 Trace with Elitist Selection 53

4.5.3 Trace with Ranking Selection 54

4.5.4 Trace with Stochastic Universal Sampling Selection 56

4.5.5 Trace with Tournament Selection 57

4.6 Comparing between Selection and Crossover types 60

4.6.1 Comparing Strategy 60

4.6.2 Comparing Results and Discussion 61

4.7 The results of Detection Rate and False Positive Rate 62

4.8 Comparing thesis results with other results 63

4.9 How did this thesis achieve its objectives 64

Chapter Five: Conclusion and Future Work 65

5.1 Conclusion 65

5.2 Future Work 66

X

References 67

Appendix 71

XI

List of Tables

12 The distribution of attack types within 10% of KDD Cup 99 2.1

36 Network Data Feature Label3.1

37Selected Features with One-class Classifier. 3.2

38 Selected Features by eliminating useless features. 3.3

39 Distribution of Attacks within Training Dataset 4.1

40 Distribution of Attacks before and after filtering 4.2

41 Distribution of Attacks before and after filtering 4.3

41 Important, secondary and unimportant features 4.4

42 Distribution of Attacks before and after filtering 4.5

42 Features after removing both irrelevant features and redundant

features

4.6

42 Distribution of Attacks before and after filtering 4.7

43 Detection Rate for each attack according to four classes – First

evaluation

4.8

43 Detection Rate for each attack according to four classes – Second

evaluation

4.9

45 Similar Fitness Values 4.10

47 Real Data 4.11

50 Real Data from the Comparison System 4.12

51 ID and fitness value for U2R chromosomes 4.13

52 Generated random numbers with selected individual 4.14

53 Prepared population with RWS 4.15

54 The result of Elitist Selection 4.16

55 The values of rank and new fitness values for each record using rank

selection

4.17

56The selected individual after applying RWS over the new fitness

values

4.18

57Selected ID's and their fitness values using SUS4.19

58Selected individuals using Tournament Selection4.20

59The arrangement of ID records due to Selection type in the first 4.21

XII

generation

60 The parameters used in the system4.22

61 The choices of different selection and crossover types 4.23

63Results of system DR and FPR4.24

63Comparison with other results4.25

XIII

List of Figures

8 Network IDS vs. Host IDS 2.1

9 Misuse IDS vs. Anomaly IDS 2.2

15 Genetic Algorithm Structure 2.3

29 Enhanced SSGA Model for Misuse NIDS 3.1

List of Equations
10Detection Rate2.1

10False Positive Rate 2.2

10Precision2.3

10Recall 2.4

10Overall Accuracy2.5

18Sum Fitness2.6

18Average Fitness2.7

18Expected Fitness2.8

18Sum Expected Fitness2.9

18Random Number Generated2.10

19Fitness Function for Rank Selection 2.11

45Reward Penality Fitness Function 4.1

48The Ratio of First Fitness Value4.2

48The Ratio of Second Fitness Value4.3

49Support-Confidence Fitness Function4.4

49Equation to Check the Accurate Results4.5

XIV

List of Abbreviations

Denial Of ServiceDoS

Detection RateDR

False Positive Rate FPR

Intrusion Detection System IDS

Intrusion Detection ID

Genetic Algorithm GA

Knowledge Data Discovery KDD

Network Intrusion Detection SystemNIDS

Neural Network NN

Remote to LocalR2L

Simple Genetic AlgorithmSGA

Steady State Genetic AlgorithmSSGA

User to RootU2R

XV

List of Appendices

Code Listing 71

Code for choosing the most significant features class 71

Code for calculating A and AB 73

Code for calcularing fitness function 84

Code for using Steady State Genetic Algorithm 92

Code for testing (R2L-phf) 102

XVI

Abstract

The networks usage has been increased in the last decades. The intruders began

to do violations and abuses over the networks. This had led the researchers to do

additional researches to support Intrusion Detection Systems. The main aim of this

thesis is to build Intrusion Detection System supported by enhanced Steady State

Genetic Algorithm in order to increase Detection Rate and to decrease False Positive

Rate.

This proposed research proved Reward Penality based Fitness Function to be

used in the evaluation process. It also compared selection and crossover to choose the

best choice to implement it in a system; it was found that Stochastic Universal Sampling

Selection can be used with Uniform Crossover to produce the best results. This research

was applied Stochastic Universal Sampling Selection and Uniform Crossover as

parameters in Steady State Genetic Algorithm to be used in Network Intrusion

Detection System.

In this thesis an enhancement has been done to the algorithm by using Reward-

Penality based Fitness Function and choosing the best choice for selection and

crossover; this has affected the Misuse based Network Intrusion Detection System by

increase DR to be equal 95% and decrease FPR to be equal 0.297%.

XVII

الملخص

وبدأ المتطفلون بإحداث الانتھاكات . لقد تزاید استخدام الشبكات في القرون الماضیة

 .الأمر الذي أدى إلى إقبال الباحثین لإجراء دراسات لتقویة أنظمة التطفل. والتجاوزات في الشبكات

یة المستقرة والھدف من ھذه الرسالة ھو بناء نظام لاكتشاف التطفل مدعّم بالخوارزمیة الجین

 .المحسّنة من أجل زیادة نسبة الالتقاط الصحیح وتقلیل نسبة الالتقاط الخاطىء

ھذا البحث المقترح أثبت اقتران الصلاحیة المعتمد على الثواب والعقاب لاستخدامھ في

وأیضا قام بمقارنة الاختیار والتزاوج لاعتماد أفضل خیار لتطبیقھ في النظام، حیث . عملیة التقییم

أنھ وجد أن انتقاء العینات الشاملة التصادفیة بالإمكان استخدامھ مع التزاوج المنتظم لإعطاء أفضل

المنتظم كعوامل النتائج وقد تم في ھذا البحث استخدام انتقاء العینات الشاملة التصادفیة والتزاوج

 .للخوارزمیة الجینیة المستقرة لاستخدامھا في نظام كشف التطفل

تم تحسین الخوارزمیة الجینیة باستخدام اقتران الصلاحیة المعتمد على الةالرسھذه في

اكتشاف نظامأثر على ، ھذا العملالثواب والعقاب واختیار الخیار الأفضل للانتقاء والتزاوج

 الالتقاط الخاطىءوتقلیل معدل % 95لیصبح بزیادة معدل الالتقاط في الشبكات الحاسوبیة التطفل

%.0.297لیصبح

1

Chapter One

Introduction

1.1 Preface

Networks security has the researcher's attention because of the increase of

networks usage. Network Intrusion Detection System (NIDS) is an important issue of

network security. NIDS designed to be strong enough to ensure secure environment. It

must detect different attack types. And to keep the (NIDS) as secure as need, the system

must detect intrusions with high Detection Rate (DR) and low False Positive Rate

(FPR). Steady State Genetic Algorithm (SSGA) is one of the most important schemes

used to solve this problem.

1.2 Problem Identification

In the last two decades, computer specialists noticed the tremendous growth of

networks usage. Networks usage gives the chance to intruders to attack these networks

in somehow. The attacks led to highlight the network security. (NIDS) is one of the

main components on network security. If the (NIDS) is strong, this will increase the

trustworthy of the system and decrease the probability of system misuse and malicious

attacks. And to keep the (NIDS) as secure as the need, this thesis must escalate the

challenge against the intruders by detecting intrusions with increase Detection Rate

(DR) and decrease False Positive Rate (FPR). One of the most important and new

schemes which was used to solve this problem is Steady State Genetic Algorithm

(SSGA). This thesis tried to use enhanced Steady State Genetic Algorithm (SSGA) to

examine the (DR) and (FPR) of different network intrusions.

2

The research questions are:

- How to escalate the challenge of the intruders?

- How to give the strength and trustworthy to Misuse Network Intrusion Detection

Systems?

- How to detect intrusions with high Detection Rate and low False Positive Rate?

- Is that optimal to use SSGA in dealing with Misuse Network Intrusion Detection

Systems?

- In case of comparing the results (Misuse Based result) to other results (Anomaly

Based Result), are that the same results in detection rate?

- In case of comparing the results during changing Genetic Algorithm operator's

types, what is the most perfect type for each operator to detect intrusions

through misuse network intrusion detection system?

1.3 Contributions

The main goal of the research is to apply SSGA to detect intrusions in the network

environment under misuse analysis.

The researcher did the following:

1- Enhance the Steady State Genetic Algorithm for Misuse NIDS.

2- Use SSGA to increase DR and decrease FPR to produce new results.

3- Compare the produced results with the previous results.

1.4 Significance

The importance of the research is because it solves a new issue. It will support the

security. It will expand the results in the field of dealing with intrusions. Many of the

researchers did their researches on NIDS using anomaly analysis, but there are a few

3

researches that used GA in NIDS using misuse analysis, and this is the main reason

which gives the importance to the research.

This research may increase the strength and trustworthy of intrusion detection system

with high detection rate and low false positive rate.

1.5 Limitations

 The research will solve the problem of Network-based IDS, not host-based.

 The research will be applied on misuse-IDS only, not on anomaly.

 The systems can play many actions to deal with intrusions; these actions will be

as detection, prevention or both. The research will deal only with detection

systems.

1.6 Thesis Outline

Chapter Two: This chapter views some knowledge about Intrusion Detection System

(elements, classes of detection technologies and network attacks), Genetic Algorithm

(elements and operator types) and finally literature review and related work.

Chapter Three: Proposed model shows the stages of Intrusion Detection System, and

the elements of Steady State Genetic Algorithm. The methodology that has been

followed to find the results was discussed.

Chapter Four: This is the most important chapter because it shows in details the results

achieved such as: how the most significant features have been selected, why Reward

Penality based fitness function has been used, the results of tracing of different

4

Selection methods, the comparison of selection and crossover and the results of DR and

FPR for the Misuse Network Intrusion Detection System.

Chapter Five: In this chapter, the conclusion of thesis has been presented, and also

future work related to this thesis domain.

5

Chapter Two

Theoretical Background and Literature Review

2.1 Overview:

Intrusion Detection System (IDS) has been used to detect the unwanted threats.

IDSs are varied from one to another according to the design principals of the system.

Steady State Genetic Algorithm has many elements; each element can affect the

performance of the algorithm. This chapter will present the definition of IDS and some

knowledge about different types of IDSs. Then it will explain with examples the

elements of Steady State Genetic Algorithm. Finally it will show some related work to

the domain of this thesis.

2.2 Theoretical Background

This part will consider Intrusion Detection System and Steady State Genetic

Algorithm.

2.2.1 Intrusion Detection System

An Intrusion Detection System was defined by Information Assurance

Technology Analysis Center (IATAC), (2009) as: "Intrusion detection is the act of

detecting unwanted traffic on a network or a device. An IDS can be a piece of installed

software or a physical appliance that monitors network traffic in order to detect

unwanted activity"

It is also defined by Scarfone and Mell, (2007) as "the process of monitoring the

events occurring in a computer system or network, and analyzing them for signs of

possible incidents, which are violations or imminent threats of violation of computer

6

security policies, acceptable use policies, or standard security practices. IDS is a

software that automates the intrusion detection process".

According to the definitions, the IDS can observe the event and store the

information related to these events, or send this information to another system, such as

Security Information and Event Management System.

IDS also can help security administrators by giving an alert to notify

administrators about the events, or giving them a summarized report about those events.

(Scarfone & Mell ,2007)

Kozushko, (2003) interpreted that intrusion detection complement network

firewalls which acts as a barrier between internal network and the outside world because

of the following reasons:

1- Not all the internet accesses will be done through firewall.

2- Some of threats are originated inside the firewall

3- Firewalls are subject to attacks.

2.2.2 Intrusion Detection System Taxonomy Elements

1- Knowledge based System vs. Behavior based System:

Al-Sharafat, (2009) explained that Knowledge based Intrusion Detection

technique accumulates knowledge explicitly from specific attack and possible

vulnerabilities to exploit at different attacking attempts. The knowledge accumulated in

advance, this means that the system will have very low false alarm rates, which is one

of the most strength points for this approach.

Another strength point for knowledge based approach is that the system will

analyze the problem in order to understand it and take an appropriate action.

Nevertheless, this method has a set of drawbacks (Al-Sharafat, 2009). Firstly, to

have a good and an effective knowledge based IDS, the information must be up to date.

7

This information must be gathered after a detailed analytical process over each attack,

so there is difficulty in gathering required information. Secondly, this method may have

to face a generalization issue. Misuse IDS, sometimes called signature, is considered as

Knowledge Based IDS.

Al-Sharafat, (2009) also explained that behavior based intrusion detection

system must have the normal and the intruder behaviors. To detect the intrusion, the

system should notice the deviation between those two behaviors by comparing the

model of normal behavior with the current activity. The alarm will be generated if there

is a difference, and the behavior will be considered as intrusion.

The drawback of this method (as referred in the same reference) is about its

accuracy. This approach may have a high false-alarm rate because the learning phase

may not cover all of the entire behavior scope.

Anomaly IDS is considered as behavior base IDS.

2- Host based System vs. Network based System

In order to recognize and catch the attack, IDS can use Network based IDS or

Host based IDS. Both of them look for specific pattern which called signature to

indicate malicious activities or policy violations. If the recognition and indication are

done using IDS over network traffic, such as traffic volume, protocol usage .. etc, then it

was called Network based IDS. Whereas if they done to look for attack signatures in log

files, such as process identifier, system calls.. etc, then it was called Host based IDS.

(Das, etal., 2010)

Kozushko, (2003) mentioned that these two technologies are similar in the root

but they are different in their operational use. Network Intrusion Detection is used to

analyze network packets and examine events as information packets, so it focuses on

8

the abuse of vulnerabilities, but the detection engine in this technology cannot detect

encrypted traffic.

In other side, Host based Intrusion Detection relates to processing data that

originated in computer. This technology focuses on the abuse of privilege to examine

events related to files and applications.

Selvakani and Rajesh, (2007) showed the following figure which explained the

difference between Host and Network based IDS and the location of IDS and firewall:

Figure (2.1) Network IDS vs. Host IDS
Primary classes of Detection methodologies:

1- Misuse Detection

2- Anomaly Detection

1- Misuse detection:

In this methodology there is a signature or pattern which will be compared with

the observed events to detect the unknown threat, (Scarfone & Mell, 2007). For

example, if there is an email with subject "free picture" and an attachment its name is

"freepics.exe", this can be effectively detected, because its characteristics known as

malicious activity.

But misuse cannot be effective if the attachment file has been renamed as

"freepics2.exe", because the signature "freepics.exe" does not match the name

"freepics2.exe".

9

Misuse detection will compare the current noticed activity with a list of

signatures.

2- Anomaly Detection:

In this methodology the IDS has many profiles which describe the normal

behaviors; for example, the user profile will describe the normal behavior of the user,

when the user events occurred. The IDS will compare the user events with the definition

of what activity is normal or with the normal activity which stored in the user profile, so

that, the IDS can check if the event is normal or abnormal. (Scarfone & Mell ,2007).

Ibrahim, (2010) supported the figure below to build a good understanding about

these two methodologies.

Figure (2.2) Misuse IDS vs. Anomaly IDS

10

2.2.3 Intrusion Detection Evaluation:

Kang, Fuller and Honavar (2005) defined False Positive Rate as "a fraction of

normal data mis-identified as intrusion", and defined Detection Rate as "a fraction of the

intrusion identified". Al-Sharafat, (2009) interpreted those two definitions as the

following:

DR equation:

 (2.1)

FPR equation:

 (2.2)

Agravat, (2011) evaluated the performance of the system by finding the value of

Precision, Recall and overall accuracy as the following:

(2.3)

 (2.4)

 (2.5)

TP = True Positive

TN = True Negative

FN = False Negative

FP = False Positive

11

2.2.4 Network Attacks:

Attack types fall into the following categories:

a- Denial of Service.

b- User to Root

c- Remote to Local

d- Probing

Sung and Mukkamala, (2003) defined these Categories as:

a- Denial of Service (DoS):" is a class of attacks in which an attacker makes some

computing or memory resources too busy or too fall to handle legitimate

requests, or denies legitimate user access to a machine".

b- User to Root (U2R):" is a class of attacks in which all attacker starts out with

access to a normal user account on the system and is able to exploit vulnerability

to gain root access to the system".

c- Remote to Local (R2L):" is a class of attacks in which an attacker sends packets

to a machine over a network, but who does not have an account of that machine,

exploits some vulnerability to gain local access as a user of that machine".

d- Probing: "is a class of attacks in which an attacker scans a network of computers

to gather information or find known vulnerabilities".

Sung and Mukkamala, (2003) displayed a figure about the data distribution of each

attack type in the 10% of KDD Cup 99. The following table displays each category

12

with its types and the distribution of that type which included in 10% of KDD Cup

99.

Category Type Distribution Category Type Distribution

R2L ftp_write 0.00014 Normal normal 19.85903

guess_passwd 0.00100 DoS back 0.04199

imap 0.00022 land 0.00041

multihop 0.00013 neptune 21.88491

phf 0.00007 pod 0.00503

spy 0.00003 smurf 57.32215

warezclient 0.01944 teardrop 0.01866

warezmaster 0.00038 Probe ipsweep 0.23796

U2R buffer_overflow 0.00056 nmap 0.04415

loadmodule 0.00016 portsweep 0.19853

perl 0.00005 satan 0.30298

rootkit 0.00018

Table (2.1): The distribution of attack types within 10% of KDD Cup 99

Network Intrusion Detection System must detect these types to be effective

system and to get a trustworthy.

2.3 Genetic Algorithm (GA)

As described by Kumar, Husian, Upreti and Gupta, (2010), GA which

introduced by John Holland in the early 1970's, is a probabilistic search algorithm based

on the natural genetic action mechanism, and it is an adaptive heuristic search method

based on population genetics, this method is used in computing to find optimal solutions

for complex problems and to find exact or approximate solutions for optimization and

13

searching problems. GA's are also described as a particular class of evolutionary

algorithms that use techniques inspired by evolution such as selection, crossover and

mutation.

A Chromosome has many genes. Each gene has a locus and alleles; it may be

phenotype or genotype.

The explanation of the above statement is: the chromosome is a solution; the

chromosome has a lot of genes, which are parts of solution. Each gene has Locus

(position of gene) and Alleles (values of gene). Phenotype is a decoded solution

whereas Genotype is an encoded solution.

Why Genetic Algorithm was used in search and optimization?

Deb, (1998) discussed the idea of using GA in search and optimization. He

explained that there are two groups of traditional search and optimization methods.

Those are direct which uses objective function and constraints to guide the search

strategy. But the problem with this method is: it is slow and it needs many functions

evaluation for convergence.

The second group of traditional search and optimization is gradient-based

method which uses the first and second-order derivations of the objective function,

and/or constraints to guide this search process.

It quickly converges to an optimal solutions, but still not efficient in

discontinuous problems. For this, GAs are used to pass a mentioned problem, moreover

using GAs supports convergence to an optimal solution. It is efficient to solve different

problems, and it is efficient to handle problems having discrete variables.

The effectiveness of using GA in problem solving depends on many factors.

Chinneck, (2006), the first one is the quality of the initial population, which is generated

14

randomly with low quality but it is better if GA is provided with high quality

population.

The second factor depends on the selection of Fitness Function. The third factor

is individual's representation, and the last is the GA parameters.

Adewumi, (2010) explained that among the evolutionary algorithms, GA's are

the most successful because of its unique characteristics, these characteristics include:

1- Parallelism.

2- Derivative-free nature.

3- Ability to explore large solution space.

4- Ability to handle complex fitness landscape and deal with multi-objective

problems.

5- Ability to handle noisy function and escape from local optima and the best of all.

6- Ability to handle large but poorly understood search space.

These are the reasons which make the success of GA as evolutionary algorithms, and

make the success of GA in problem solving.

Chinneck, (2006) put the whole process of GA together as the following steps:

Step 0: Specify the algorithm by choosing the population size n and mutation rate;

choosing operators and determining the stopping condition.

Step 1: Generate an initial population randomly, and calculate the Fitness Function for

each string.

Step 2: Apply the reproduction operator on the current population to generate a mating

pool of size n.

Step 3: Apply the crossover operator on the strings in the mating pool to generate a

tentative new population of size n.

15

Step 4: Apply mutation operator on the new population to create the final new

population. Calculate the fitness values of the solution strings in the new population.

Step 5: Exit with the best solution if the stopping condition is met, otherwise go to step 2.

To clarify the process, Selvakani and Rajesh, (2007) showed the following

Genetic Algorithm structure:

Figure (2.3): Genetic Algorithm Structure

The figure above shows us the steps of Simple Genetic Algorithm, but this thesis

will focus on Steady State Genetic Algorithm. Richter, (2010) explained the process

steps of SSGA in his dissertation as the following:

1 Select the s(n) individuals of the initial population independently and

randomly.

2 With probability pc(n) go to step 3' and with the remaining

probability of 1-pc(n) go to step 3''. Steps 3' and 3'' are mutually

exclusive.

3 3') Choose two parents x and y from the current population. Let z*

be the result of uniform crossover applied on x and y and let z be the

result of mutation applied on z*.

3") Choose one parent x from the current population. Let z be the

result of mutation applied on x.

16

4 If the fitness of z is smaller than the fitness of the worst individual of

the current population, go to step 2. Otherwise, add z to the

population. Let W be the multi-set of individuals in the enlarged

population which all have the worst fitness and let W' be the set of

those individuals in W which have the largest number of copies in W.

Eliminate randomly one element in W from the current population.

Go to step 2.

2.4 Steady State Genetic Algorithm (SSGA) elements:

- Population

Cleary, (2011) described the population as a result of single iteration of Genetic

Algorithm. Iteration can create a new population. Population contains a set of

chromosomes; each chromosome is one complete possible solution to the problem to be

solved using Genetic Algorithm. It will concatenate each problem parameters as binary

encoding genes into a single binary string.

Kumar, Husian, Upreti and Gupta, (2010) explained that to generate an initial

population, many individual solutions are generated randomly; the nature of the

problem will determine the population size to cover the range of possible solutions.

Deb, (1998) mentioned that there is a specific performance is measured versus

the population size:

 In very small population size, you need more generations to find optimal

solutions.

 In moderate population size, GA's operators start to get adequate

population members; GA here begins to improve with an increase in the

population size.

17

 In Adequate population size, it is adequate to allow necessary scheme

processing and GA performs successfully.

 In very large population size, GA is only allowed to run for a small

number of generations, the performance begins to reduce.

- Evaluation

For each chromosome there is a Fitness Function used to evaluate the fitness of

each chromosome. Fitness's value reflects the quality of each chromosome.

- Encoding

The gene is a problem parameter; it can be encoded as a binary, integer, or real

number. Cleary, (2011) preferred to use the gene as binary string; he described encoding

using integer parameter as trivial encoding. If the parameter defined as enumerated

type, then the encoding must deal with the situations of the parameter value within its

enumeration. If the parameter defined as float or real number, the developed linear

equation will map the range of floating point values with a range of integer range. So a

parameter is an integer binary string in the genetic representation.

- Selection

It is the process of selecting the chromosomes to apply Genetic Algorithm.

Types of selection are:

o Roulette Wheel Selection (RWS): The chance of a chromosome being

selected is proportional to its fitness value. This can be work as in the

following steps:

Step 1: Find the fitness value (fv) for each chromosome in the population

using Fitness Function.

Step 2: Calculate sum fitness (Sf) for all chromosomes in the population:

18

 (2.6)

Step 3: Calculate average fitness (Af) in the population:

 (2.7)

Step 4: Find expected fitness (Ef) for each chromosome in the population:

 (2.8)

Step 5: Calculate sum expected fitness (SumEf) for all the chromosomes in

the population:

 (2.9)

Step 6: Generate random number (G) in the range [0,SumEf]

 (2.10)

Step 7: Select the chromosome that added its fitness value to the previous

chromosomes fitness value's to make (SumEf > = G).

Step 8: Redo n times from step 6, where n = population size.

o Elitism Selection:

The idea here is to arrange the chromosomes in the decreasing order

according to theirs fitness values. Then apply the selection with each two

chromosomes in the arranged set. In this way, Genetic Algorithm will be

applied between strong chromosomes or between weak chromosomes.

This mean there is no chance to apply Genetic Algorithm between weak

and strong chromosomes.

o Rank Selection: The rank values can be distributed through the set of

chromosomes according to theirs fitness values, after that the new fitness

19

values can be calculated using another Fitness Function. Finally the

Roulette Wheel can be used to choose the selected chromosomes. This can

be work as in the following steps:

Step 1: Arrange the chromosomes in decreasing order according to their's

fitness values.

Step 2: Assign a rank value to each chromosome according to its

arrangement in the set.

Step 3: Calculate the new fitness value for each chromosome using the

following equation (Schmidt & Stidsen, 1997):

 (2.11)

Where 1<max<=2 & min = 2-max

o Stochastic Universal Sampling (SUS): instead of spinning the Roulette

Wheel n times as described in Roulette Wheel Selection, in this technique

one can spin the Roulette Wheel just once but after determining n points in

the wheel. Then choose chromosomes that situated in front of determined

points.

o Binary Tournament Selection: for n times do the following:

 Choose two chromosomes randomly.

 Select the chromosome with the highest fitness value.

- GA operator: Crossover

This process is used to interchange genes between chromosomes to create

offsprings. Types of crossover are:

o Single Point

Step 1: randomly selects the Crossover point within a chromosome.

20

Step 2: interchange the two parent chromosomes at this point to produce

two new offspring's.

Ex: Parent 1: 10010|000

 Parent 2: 00101|101

After Crossover:

 Offspring 1: 10010|101

 Offspring 2: 00101|000

o Two Points

Step 1: randomly selects two points.

Step 2: interchange the two parent chromosomes between these points.

Ex: Parent 1: 100|100|00

 Parent 2: 001|011|01

After Crossover:

 Offspring 1: 100|011|00

 Offspring 2: 001|100|01

o Uniform

According to some probability, Crossover will decide which parent will

contribute each of the gene values in the offspring chromosome.

Ex: Parent 1: 10010000

 Parent 2: 00101101

If mixing ratio is equal to 0.5 this means 50% of genes in the offspring

will come from parent 1 and the other will come from parent 2.

 Offspring 1: 1102121112010112

 Offspring 2: 0201010201120201

21

- GA operator: Mutation

 This process will change the value of one gene of the chromosome.

Types of Mutation are:

o Flip bit (Used for binary represented genes)

Step 1: Choose one gene randomly.

Step 2: Flip the value of the chosen gene.

o Boundary (Used for integer and float represented genes)

Step 1: Choose one gene randomly

Step 2: Replace the value of the gene with the upper or the lower value.

Ex: the following chromosome:

2.5,1.0,3.7,4.2,5.1,7.6,4.4,2.9

When the bit mutated to the upper boundary:

2.5,1.0,3.7,4.2,6.0,7.6,4.4,2.9

o Uniform (Used for integer and float representation)

Step 1: Choose a gene.

Step 2: Replace the value of a chosen gene with a uniform random value

selected between the user specified upper and lower bounds for that

gene.

Ex: Chromosome:

2.5,1.0,3.7,4.2,5.1,7.6,4.4,2.9

The value must be in the range (1.0,8.0)

5.1 randomly changed to 6.7

The new chromosome will be:

2.5,1.0,3.7,4.2,6.7,7.6,4.4,2.9

22

- Replacement

This process will compare between several chromosomes to choose the best.

Types of Replacement are:

o Binary Tournament:

It will take two chromosomes and according to their fitness values it will

choose the best of them.

o Triple Tournament:

It will replace the worst two chromosomes between three chromosomes by the

chromosome with the highest fitness value.

- Stopping Criteria

Starting with an initial population, the evolution process is repeated until the

satisfaction of the end condition.

Kumar, Husian, Upreti and Gupta (2010) mentioned common terminating

conditions such as:

 The found solution satisfies minimum criteria.

 A fixed number of generations reached.

 Allocating budget (ex: time, money) reached.

 Successive iterations no longer produce better results.

As mentioned before, the process will continue until satisfaction of the end

condition, but in some cases according to Chinneck, (2006), it is better to stop the

process in case of very little change between generations; this means that the worst

solution string fitness in the population has not changed for several generations.

23

In this case, look to the both populations together (the last and current-generated

populations).Select the best solution between these populations and consider it as a final

new population.

Using machine learning, the hidden patterns can be explored among growing

data, so that the computers can program themselves. Machine learning can be used to

support the rules in the rules pool.

- GA application

There are many Applications used to apply GA. Kumar, Husian, Upreti and

Gupta, (2010) described some applications of GA in problem solving. The following are

two of them:

1- Sensor based robot path planning:

Using GA to generate a short and safe path to goal with obstacle avoidance, the

paths are a sequence of control vectors of orientation. The path represented as a set of

orientation vectors with equal distance. The final path is the composition of polygonal

lines.

2- Gaming

There is a large structure of possible traits for the game (aggressiveness,

probability of running away.. etc). Those possible traits can be created and then Genetic

Algorithm can be used to find the best combination of these structures to beat the

player.

2.5 Literature Review and Related Work

Diaz-Gomez and Hougen, (2007) presented an iterative process for doing

Misuse Detection and compared the results with Genetic Misuse Detection. They found

24

that if the number of individuals in the GA's population is changed (keeping other

parameter the same), then the GA's False Negative percentage becomes better.

Selvakani and Rajesh, (2007) performed GA-based approach for Network

Misuse Detection. They utilized a technique for creating rules for R2L and DoS attacks.

They used KDD Cup 99 data set to find the probability of Detection and they found the

overall performance = 59% Detection Rate and False Alarm Rate = 0.1 %. They used

GA-based approach for Network Misuse Detection in order to frame the rules needed.

Ghali, (2009) proposed a new hybrid algorithm called Rough Set Neural

Network Algorithm (RSNNA). To reduce the number of computer resources required to

detect an attack. The algorithm used Rough Set theory to select features, and used NN

to identify the kind of attack. They used KDD-99 in testing. The result showed that the

model was able to select features resulting in 83% data reduction and 85%-90% time

reduction and 90% reduction in error in detecting a new attack.

She tested her model on Anomaly NID, and did not test it on Misuse as this

research did.

Stewart, (2009) modified GA and NN in order to propose a new GA and NN

combination to be capable of tuning not only the weighting of a NN, but also its size

and connectivity. The improved GA was reduced user interface, and improved

acceptance probability. He used modified Genetic Algorithm and got 75.25 DR and

3.412 FPR, he also improved GA and got 79.672 DR and 2.69 FPR.

Al-Sharafat and Naoum, (2009) used SSGA to detect intrusions in Anomaly

based NIDS. They modified a new Fitness Function and used it in a Genetic Algorithm,

and they used a Genetic Algorithm as engine and got the following results: (DoS:

25

97.6%) ,(Probe: 37.7%) ,(U2R: 28.8%) and (R2L: 83.9%). But they didn't use genetic

algorithm in misuse detection.

Khan, (2011) showed that GA can be used for formulating decision rules in

Intrusion Detection System. His research was done just over DoS and Probe, but this

thesis done over four types of attack. In addition, he used 10000 records for training and

2000 iteration, but this thesis used 50000 records for training and less than 50 iterations.

Agravat and Rao, (2011) described two objectives of fuzzy Genetic-based

learning algorithms and discussed its usage to detect intrusion in a computer network.

The objectives are to minimize the number of fuzzy rules and to maximize the

classification rate, they used the fuzzy Genetic Algorithm for Misuse Detection to be

evaluated and tested over KDD Cup 99 dataset. They used 10% labeled data for training

and testing of the GA, they used 20 attributes of 41 from KDD Cup 99, and they used

the following parameters:

The number of elite solutions = 20 %

The Crossover probability = 0.9

The Mutation probability = 0.1

The number of generation = 50

The results after testing are with Precision = 0.9979, Recall = 1, Accuracy = 0.985

Uppalaiah, Anand, Narsimha, Swaraj & Bharat, (2012) presented Genetic

Algorithm to identify various attack type of connection. They trained the Genetic

Algorithm on the KDD Cup 99 dataset to be used with Intrusion Detection System. The

average Detection Rate was 83.65, but this thesis got better results.

Naoum, Abed & Al-sultani, (2012) classified intrusions using an Enhanced

Resilience Back Propagation Neural Network. They got 94.7% average Detection Rate,

26

and 15.7 % False Positive Rate. But this thesis used Genetic Algorithm instead of

Resilience Back Propagation Neural Network, and got better results.

Hoque, Abdul Mukit & Bikas, (2012) presented an Intrusion Detection System

by applying Genetic Algorithm to detect various types of network intrusions. They got

the following Detection Rate results (Probe: 71.1%), (DoS: 99.4%), (U2R: 18.9%) and

(R2L: 5.4%), but in this thesis we got new results.

27

Chapter Three

Methods and Procedures

3.1 Overview

This chapter will explain how to apply the system and how to get the results. It

will display the proposed model and explain the model details.

3.2 Methodology:

This thesis examines the enhanced Steady State Genetic Algorithm (SSGA) for

Network Intrusion Detection System (NIDS), and evaluates the system strength and

trustworthy by calculating the system Detection Rate (DR) and False Positive Rate

(FPR).

The relevant data has been collected from KDD Cup 99. The system uses two

datasets; training dataset which is 5% of KDD Cup 99 and testing dataset which is 1%

of KDD Cup 99.

Training data has been received and distinguished as condition part that holds

the features values, and action part that holds the label of the attack.

A comparison has been done to determine the best features, then the rules have

been filtered and stored in rules database.

Reward Penality based Fitness Function has been developed and used as an

element of (SSGA) to evaluate the rule.

Using (SSGA) a comparison has been done between several Selection methods

and several Crossover types, to be combined together and used in SSGA to perform

better.

28

The resulted rules after using (SSGA) will be stored in the rules pool, to be used

at the next step to examine the testing dataset.

Finally, to evaluate the system; two values must be calculated, Detection Rate

(DR) and False Positive Rate (FPR). The strong system must have high Detection Rate

(DR) and low False Positive Rate (FPR).

29

Proposed Solution Model

The following figure displays Proposed Solution Model.

Figure (3.1)

Enhanced Steady State Genetic Algorithm Model for Misuse Network Intrusion

Detection System

30

3.3 The algorithm of Steady State Genetic Algorithm

Start a new Generation:

Step (1): Determine a population size.

Step (2): Represent data using real representation.

For each population in the rule pool, do:

Step (3): Select the chromosome using Stochastic Universal Sampling Selection.

Step (4): Apply Uniform Crossover.

Step (5): Apply Flip Bit Mutation.

Step (6): Evaluate the chromosome using Reward Penality Fitness Function.

Step (7): Apply Binary Tournament Replacement.

Step (8): Save the created rules in the Rules Pool.

Step (9): Go to the next population.

Step (10): Check the stop criteria, if not satisfied then go to start a new Generation.

3.4 Proposed Model Structure

The structure of the proposed model is described as the following:

3.4.1 Environment:

It is the KDD Cup 99 dataset, it has 4,940,210 records, and each record has 41

features in addition to the feature number 42 which determines the type of the attack.

Each feature determined a value; some features have a binary value, and other features

have a real value. But it is possible for such features to hold values represented as

string.

The combination of feature values for 41 features will determine an instance of

attack as it is in the feature 42.

From the environment, the researcher can get a subset as a training dataset and

another subset as a testing dataset.

31

3.4.1.1 Training Data set:

Using the training data set, the system began to receive data that helps in rules

creation in order to support decision making to decide if the received record is normal

or attack. The data of training data set came from KDD Cup 99. This thesis used

250000 records as training data set.

3.4.1.2 Testing Data set:

Using the testing data set, the system began to receive data that helps in

evaluating the system task; the data set helped the system in examining the matching

between unlabeled records and the rules stored in Rule Pool, the environment of testing

data set came from KDD Cup 99. This thesis used 50000 records as testing data set.

3.4.2 Detector:

The main task of detector is to classify the data by receiving the message and

determining the condition and action parts of the rule. The detector should also filter the

message from redundancy and deal with the most significant features. The parts of the

detector will be discussed below.

The first part of the detector is the message receiver which has received the

message that came from the training dataset.

The second part of the detector is to represent the message using real

representation. Someone may ask that the representation is a part of Genetic Algorithm,

but why does the researcher include the representation in the detector?

Logically, the answer is that the representation element is correct to be anywhere

before the selection element, but after receiving message. In addition to that, it is

important to represent the message here to create the rule as a chromosome in order to

use the most significant features as will be explained below.

32

The values of the most significant features selected in this research are varied

between binary numbers and real numbers, so the real representation is preferred,

because it includes both types; binary and real type.

The third part of the detector has to determine the condition part of the rule. The

condition part of the rule has a collection of values related to collection of features.

Those values of that features made the condition to cause such attack.

The fourth part has to make a relation between the condition values and type of

attack to keep in consideration that if those features have those values then the type of

attack will be as it is in the feature number 42. So the Misuse Network Intrusion

Detection System should save such facts in the system during training period to use it

during testing period, in order to detect the intrusions.

The fifth part of the detector is to represent a rule with the most significant

features. Comparing 41 features of testing data set records with 41 features of training

data set records is a time consuming process. So there are many researches to answer

the question: What are the most significant features that sufficient to recognize the

attack?

This research collected some of those researches and represented the condition

action rule according to the researches results. After representing the rules it is easy to

determine the best features to prepare the rules to enter the sixth part of detector, which

is responsible for filtering the rule with the best features.

3.4.3 Distinct Rules Database:

This database has the same data stored in training data set, but the data had the

following operations done over it:

1- Classifying to the 5 classes (Normal, DoS, Probe, R2L and U2R).

2- Creating the rules as Condition-Action form.

33

3- Filtering the rules with the best significant features.

4- Removing the redundant rules from the rules database

3.4.4 Rules Evaluation:

As an element of Genetic Algorithm, the chromosome evaluated previously in

order to be prepared to the selection process. The evaluation process had been done

using Reward-Penality based Fitness Function.

3.4.5 Steady State Genetic Algorithm Unit:

This part is responsible for creating new rules.

Evaluation:

Using Reward Penality Fitness Function as proposed by

(Alabsi and Naoum, 2012), each chromosome will be

evaluated, in order to be selected in the selection stage.

Selection:

The research will use Stochastic Universal Sampling

Selection, because it gets best results when it is used with

Uniform Crossover as it will be explained in chapter 4.

Crossover:

At this stage, Uniform Crossover will be used by selecting

random points within a chromosome and interchange the

two parent chromosomes at these points to produce two

new offsprings. As explained in chapter 4; Uniform

Crossover got the best results when used after Stochastic

Universal Sampling Selection.

Mutation:

34

If the feature value is discreate value, then Mutation will

use flip bit by choosing a random gene then flip the value

of a chosen gene; if the gene is equal to 0 then it will be

equal to 1 else it will be equal to 0. Otherwise, if the

feature value is continuous, the new value will be equal to

a random number of specific ranges.

Apply Evaluation:

Evaluations of each chromosome using Reward Penality

Fitness Function as described in chapter 4. But this stage

helps in evaluation of generated chromosomes. And also

helps in applying Replacement.

Apply Replacement:

Apply the Replacement process using Binary

Tournament.

Check the Stop Criteria:

Checking the stop criteria can be done by searching about

an answer for the question: Are there any additional rules

to be produced? If the answer is yes, then the Genetic

Algorithm applied additional generation, otherwise, the

Genetic Algorithm will be stopped.

3.4.6 Rules Pool:

It contains many rules gathered from training phase and SSGA Process in order

to use it in the testing phase.

35

3.4.7 Testing Classifier (Matching):

In this phase the proposed model will try to match the received packet with the

existent rules in order to distinguish the data and discover the intrusions to be alerted.

3.5 Population: The Data set (KDD Cup 99):

Mukkamala, Sung and Abraham, (2004) mentioned that: "In 1998 DARBA

Intrusion Detective program acquired raw TCP/IP dump data for network by simulating

a typical U.S. Air Force LAN. The LAN blasted with multiple attacks, for each TCP/IP

connection, 41 various quantitative and qualitative features were extracted".

KDD'99 features can be classified into three groups, (Tavallaee, Bagheri & Ghorbani,

2009):

 Basic features: are all the attributes that can be extracted from a TCP/IP

connection.

 Traffic features: include features that are computed with respect to a window

interval.

 Content features: include features used to look for suspicious behavior in the

data portion e.g., number of failed login attempt.

KDD Cup 99 described as the most widely used data set in the field of IDSs

evaluation, so this research will use it as an environment for training and testing, the

proposed model will use a sample of 5% of the whole environment.

System Evaluation:

The evaluation of proposed model will be determined by the Detection Rate

(DR) and False Positive Rate (FPR), in this sense; the results can be compared with

others.

Feature Classes:

 Attack types fall into the following categories (Mukkamala, & Sung, 2003):

36

a- Denial of Service.

b- User to Root

c- Remote to Local

d- Probing

To identify each type of attack, the feature issue must be taken in consideration.

Ghali, (2009) listed the 41 network features and their labels, those labels used

for easier referencing as the following:

Label Network Data
Features

Label Network Data Features Label Network Data Features

A Duration O Su_attempted AC Same_srv_rate
B Protocol-Type P Num_root AD Diff_srv_rate
C Service Q Num_file_creations AE Srv_diff_host_rate
D Flag R Num_shells AF Dst_host_count
E Sec_Byte S Num_access_files AG Dst_host_srv_count
F Dst_Byte T Num_Cutbounds_cmds AH Dst_host_same_srv_rate
G Land U Is_host_login AI Dsv_host_diff_srv_rate
H Wrong_fragment V Is_guest_login AJ Dst_host_same_src_port_rate
I Urgent W Cont AK Dst_host_srv_diff_host_rate
J Hot Z Sev_count AL Dst_host_server_rate
K Num_failed_login Y Serror_rate AM Dst_host_srv_serror_rate
L Logged_in X Sev_serror_rate AN Dst_host_rerror_rate
M Num_comprised AA Rerror_rate AO Dst_host_srv_rerror_rate
N Root_shell AB Srv_rerror_rate

Table (3.1): Network Data Feature Label

Zainal, Maarof, Shamsuddin, and Abraham, (2008), proposed an ensemble of

one-class classifier, the classifier deployed three techniques which are: Linear Genetic

Programming (LGP), Adaptive Neural Fuzzy Inference System (ANFIS) and Random

Forest (RF).

They addressed the issue of accuracy and false alarm rate to select the relevant

significant features. They addressed the issue by reducing the input features in order to

disclose the hidden significant features; they used the following features for each attack:

37

Attack Features

Normal f12, f31, f32, f33, f35, f36, f37, f41

Probe f2, f3, f23, f34, f36, f40

DoS f5, f10, f24, f29, f33, f34, f38, f40

U2R f3, f4, f6, f14, f17, f22

R2L f3, f4, f10, f23, f33, f36

 Table (3.2): Selected Features with One-class Classifier

The ensemble model gets results more accurate, more true positive and less

false positive than LGP, ANFIS or Random Forest. In their paper they demonstrated

that the ensemble of different learning paradigms can improve the detection accuracy.

Mukkamala and Sung, (2003) described the features as important, secondary and

unimportant features, based on some tested rules, they classified the input nodes to 5

classes, each class contains three categories {important}, <Secondary>, (unimportant).

Class 1:

{1,3,5,6,8-10,14,15,17,20-23,25-29,33,35,36,38,39,41}

<2,4,7,11,12,16,18,19,24,30,31,34,37,40> (13,32)

Class 2:

{3,5,6,23,24,32,33} <1,4,7-9,12-19,21,22,25-28,34-41> (2,10,11,20,29,30,31,36,37)

Class 3:

{1,3,5,6,8,19,23-28,32,33,35,36,38-41} <2,7,9-11,14,17,20,22,29,30,34,37>

(4,12,13,15,16,18,19,21,3)

Class 4:

{5,6,15,16,18,32,33} <7,8,11,13,17,19-24,26,30,36-39>

(9,10,12,14,27,29,31,34,35,40,41)

 Class 5:

{3,5,6,24,32,33} <2,4,7-23,26-31,34-41> (1,20,25,38)

38

These classified features will help the work in selecting feature step in the

detecting phase.

Mukkamala, Sung and Abraham (2004), tried to eliminate the useless features to

enhance the accuracy of detection while speeding up the process of computation. One

can use empirical methods to test all possibilities by taking two features at a time, then

three features at a time and so on until they got the significant features, but here, they

tried to remove one feature each time and tried empirical methods, so they got the

following results:

Attack Features

Normal F5, F6, F10, F13, F40

Probe F3, F12, F27, F31, F35

DoS F7, F8, F12, F13, F23

U2R F14, F17, F25, F36, F38

R2L F6, F11, F12, F19, F22

Table (3.3): Selected Features by eliminating useless features.

However, this research found that the research of Mukkamala, Sung and

Abraham (2004) has given acceptable results so it is adopted to be used in the stage of

representing rules with the most significant features.

39

Chapter Four

Experimental Results

4.1 Overview

Network Intrusion Detection System has been built. The system has been

supported by Steady State Genetic Algorithm. There are many results which have

appeared through the system execution. In this chapter these experimental results has

been shown.

4.2 KDD Cup 99

The whole data of KDD Cup 99 is 4940210 records. On the KDD official

website the whole data is available, but this research used 5% of the whole data as

training dataset. The researcher uses 250000 records as training dataset, and other

50000 records as testing dataset. The following table shows the distribution of the

attacks through the training dataset:

Attack No. Of Rows Percentage

Normal 71225 28.49 %

DoS 174302 69,72 %

R2L 1125 0.45 %

U2R 29 0.0116 %

Probe 3319 1.3276 %

Total 250000 100 %

 Table (4.1): Distribution of Attacks within Training Dataset

40

The training dataset used to support the system about the knowledge related to

the attacks, whereas the testing dataset used to be tested and to evaluate the system itself

by evaluating the Detection Rate and False Positive Rate.

4.3 Selecting the most Significant Features

The KDD Cup 99 dataset contains a huge number of records, each of which has

41 features plus one attribute has a name of the attack to be used as a labeled record. To

judge that the record of testing dataset belongs to specific category of attack, the tested

record must be the same in features values as at least one of the training dataset record.

The process of comparing a record of testing a dataset with the whole data in the

training dataset using 41 features will have resources and time consuming. To solve this

problem, there are many researches related to selecting the most significant features, the

result of 4 researches in this domain was used and compared to find the best research

that may serve the research in this thesis.

Mukkamala, Sung and Abraham, (2004) selected the most significant features

by eliminating useless features. They determined the selected features as explained in

the Table (3.3). Using their results, the data has been filtered and got the number of

records as shown in Table (4.2).

Attack No. of records before filtering No. of records after filtering

Normal 71225 46952

DoS 174302 542

Probe 3319 448

R2L 1125 68

U2R 29 16

Table (4.2) Distribution of Attacks before and after filtering [Mukkamala, Sung and Abraham (2004)]

41

Zainal, Maarof, Shamsuddin, and Abraham, (2008) selected the most significant

features by using one-class classifier; the classifier deployed three techniques which are:

Linear Genetic Programming (LGP), Adaptive Neural Fuzzy Inference System (ANFIS)

and Random Forest (RF). They determined the selected features as determined in the

Table (3.2). The data has been filtered as their results to get the number of records as

shown in the Table (4.3).

Table (4.3) Distribution of Attacks before and after filtering [Zainal, Maarof, Shamsuddin, and Abraham, (2008)]

Mukkamala and Sung, (2003) selected the most significant features after

describing the features as important, secondary and unimportant. They determined the

selected features as explained in the following table:

Attack Important Features

DoS 1,5,6,23,24,25,26,32,36,38,39

Probe 1,2,3,4,5,6,23,24,29,32,33

U2R 1,2,3,5,6,12,23,24,32,33

R2L 1,3,5,6,32,33

Normal 1,2,3,4,5,6,10,12,17,23,24,27,28,29,31,32,33,34,36,39

Table (4.4): Important, secondary and unimportant features [Mukkamala and sung (2003)].

The data has been filtered as their results to get the number of records as shown

in the Table (4.5).

Attack No. of records before filtering No. of records after filtering

Normal 71225 30748

DoS 174302 2521

Probe 3319 769

R2L 1125 479

U2R 29 28

42

Attack No. of records before filtering No. of records after filtering

Normal 71225 67405

DoS 174302 5892

Probe 3319 1130

R2L 1125 864

U2R 29 29

Table (4.5) Distribution of Attacks before and after filtering [Mukkamala and sung (2003)]

Chou, Yen, and Luo, (2008) selected the most significant features by using an

algorithm to remove irrelevant features and redundant features. They determined the

selected features as shown in the following table

Attack Important Features

DoS 1,2,3,4,5,6,12,23,24,31,32,37

Probe 1,2,3,4,12,16,25,27,28,29,30,40

U2R 1,2,3,10,16

R2L 1,2,3,4,5,10,22

Table (4.6): Features after removing both irrelevant and

redundant features [Chou, Yen, and Luo(2008)]

The data has been filtered as their results to get the number of records as shown below (4.7).

Table (4.7) Distribution of Attacks before and after filtering [Chou, Yen, and Luo(2008)]

Attack No. of records before filtering No. of records after filtering

Normal 71225 ------------

DoS 174302 7642

Probe 3319 1092

R2L 1125 319

U2R 29 22

43

To determine exactly the most significant features that may be helpful in this

research, two sub datasets were chosen from the testing dataset. Each one contains 5000

records. Those sub datasets were tested and got the following results.

Attack No. of records Class 1 Class 2 Class 3 Class 4

DoS 1800 100% 0.1% 0.1% 0.3%

Probe 11 91% 91% 0% 91%

U2R 6 83% 33% 0% 66%

R2L 1 100% 0% 0% 0%

Normal 3183 18% 40% 13% ------

Table (4.8) Detection Rate for each attack according to four classes – First evaluation

Attack No. of records Class 1 Class 2 Class 3 Class 4

DoS 3400 100% 0.06% 0.2% 0.6%

Probe 76 97% 97% 96% 97%

U2R 0 ------ ------ ------ ------

R2L 0 ------ ------ ------ ------

Normal 1525 13.5% 36% 1% ------

Table (4.9) Detection Rate for each attack according to four classes – Second evaluation

Due to the mentioned tables it's clear that the results of class 1 are the best

results and may be helpful to obtain good results in the final stage of this research.

Hence, the most significant features according to class 1 will be selected.

4.4 Fitness Function

Intrusion Detection System was used to protect the system against malicious

activities. Steady State Genetic Algorithms were applied to support Intrusion Detection

44

Systems. Steady State Genetic Algorithm can't be done without the selection process

which depends mainly on fitness value that obtained using Fitness Function.

But, chromosomes vary in their strength and weakness. Hence, Fitness Function

must take two points in its consideration:

 First: the reward must be as more as the chromosome's strength.

 Second: the Penality must be as more as the chromosome's weakness.

Hence, this research suggested Reward-Penality based Fitness Function.

The data of 5% of KDD Cup 99 was classified into 5 main categories; Normal,

DoS, Probe, U2R and R2L. Each category record was compared to the whole data.

After classification stage, there are 5 tables, each table for just one category, each table

has got a name as the category type and it has included 8 columns as the following: id

Column, 5 columns to have 5 features, and other two columns to hold A and AB values.

To understand the reason of creating column A, and column AB, suppose there

are 5 features for DoS category, each feature's value should be in a specific range or

equal to a specific value in order to evaluate the record as DoS, but in such cases, the

five features got the same values as a record in DoS but still not DoS because of a

specific value of one or more of the hidden features.

Suppose that the features' values are a condition part and the category's name is

an action, then for each record compared with the whole 5% of CDDCup99, if the

condition and action of the selected record equal to the condition and action of the

Compared record, then this will increase the value of column AB of the selected record

by 1. Else, if the condition of the selected record is equal to the condition of the

45

compared record but the actions of both records don't meet each other, then the value of

column A of the selected record will increase by one.

The new fitness function will depend mainly on the values of A and AB, the

formula of the function is as the following:

 (4.1)
Where:

X = the maximum value of AB in the population.

Y = the maximum value of A in the population.

Now, let us discuss the content of the function:

(AB/(AB+A)) gives the rate of the AB value in proportion to the sum of AB and A

values, the resulted value will reflect the strength of the record.

(A/(AB+A)) gives the rate of the A value in proportion to the sum of AB and A

values, the resulted value will reflect the weakness of the record.

To obtain the importance and strength of the record, one can subtract the

weakness value from the strength value by calculating ((AB-A)/(AB+A)) as in the

function above.

Now, suppose that there are two records with the following values:

Record A AB Fitness = ((AB-A)/(AB+A))
Rec1 0 1 1
Rec2 0 5 1

Table (4.10) : Similar Fitness Values

But, in such cases the resulted value will not be accurate because it will deal

with record1 and record2 as the same strength, whereas it is clear that record2 is

stronger than record1 because of the value of AB, so the function should be supported

with other positive and negative values to apply policy of Reward and Penality to the

records as following:

46

AB/X: gives the rate which reflects the strength of the record depending on the

strongest record in the population, the resulted value will be equal to Zero in the worst

case (If AB value = 0) and will be equal to One in the best case if the AB value of that

record is the highest AB value in the population, so it logically should be added to the

function to reward the record.

A/Y: gives the rate which reflects the weakness of the record depending on the

weakest record in the population, the resulted value will be equal to Zero in the best

case (If A value =0) and will be equal to One in the worst case if the A value of that

record is the highest value in the population, so the value of A/Y must be subtracted

from the function to give the Penality of the record.

Now, assume that the record with the best case, so AB value of that record is the

highest AB value in the AB column, and A value is equal to Zero, this means that

Fitness = 2, on the other hand, assume that the record with the worst case, so A value of

that record is the highest A value in the A column, and AB value is equal to Zero, this

means that fitness = -2 , but the fitness value provided by the Fitness Function must

assign a non-negative cost to each candidate (Bottaci, 2001), so the constant value of 2

will be added to the function to make the fitness value equal to 0 in the worst case, and

fitness value equal to 4 in the best case, in this manner, the fitness value will be positive

and in the interval [0,4] at any case.

The system has been built to calculate A value, AB value and the Fitness value

for each record in the attacks tables.

47

4.4.1 Fitness Results

The following table is from the real data set, the table contents of column A and

column AB are filled according to the comparison process described above with a

simple population of 4 records for each category, whereas the contents of the column

Fitness is calculated using suggested Fitness Function.

Table (4.11): Real Data

4.4.2 Discussion of Fitness Results

Now, Observe that the normal record with AB = 3 is fitter than the normal

record with A=1 in the case of A=0 in both records.

Observe that DoS record with AB = 5 is fitter than DoS record with AB = 18

because the first record has less A value than the second.

Normal

A AB Fitness
0 1 3.143
0 3 3.429

50 7 1.246
44 4 0.858

DoS

A AB Fitness
3 419 3.985
5 280 3.632

5687 18 0.049
23 5 1.365

Probe

A AB Fitness
130691 2 0.002

242 12 1.107
0 856 4.000
0 6 3.007

R2L

A AB Fitness
180930 11 0.016
2114 714 2.493

0 4 3.006
0 16 3.022

U2R

A AB Fitness
134917 6 1.000

1 4 3.267
818 3 1.501
10 1 1.348

48

Observe the best case Probe record with fitness value = 4 that means constant

number (2) + 1 (because A value = 0) + 1 (Because AB is the greatest AB value in the

population).

Observe the R2L record with AB = 4 is fitter than the R2L record with AB =

714 because of the high value of A for the record with AB = 714.

Observe that U2R record with A = 818 and AB = 3 is fitter than U2R record

with A=10 and AB = 1, because the maximum value of A is very high, and the

maximum value of AB is very low, in these cases the Reward and Penality issue affect

the fitness value obviously.

4.4.3 Comparing Strategy

In order to prove the validity of the new Fitness Function, another fitness

function should be tested to get the results and to compare them with the new Fitness

Function results.

If the fitness value of the rule X is greater than the fitness value of the rule Y

according to the first Fitness Function, then the fitness value of the rule X also is greater

than the fitness value of the rule Y according to the second Fitness Function. For any

record in the population there are two results R1 and R2 as the following two equations:

 (4.2)

 (4.3)

Where: Fitness Value 1 is the result of the Reward-Penality based Fitness Function, and

Fitness Value 2 is the result of the second Fitness Function of the same record. To say

that the new Fitness Function is getting a good result, the values of R1 and R2 must be

close to each other.

49

Some of the researches (Selvakani and Rajesh (2007), Berlanga, Del Jesus,

Gatco and Herrera (2006)) used Support Confidence Framework as a Fitness Function,

they used the following equation:

 (4.4)

Where:

Support: indicates the recurrence of AB within all the rules in the population.

Confidence: indicates the recurrence of AB within all the rules that have the same

condition.

t1and t2 were used as thresholds to balance between support value and confidence

value, assume that (t1 = 0.0257) and (t2 = 0.9843).

To get the accurate results, for each record in the population, fitness value 1 has

been calculated using Fitness Function 1 and fitness value 2 has been calculated using

Fitness Function 2, the second step is to find the values of R1 and R2 using the

equations 8 and 9, the third step is to find the result of the following equation:

 (4.5)

Where,

N: the number of records in the population.

To judge that both Fitness Functions getting the same results in assigning the

appropriate fitness value to each record in the population, the result of R3 must

approach to zero.

50

4.4.4 Comparing Results

The system has been built for a population of 68 records of R2L attack. For each

record in the population the system calculated the values of A, AB, Fitness Value 1,

Fitness Value 2, R1 and R2.

Fitness Value 1 and R1 are related to the Reward-Penality based Fitness

Function, whereas Fitness Value 2 and R2 are related to the Support-Confidence

Framework Fitness Function.

The following table contains some of the records and their values:

The results showed that R1 and R2 are close to each other. Finally, the result of

R3 was calculated using equation (4.5) and the result was approached to Zero, (R3 = -

0.0001).

4.5 Tracing the Selection process:

This section will present the tracing of many types of Steady State Genetic

Algorithm Selection process. The tracing applied on the U2R table which has 16

A AB Fit. Val.1 Fit. Val 2 R1 R2

180930 11 0.016 0.004 0.005 0.004

0 1 3.001 0.985 0.953 0.961

0 51 3.071 1.004 0.975 0.979

0 2 3.003 0.985 0.953 0.961

0 4 3.006 0.986 0.954 0.962

0 3 3.004 0.985 0.954 0.962

0 4 3.006 0.986 0.954 0.962

0 6 3.008 0.987 0.955 0.963

0 16 3.022 0.990 0.959 0.966

0 37 3.052 0.998 0.969 0.974

0 91 3.127 1.019 0.993 0.994

0 107 3.15 1.025 1.000 1.000

Table (4.12): Real Data from the Comparison System

51

dependent records. The tracing results suppose that there are two populations with size

8.The following table contains id and the fitness value for each record.

The data is divided into two populations. For each population there are three

values; summation of fitness values, average of fitness values and summation of the

expected fitness values. Those values can be achieved using the following equations:

Chromosome ID Fitness Value

1 1.311

2 1.163

3 1

4 1.348

5 3.167

6 1.667

7 3.167

8 3.167

9 3.167

10 3.267

11 3.333

12 3.333

13 3.167

14 3.167

15 3.167

16 2.333

Table (4.13): ID and fitness value for U2R chromosomes

52

Sum Fitness (Sf), Average Fitness (Af) and Sum Expected Fitness Value (SumEf), as

represented in the equations (2.6, 2.7, 2.9).

4.5.1 Trace with Roulette Wheel Selection

Here, there is a randomly generated number, then Sum Expected Fitness value

(SumEf) calculation will be applied continuously until reaching to the record that makes

the (SumEf) value greater than the generated number, then that record considered as the

selected individual using RWS.

The Table (4.14) below, shows the tracing of generated random number and the

selected individual corresponding to the generated number.

Counter Random Num. Selected Individual

1 6 7

2 5 7

3 1 2

4 4 6

5 6 7

6 5 7

7 1 2

8 4 6

9 0.999 9

10 5.999 14

11 4 12

12 0.999 9

13 5.999 14

14 6.999 15

15 4.999 13

16 7.999 15

Table (4.14): Generated random numbers with selected individual

53

According to the selected individual, Table (4.15) shows the final prepared

population with RWS:

ID Fitness Value

7 3.167

7 3.167

2 1.163

6 1.667

7 3.167

7 3.167

2 1.163

6 1.667

9 3.167

14 3.167

12 3.333

9 3.167

14 3.167

15 3.167

13 3.167

15 3.167

Table (4.15): Prepared population with RWS

4.5.2 Trace with Elitism Selection

This type of selection will arrange the population records in decreasing order

according to their Fitness Values. Table (4.16) shows the result of Elitism Selection.

54

ID Fitness Value

5 3.167

7 3.167

8 3.167

6 1.667

4 1.348

1 1.311

2 1.163

3 1

11 3.333

12 3.333

10 3.267

9 3.167

13 3.167

14 3.167

15 3.167

16 2.333

Table (4.16): The result of Elitism Selection

4.5.3 Trace with Ranking Selection

The idea of this type of Selection is to arrange each population record according

to their fitness values, then give a rank to each record. The new fitness values calculated

for the records using the equation (2.11):

Table (4.17) shows the result of ranking selection:

55

ID Fitness Value Rank Max Min New Fitness Value

5 3.167 8 1.71 0.29 0.29

7 3.167 7 1.53 0.47 0.62

8 3.167 6 1.58 0.42 0.75

6 1.667 5 1.29 0.71 0.95

4 1.348 4 1.3 0.7 1.04

1 1.311 3 1.77 0.23 1.33

2 1.163 2 1.01 0.99 1.007

3 1 1 1.76 0.24 1.76

11 3.333 8 1.87 0.13 0.13

12 3.333 7 1.06 0.94 0.95

10 3.267 6 1.95 0.05 0.59

9 3.167 5 1.36 0.64 0.94

13 3.167 4 1.52 0.48 1.07

14 3.167 3 1.77 0.23 1.33

15 3.167 2 1.05 0.95 1.03

16 2.333 1 1.59 0.41 1.59

Table (4.17): The values of rank and new fitness values for each record using rank selection

After calculating the fitness values, RWS selection will be applied to get the

selected individual. Table (4.18) shows the result of RWS applied on the new fitness

values.

56

Counter Random Number Selected individual

1 15 2

2 4 6

3 4 6

4 8.03 4

5 3.59 6

6 13.07 2

7 4.03 6

8 13.59 2

9 19.95 14

10 2.95 11

11 9.90 10

12 11.90 9

13 26 15

14 0.95 11

15 3.86 12

16 3.86 12

Table (4.18): The selected individual after applying RWS over the new fitness values

4.5.4 Trace with Stochastic Universal Sampling (SUS):

The idea of this type of selection is to select individuals at specific points. The

points determined previously. The record fitness value affects the Selection of the

individual. Table (4.19) shows the result of selected individual and their fitness values:

57

Counter Selected individual ID Selected individual Fitness Value

1 1 1.311

2 2 1.163

3 4 1.348

4 5 3.167

5 6 1.667

6 7 3.167

7 7 3.167

8 8 3.167

9 9 3.167

10 9 3.167

11 10 3.267

12 11 3.333

13 12 3.333

14 13 3.167

15 14 3.167

16 15 3.167

Table (4.19): Selected ID's and their fitness values using SUS

4.5.5 Trace with Tournament Selection

The idea of this type of Selection is to choose two numbers randomly,

then select two individuals using RWS. Finally, choose the record with the

highest fitness values records. For each record in the population, Table (4.20)

shows the result of randomly chosen numbers, the selected individuals

corresponding to the random numbers and the selected record.

58

Counter Random1 Random2 Selected ID

1 7 6 7

2 2 5 5

3 7 6 7

4 2 5 5

5 2 7 7

6 5 2 5

7 7 8 8

8 6 1 6

9 16 14 14

10 15 13 13

11 14 12 12

12 15 14 14

13 15 9 9

14 11 12 12

15 12 15 12

16 14 11 11

Table (4.20): Selected individuals using Tournament Selection

Table (4.21) shows the arrangement of selected individuals using many types of

selection.

59

RWS Elitism Ranking SUS Tournament

1 7 5 3 1 7

2 7 7 6 2 5

3 2 8 6 4 7

4 6 6 4 5 5

5 7 4 6 6 7

6 7 1 2 7 5

7 2 2 6 7 8

8 6 3 3 8 6

9 9 11 14 9 14

10 14 12 11 9 13

11 12 10 10 10 12

12 9 9 9 11 14

13 14 13 16 12 9

14 15 14 11 13 12

15 13 15 12 14 12

16 15 16 12 14 11

Table (4.21): The arrangement of ID records due to the Selection type in the first generation

From the previous results, you can notice that the arrangement of the records in

the populations depends mainly on the selection type. Notice that there aren't two

Selection types have the same chromosomes arrangement; this note will be helpful in

the next section.

60

4.6 Comparing between Selection and Crossover types.

As mentioned in section 2.4; the Steady State Genetic Algorithm has many

stages. Each stage has many types. But when applying the algorithm for each stage, just

one type can be taken to get the result.

This part of thesis will search for the best types to be used together with getting

the best results. It will determine the Selection type and Crossover type that gives the

best result when they combined together within Steady State Genetic Algorithm.

4.6.1 Comparing Strategy.

The detection system with Steady State Genetic Algorithm has been built. The

parameters used in the system presented in the following table:

Population size 8

Representation Real

Evaluation Reward Penality Fitness Function

Selection RWS, Ranking, Stochastic, Elitism, Tournament

Crossover Single Point, Two Points, Uniform

Mutation Flip Bit

Replacement Binary Tournament Replacement

Stopping Criteria When Genetic Algorithm Cannot discover additional Rules

Table (4.22): The parameters used in the system

The Steady State Genetic algorithm was applied with Roulette Wheel Selection

and Single Point Crossover in the first trial, and then applied with Roulette Wheel

Selection and Two Points Crossover in the second trial. And so on until applying

Tournament Selection with Uniform Crossover in the 15th trial.

61

The results are observed for each trial in the 10th generation and 15th generation to

ensure the judgment.

4.6.2 Comparison Results and Discussion.

After applying the GA with many generations, the following results have been gotten:

Choice Selection Crossover After 10 Generations After 15 Generations

of records DR # of records DR

1 RWS One Point 94 0.46 229 0.53

2 RWS Two Points 117 0.53 292 0.53

3 RWS Uniform 112 0.4 344 0.4

4 Elitism One Point 98 0.4 230 0.4

5 Elitism Two Points 125 0.4 349 0.53

6 Elitism Uniform 137 0.53 414 0.53

7 Ranking One Point 87 0.4 198 0.46

8 Ranking Two Points 91 0.46 242 0.53

9 Ranking Uniform 110 0.46 346 0.53

10 SUS One Point 98 0.4 230 0.40

11 SUS Two Points 125 0.4 348 0.46

12 SUS Uniform 137 0.53 414 0.53

13 Tournament One Point 79 0.46 186 0.46

14 Tournament Two Points 110 0.4 283 0.46

15 Tournament Uniform 117 0.4 347 0.46

Table (4.23): The choices of different selection and crossover types

So, there are 15 different choices. Some are bad and some are good. The idea of

using Steady State Genetic Algorithm is to discover hidden rules. So SSGA will

62

discover all the hidden rules but the process will vary from choice to choice in the term

of number of generations to discover the rules and the time consuming in discovering

rules, Because the time consuming will be as high as the number of generations

increase.

From the results, one can notice the following:

1- For each Selection process, the Two Point Crossover produced better results

than One Point Crossover.

2- For each Selection process, the Uniform Crossover produced better results than

Two Points Crossover.

3- Roulette Wheel Selection with One Point Crossover (Choice 1) produced better

results than Tournament Selection with One Point Crossover (Choice 13). But

Roulette Wheel Selection with Uniform Crossover (Choice 3) produced worse

results than Tournament Selection with Uniform Crossover (Choice 15).

4- Elitism Selection (Choices 4,5 & 6) produced the same results as Stochastic

Universal Sampling Selection (Choices 10,11 & 12)

5- Elitism Selection with Uniform Crossover (Choice 6) and Stochastic Universal

Sampling Selection with Uniform Crossover (Choice 12) both produced the best

results through different fifteen choices.

4.7 The Results of Detection Rate (DR) and False Positive Rate (FPR).

Intrusion Detection System has been built, and Steady State Genetic Algorithm

has been used to support the system. DR was calculated using equation (2.1) and FPR

was calculated using equation (2.2). Both values where calculated for each type of

attack. The goal is to get DR as high as possible, and to get FPR as low as possible. If

DR approaches to 100%, it means that system has a good DR. And if FPR approaches

63

to 0%, it means that system has a good FPR. After system execution, the execution gave

the following results.

Attack R2L U2R DoS Probe Average

DR 100% 86% 94% 100% 95%

FPR 0% 0.03% 0.79% 0.37% 0.297%

Table (4.24): Results of system DR and FPR

4.8 Comparing thesis results with other results.

This part will compare thesis results with other results; the criteria are Average

of the DR and Average of the FPR.

Alsharafat, (2009) found that the average DR is equal to 98.9%. Hence, the

value of DR is greater than the results of this research. Stewart, (2009) found that the

average of DR is equal to 79.67% which is less than this research results.

Al-sharafat (2009) found that the average FPR equal 0.094% which is better

than the results of this research, but (Stewart, 2009) found that the average FPR is

2.69%, which is worse than the results of this research.

The comparison shows that this research achieved better results than

(stewart,2009), but worse than (alsharafat, 2009). The comparison is clear in Table

(4.25):

Average of DR Average of FPR

Our results 95% 0.29%

Alsharafat 98.9% 0.094%

Stewart 79.67% 2.69%

Table (4.25): Comparison with other results

64

These results ensure that the proposed model can be used in Intrusion Detection

System to increase DR and to decrease FPR.

4.9 How did this thesis achieve its objectives?

This thesis has achieved its objectives as the following:

It enhanced a Steady State Genetic Algorithm by two methods. The first method

is Reward Penality based Fitness Function, which is completely new. And the second

method is comparing between Selection methods and Crossover operators to use the

best choice in the SSGA.

This thesis has got a high DR, and a low FPR. The average of Detection Rate

achieved was 95%, and the average of False Positive Rate achieved was 0.297%.

This thesis makes two types of comparison, internal and external. The internal

comparison is between Selection methods and Crossover operators, which help the

model in choosing the best choice which performs better. But the external comparison is

done between this thesis results and other thesis results.

65

Chapter Five

Conclusion and Future Work

5.1 Conclusion
This research presents a solution for a problem of detecting attack. The main

goal of this research is to enhance the SSGA for misuse NIDS in order to increase DR

and decrease FPR. The proposed solution has many parts which play a role in achieving

thesis results.

KDD Cup 99 has a huge amount of records, each record has 42 features. There

are many researches that determined the most significant features. IDS tried to use the

results of each research to determine the suitable research result.

Reward Penality based fitness function was proposed, to examine the function, it

was compared with another function and produced results that is similar to the results

produced by another function.

Different Selection methods and Crossover types was combined together and

tested. The results show that Uniform Crossover is the best between Crossover types

and it is better to be combined with SUS selection or Elitist Selection methods.

The results of comparing between Selection and Crossover type are similar

when using some types, the tracing helps in ensuring that different selection types have

different arrangement of the records.

The DR of the system was 95% whereas the FPR was 0.297%. The results of

DR and FPR were compared with other results. The comparison results show that this

research is accepted.

66

5.2 Future Work

The proposed model for Intrusion Detection System has been built and

supported with Steady State Genetic Algorithm. But there are a lot of issues that must

be taken in consideration in the future to enhance this thesis results.

1- Additional researches needed to find the DR and FPR for Normal behavior.

2- Additional attempts needed to compare the results of SSGA with many types of

Replacement. i.e. Binary Tournament Replacement and Triple Tournament

Replacement.

3- The population size must be determined for the IDS case, to use the most suitable

size for the population.

4- There is a need to build an Intrusion Detection System which depends on the hybrid

of Anomaly and Misuse analysis.

5- The research in this thesis should be applied on the Intrusion Detection Prevention

System.

6- The research should be applied on another type of attacks.

7- Additional work must be done to find the effect of the SSGA process on the time and

convergence.

67

References

Adewumi, A.O. (2010). “Some improved genetic-algorithms based heuristics for
global optimization with innivative applications”.(master thesis). University of the
witwatersrand. Johannesburg. South Africa. Available at:
http://wiredspace.wits.ac.za/bitstream/handle/10539/8621/PhD%20Thesis%20Abstr
act%20only.pdf?sequence=6

Agravat,M.Rao,U.(2011). "Computer intrusion detection by two-objective fuzzy
genetic algorithm". First international conference on computer science ,
engineering and application (CCSEA). July (15-17), Hyatt regency channai, india.
Available at: http://airccj.org/CSCP/vol1/csit1226.pdf

Alabsi,F. Naoum,R.(2012) "Fitness Function for Genetic Algorithm used in
Intrusion Detection System". International Journal of Applied Science and
Technology. Vol(2). No(4). PP (129-134), available at:
http://www.ijastnet.com/journals/Vol_2_No_4_April_2012/17.pdf

Al-Sharafat,W. Naoum,R. (2009). Development of genetic-based machine learning
for Network Intrusion Detection. World Academy of Science, Engineering and
Technology,(55-2009), pages 20-24. Available at:
http://www.waset.org/journals/waset/v55/v55-5.pdf

Al-Sharafat, Wafa' Slaibi (2009). Development of genetic-based machine learning
algorithm for network intrusion detection (gbml-nid). (doctorate dissertation) , The
Arab Academy for banking and financial sciences, Amman, Jordan.

Berlanga.F.J., Del Jesus.M.J., Gatco.M.J., Herrera.F.,A Genetic-Programming-
Based Approach for the Learning of Compact Fuzzy Rule-Based Classification
Systems, the eighth International Conference on Artificial Intelligence and Soft
Computing (ICAISC), Zakopane, Poland, on 25-29 June 2006, PP 182-191. From:
http://sci2s.ugr.es/docencia/doctoMineriaDatos/Ber06-ICAIS.pdf

Bottaci,L.,2001, A Genetic Algorithm Fitness Function for mutation testing
presented at SEMINAL 2001, International workshop on software engineering using
Metaheuristic Innovative algorithm, a workshop at 23-rd Int. Conference on
Software Engineering, Toronto, May 12-19. From:
http://www2.hull.ac.uk/science/pdf/workshop.pdf

Chinneck,J.W. (2006). “Practical optimization: a gentle introduction. Canada.
Carleton university”. Available at:
http://www.sce.carleton.ca/faculty/chinneck/po/TitlePageAndTOC.pdf

68

Chou,T.S. Yen,K.K. Luo,J. (2008). "Network Intrusion Detection Design Using
Feature Selection of Soft Computing Paradigms". World Academy of Science,
Engineering and Technology. No (47). Page (529).

Cleary, B.(2011). “Problems with crossover bias for binary string representations in
genetic algorithms”. Master thesis. Californai state university. Long beach.
Californa. United states.

Das, V., Pathak, V. Sharma, S. Ravi, S. Srikanth, M. Kumar, G. (2010). "Network
intrusion detection system based on machine learning algorithms". International
Journal of Computer Science and Information Technology (IJCSIT). Vol (2). No
(6). Page 139. Available at: http://airccse.org/journal/jcsit/1210ijcsit13.pdf

Deb, K.,(1998), Genetic Algorithm in search and optimization: the technique and
applications, Proceedings of International Workshop on Soft Computing and
Intelligent Systems, (ISI, Calcutta, India). PP. 58-87.

Diaz-Gomez,P. Hougen,D. (2006). A Genetic Algorithm Approach for Doing
Misuse Detection in Audit Trial Files. 15th international conference on computing.
On Nov-2006, Pages (329-338). Available at: http://www.cameron.edu/~pdiaz-
go/diazp-Misuse.pdf

Diaz-Gomez,P. Hougen,D. (2007). Misuse Detection: An Iterative Process vs. A
Genetic Algorithm Approach. On proceeding International Conference on
Enterprise Information Systems(2). Available at:
http://students.ou.edu/D/Pedro.A.Diaz-Gomez-1/Iter_GAsMisUseF.pdf

Garcia-Teodoro, P. Diaz-Verdejo, J. Macia-Fernandoz, G. Vazquez, E. (2009).
Anomaly-based network intrusion detection: techniques, systems and challenge.
ScienceDirect. 28(2009). Pages 18-28. Available at:
http://ceres.ugr.es/~gmacia/papers/COMSEC09_AnidsPublishedVersion.pdf

Ghali,N. (2009). Feature selection for effective anomaly based intrusion detection.
International Journal for Computer Science and Network Security IJCSNS, VOL(9)
,No(3), pages 285-289. Available at:
http://paper.ijcsns.org/07_book/200903/20090339.pdf

Hoque, M. Abdul Mukit, M. Bikas, M.(2012)."An Implementation of Intrusion
Detection System using Genetic Algorithm". International Journal of Network
Security & its Applications. Vol(4).No(2).PP(109-120).

Information Assurance Technology Analysis Center (IATAC). (2009). Intrusion
Detection System. (Sixth Edition). USA.

69

Ibrahim, Laheeb Mohammad,(2010). Anomaly network intrusion detection system
based on distributed time-delay neural network (DTDNN). Journal of Engineering
Science and Technology. Vol (5). No (4). Pages 457-471. Available at:
http://jestec.taylors.edu.my/Vol%205%20Issue%204%20December%2010/Vol_5_4
_457_471_L.%20M.%20Ibrahim.pdf

Kang,D.Fuller,D.Honavar,V.(2005)."Learning classifier for misuse and anomaly
detection using a bag of system calls representation", proceeding of the 6th IEEE,
workshop on information assurance and security, NY, USA. Available at:
http://www.cs.iastate.edu/~honavar/Papers/iaw05.pdf

Khan, S.(2011). "Rule based Network Intrusion Detection using Genetic
Algorithm". International Journal of Computer Application. Vol (18). No(8).PP (26-
29).

Kozushko, H. (2003). "Intrusion detection: host-based and network-based intrusion
detection systems",(on-line)

Available:http://infohost.nmt.edu/~sfs/Students/HarleyKozushko/Papers/IntrusionD
etectionPaper.pdf Viewed at: 13-Dec-2011.

Kumar, M., Husian, M., Upreti, N., Gupta, D. (2010). Genetic algorithm: review
and application. International Journal of Information Technology and Knowledge
Management. Vol (2). No (2). Page 451. Available at:
http://www.csjournals.com/IJITKM/PDF%203-1/55.pdf

Mukkamala, S., Sung, A., Abrham, A., (2004), Modeling Intrusion Detection
System using Linear Genetic Programming Approach, Proceeding IEA/AIE 17th
International Conference on Innovations in Applied Artificial Intelligence, PP 633-
642, ISBN: 3-540-22007-0, From:
http://www.rmltech.com/doclink/LGP%20Based%20IDS.pdf

Naoum, R., Abid, N., Al-Sultani,Z.(2012). "An Enhanced Resilient Back
propagation Artificial Neural Network for Intrusion Detection System".
International Journal of Computer Science and Network Security. Vol(12). No(3).
PP (11-16).

Ritcher, J. (2010). On Mutation and Crossover in the Theory of Evolutionary
Algorithms. (Doctorate Dissertation). Montana State University. Montana. United
States. Available at: http://www.cs.montana.edu/files/techreports/0910/Richter.pdf

Scarfone, K., Mell, P. (2007). Guide to intrusion detection and prevention systems
(IDPS). National Institute of Standards and Technology. Special publication 800-
94, Page 2-1. Available at: http://csrc.nist.gov/publications/nistpubs/800-94/SP800-
94.pdf

70

Schmidt, M., Stidsen, T. (1997).Hybird systems:genetic algorithms,neural networks
and fuzzy logic, DAIMI IR

Selvakani,S., Rajesh,R.S.(2007). Genetic algorithm for framing rules for intrusion
detection. International Journal for Computer Science and Network Security
IJCSNS, VOL(7), No(11), 285-290. Available at:
http://paper.ijcsns.org/07_book/200711/20071144.pdf

Stewart, L. (2009). “A Modified Genetic Algorithm and Switch-Based Neural
Network Model Applied To Misuse Based Intrusion Detection”.(master thesis).
Queens University. Ontario. Canada. Available at:
http://qspace.library.queensu.ca/bitstream/1974/1720/1/Stewart_Ian_D_200903_MS
c.pdf

Sung, A., Mukkamala, S. (2003), "Feature Selection for Intrusion Detection using
Neural Networks and Support Vector Machines", To appear in Journal of the
Transportation Research Board (of the National Academies). Available at:
http://www.ltrc.lsu.edu/TRB_82/TRB2003-002459.pdf

Tavallaee,M., Bagheri,E., Lu,W., Ghorbani,A. (2009). A detailed analysis of the
KDD Cup 99 data set. Proceedings of the 2009 IEEE symposium on computational
intelligence in security and defense applications (CISDA 2009). Available at:
http://www.tavallaee.com/publications/CISDA.pdf

Uppalaiah, B., Anand, K., Narsimha,B., Swaraj, S., Bharat, T.(2012). "Genetic
Algorithm Approach to Intrusion Detection System". International Journal for
Computer Science and Technology. Vol(3). Issue (1). PP(156-160).

Zainal, A.,Maarof, M., Shamsuddin, S., Abraham, A., (Sept – 2008)"Ensemble of
One-class Classifier for Network Intrusion Detection System", Fourth International
Conference on Information Assurance and Security (ISIAS '08). PP (180-185).
Available at: http://www.softcomputing.net/ias08_1.pdf

71

Appendix: Code Listing

- Code for choosing the most significant features class
- Dim danormal As New SqlDataAdapter("Select * from normal", CS4)
- Dim daprobe As New SqlDataAdapter("Select * from probe", CS4)
- Dim dados As New SqlDataAdapter("Select * from dos", CS4)
- Dim dau2r As New SqlDataAdapter("Select * from u2r", CS4)
- Dim dar2l As New SqlDataAdapter("Select * from r2l", CS4)
-
- Dim ds As New DataSet
- danormal.Fill(ds, "normal")
- daprobe.Fill(ds, "probe")
- dados.Fill(ds, "dos")
- dau2r.Fill(ds, "u2r")
- dar2l.Fill(ds, "r2l")
- datest.Fill(ds, "KDDtest$")
-
- Dim n5, n6, n10, n13, n40 As Double
-
- Dim p3 As String
- Dim p12, p27, p31, p35 As Double
- Dim d7, d8, d12, d13, d23 As Double
- Dim u14, u17, u25, u36, u38 As Double
- Dim r6, r11, r12, r19, r22 As Double
-
- Dim NoRowsTableTest As Integer
- Dim NoRowsTableNormal As Integer
- Dim NoRowsTableProbe As Integer
- Dim NoRowsTableDos As Integer
- Dim NoRowsTableU2R As Integer
- Dim NoRowsTableR2L As Integer
-
- NoRowsTableTest = ds.Tables("KDDtest$").Rows.Count
- NoRowsTableNormal = ds.Tables("Normal").Rows.Count
- NoRowsTableProbe = ds.Tables("Probe").Rows.Count
- NoRowsTableDos = ds.Tables("Dos").Rows.Count
- NoRowsTableU2R = ds.Tables("U2R").Rows.Count
- NoRowsTableR2L = ds.Tables("R2L").Rows.Count
-
- For TestCounter = 0 To NoRowsTableTest - 1
-
- n5 = ds.Tables("KDDtest$").Rows(TestCounter).Item(5)
- n6 = ds.Tables("KDDtest$").Rows(TestCounter).Item(6)
- n10 = ds.Tables("KDDtest$").Rows(TestCounter).Item(10)
- n13 = ds.Tables("KDDtest$").Rows(TestCounter).Item(13)
- n40 = ds.Tables("KDDtest$").Rows(TestCounter).Item(40)
-
- Dim normalcounter As Integer
- For normalcounter = 0 To NoRowsTableNormal - 1
- If ds.Tables("Normal").Rows(normalcounter).Item(1) = n5 Then
- If ds.Tables("Normal").Rows(normalcounter).Item(2) = n6 Then
- If ds.Tables("Normal").Rows(normalcounter).Item(3) = n10 Then
- If ds.Tables("Normal").Rows(normalcounter).Item(4) = n13 Then
- If ds.Tables("Normal").Rows(normalcounter).Item(5) = n40 Then
- If ds.Tables("KDDtest$").Rows(TestCounter).Item(42) = "normal." Then
- TxtNormal4Count.Text = Val(TxtNormal4Count.Text) + 1
- Else
- TxtNotNormal4Count.Text = Val(TxtNotNormal4Count.Text) + 1
- End If
- Exit For
- End If
- End If
- End If
- End If
- End If
- Next
-
- p3 = ds.Tables("KDDtest$").Rows(TestCounter).Item(3)
- p12 = ds.Tables("KDDtest$").Rows(TestCounter).Item(12)
- p27 = ds.Tables("KDDtest$").Rows(TestCounter).Item(27)

72

- p31 = ds.Tables("KDDtest$").Rows(TestCounter).Item(31)
- p35 = ds.Tables("KDDtest$").Rows(TestCounter).Item(35)
-
- Dim ProbeCounter As Integer
- For ProbeCounter = 0 To NoRowsTableProbe - 1
- If ds.Tables("Probe").Rows(ProbeCounter).Item(1) = p3 Then
- If ds.Tables("Probe").Rows(ProbeCounter).Item(2) = p12 Then
- If ds.Tables("Probe").Rows(ProbeCounter).Item(3) = p27 Then
- If ds.Tables("Probe").Rows(ProbeCounter).Item(4) = p31 Then
- If ds.Tables("Probe").Rows(ProbeCounter).Item(5) = p35 Then
- If ds.Tables("KDDtest$").Rows(TestCounter).Item(42)

= "ipsweep." Or ds.Tables("KDDtest$").Rows(TestCounter).Item(42) = "nmap." Or
ds.Tables("KDDtest$").Rows(TestCounter).Item(42) = "portsweep." Or
ds.Tables("KDDtest$").Rows(TestCounter).Item(42) = "satan." Then

- TxtProbe4Count.Text = Val(TxtProbe4Count.Text) + 1
- Else
- TxtNotProbe4Count.Text = Val(TxtNotProbe4Count.Text) + 1
- End If
- Exit For
- End If
- End If
- End If
- End If
- End If
- Next
-
- d7 = ds.Tables("KDDtest$").Rows(TestCounter).Item(7)
- d8 = ds.Tables("KDDtest$").Rows(TestCounter).Item(8)
- d12 = ds.Tables("KDDtest$").Rows(TestCounter).Item(12)
- d13 = ds.Tables("KDDtest$").Rows(TestCounter).Item(13)
- d23 = ds.Tables("KDDtest$").Rows(TestCounter).Item(23)
-
- Dim DosCounter As Integer
- For DosCounter = 0 To NoRowsTableDos - 1
- If ds.Tables("Dos").Rows(DosCounter).Item(1) = d7 Then
- If ds.Tables("Dos").Rows(DosCounter).Item(2) = d8 Then
- If ds.Tables("Dos").Rows(DosCounter).Item(3) = d12 Then
- If ds.Tables("Dos").Rows(DosCounter).Item(4) = d13 Then
- If ds.Tables("Dos").Rows(DosCounter).Item(5) = d23 Then
- If ds.Tables("KDDtest$").Rows(TestCounter).Item(42)

= "back." Or ds.Tables("KDDtest$").Rows(TestCounter).Item(42) = "land." Or
ds.Tables("KDDtest$").Rows(TestCounter).Item(42) = "neptune." Or
ds.Tables("KDDtest$").Rows(TestCounter).Item(42) = "pod." Or
ds.Tables("KDDtest$").Rows(TestCounter).Item(42) = "smurf." Or
ds.Tables("KDDtest$").Rows(TestCounter).Item(42) = "teardrop." Then

- TxtDos4Count.Text = Val(TxtDos4Count.Text) + 1
- Else
- TxtNotDos4Count.Text = Val(TxtNotDos4Count.Text) + 1
- End If
- Exit For
- End If
- End If
- End If
- End If
- End If
- Next
-
- u14 = ds.Tables("KDDtest$").Rows(TestCounter).Item(14)
- u17 = ds.Tables("KDDtest$").Rows(TestCounter).Item(17)
- u25 = ds.Tables("KDDtest$").Rows(TestCounter).Item(25)
- u36 = ds.Tables("KDDtest$").Rows(TestCounter).Item(36)
- u38 = ds.Tables("KDDtest$").Rows(TestCounter).Item(38)
-
- Dim U2RCounter As Integer
- For U2RCounter = 0 To NoRowsTableU2R - 1
- If ds.Tables("U2R").Rows(U2RCounter).Item(1) = u14 Then
- If ds.Tables("U2R").Rows(U2RCounter).Item(2) = u17 Then
- If ds.Tables("U2R").Rows(U2RCounter).Item(3) = u25 Then
- If ds.Tables("U2R").Rows(U2RCounter).Item(4) = u38 Then
- If ds.Tables("U2R").Rows(U2RCounter).Item(5) = u36 Then
- If ds.Tables("KDDtest$").Rows(TestCounter).Item(42)

= "buffer_overflow." Or ds.Tables("KDDtest$").Rows(TestCounter).Item(42) = "loadmodule."

73

Or ds.Tables("KDDtest$").Rows(TestCounter).Item(42) = "perl." Or
ds.Tables("KDDtest$").Rows(TestCounter).Item(42) = "rootkit." Then

- TxtU2R4Count.Text = Val(TxtU2R4Count.Text) + 1
- Else
- TxtNotU2R4Count.Text = Val(TxtNotU2R4Count.Text) + 1
- End If
- Exit For
- End If
- End If
- End If
- End If
- End If
- Next
-
- r6 = ds.Tables("KDDtest$").Rows(TestCounter).Item(6)
- r11 = ds.Tables("KDDtest$").Rows(TestCounter).Item(11)
- r12 = ds.Tables("KDDtest$").Rows(TestCounter).Item(12)
- r19 = ds.Tables("KDDtest$").Rows(TestCounter).Item(19)
- r22 = ds.Tables("KDDtest$").Rows(TestCounter).Item(22)
-
- Dim R2LCounter As Integer
- For R2LCounter = 0 To NoRowsTableR2L - 1
- If ds.Tables("R2L").Rows(R2LCounter).Item(1) = r6 Then
- If ds.Tables("R2L").Rows(R2LCounter).Item(2) = r11 Then
- If ds.Tables("R2L").Rows(R2LCounter).Item(3) = r12 Then
- If ds.Tables("R2L").Rows(R2LCounter).Item(4) = r19 Then
- If ds.Tables("R2L").Rows(R2LCounter).Item(5) = r22 Then
- If ds.Tables("KDDtest$").Rows(TestCounter).Item(42)

= "ftp_write." Or ds.Tables("KDDtest$").Rows(TestCounter).Item(42) = "guess_passwd." Or
ds.Tables("KDDtest$").Rows(TestCounter).Item(42) = "imap." Or
ds.Tables("KDDtest$").Rows(TestCounter).Item(42) = "multihop." Or
ds.Tables("KDDtest$").Rows(TestCounter).Item(42) = "phf." Or
ds.Tables("KDDtest$").Rows(TestCounter).Item(42) = "spy." Or
ds.Tables("KDDtest$").Rows(TestCounter).Item(42) = "warezclient." Or
ds.Tables("KDDtest$").Rows(TestCounter).Item(42) = "warezmaster." Then

- TxtR2L4Count.Text = Val(TxtR2L4Count.Text) + 1
- Else
- TxtNotR2L4Count.Text = Val(TxtNotR2L4Count.Text) + 1
- End If
- Exit For
- End If
- End If
- End If
- End If
- End If
- Next
- Next

- Code for calculating A and AB.
- Private CSTrain As New SqlConnection("Data Source=MO3ATH-PC;Initial

Catalog=master;Integrated Security=True")
- Private datrain As New SqlDataAdapter("Select * from kddcup$", CSTrain)
- Private dos As New SqlConnection("Data Source=MO3ATH-PC;Initial Catalog=S-DoS;Integrated

Security=True")
- Private u2r As New SqlConnection("Data Source=MO3ATH-PC;Initial Catalog=S-U2R;Integrated

Security=True")
- Private r2l As New SqlConnection("Data Source=MO3ATH-PC;Initial Catalog=S-R2L;Integrated

Security=True")
- Private probe As New SqlConnection("Data Source=MO3ATH-PC;Initial Catalog=S-

Probe;Integrated Security=True")
-
-
-
- Private Sub Button21_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles Button21.Click
- Dim dau2r As New SqlDataAdapter("Select * from buffer_overflow", u2r)
- Dim ds As New DataSet
- dau2r.Fill(ds, "buffer_overflow")
- datrain.Fill(ds, "kddcup$")
-
- Dim u14, u17, u25, u36, u38 As Double

74

-
- Dim uA, uAB, uid As Integer
-
- Dim NoRowsTablekddcup As Integer
- Dim NoRowsTableU2R As Integer
- Dim Attack As Integer
-
- NoRowsTablekddcup = ds.Tables("kddcup$").Rows.Count
- NoRowsTableU2R = ds.Tables("buffer_overflow").Rows.Count
- For Attack = 0 To NoRowsTableU2R - 1
-
- u14 = ds.Tables("buffer_overflow").Rows(Attack).Item(1)
- u17 = ds.Tables("buffer_overflow").Rows(Attack).Item(2)
- u25 = ds.Tables("buffer_overflow").Rows(Attack).Item(3)
- u38 = ds.Tables("buffer_overflow").Rows(Attack).Item(4)
- u36 = ds.Tables("buffer_overflow").Rows(Attack).Item(5)
- uA = ds.Tables("buffer_overflow").Rows(Attack).Item(6)
- uAB = ds.Tables("buffer_overflow").Rows(Attack).Item(7)
- uid = ds.Tables("buffer_overflow").Rows(Attack).Item(8)
-
- For KddCounter = 0 To NoRowsTablekddcup - 1
- If u14 = ds.Tables("kddcup$").Rows(KddCounter).Item(13) Then
- If u17 = ds.Tables("kddcup$").Rows(KddCounter).Item(16) Then
- If u25 = ds.Tables("kddcup$").Rows(KddCounter).Item(24) Then
- If u38 = ds.Tables("kddcup$").Rows(KddCounter).Item(37) Then
- If u36 = ds.Tables("kddcup$").Rows(KddCounter).Item(35) Then
- If ds.Tables("kddcup$").Rows(KddCounter).Item(41) = "buffer_overflow." Then
- uAB = uAB + 1
- Else
- uA = uA + 1
- End If
- End If
- End If
- End If
- End If
- End If
- Next
- Dim Ocmd As New Data.SqlClient.SqlCommand
- Ocmd.CommandType = CommandType.StoredProcedure
- Ocmd.Connection = u2r
- Ocmd.Parameters.AddWithValue("@id", uid)
- Ocmd.Parameters.AddWithValue("@A", uA)
- Ocmd.Parameters.AddWithValue("@AB", uAB)
- Ocmd.CommandText = "updateu2r1"
- Try
- u2r.Open()
- Ocmd.ExecuteNonQuery()
- Catch ex As Exception
- End Try
- u2r.Close()
- Next
- TxtU2RDone.Text = "Done"
- End Sub
-
- Private Sub Button20_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button20.Click
- Dim dau2r As New SqlDataAdapter("Select * from rootkit", u2r)
- Dim ds As New DataSet
- dau2r.Fill(ds, "rootkit")
- datrain.Fill(ds, "kddcup$")
-
- Dim u14, u17, u25, u36, u38 As Double
-
- Dim uA, uAB, uid As Integer
-
- Dim NoRowsTablekddcup As Integer
- Dim NoRowsTableU2R As Integer
- Dim Attack As Integer
-
- NoRowsTablekddcup = ds.Tables("kddcup$").Rows.Count
- NoRowsTableU2R = ds.Tables("rootkit").Rows.Count
- For Attack = 0 To NoRowsTableU2R - 1

75

-
- u14 = ds.Tables("rootkit").Rows(Attack).Item(1)
- u17 = ds.Tables("rootkit").Rows(Attack).Item(2)
- u25 = ds.Tables("rootkit").Rows(Attack).Item(3)
- u38 = ds.Tables("rootkit").Rows(Attack).Item(4)
- u36 = ds.Tables("rootkit").Rows(Attack).Item(5)
- uA = ds.Tables("rootkit").Rows(Attack).Item(6)
- uAB = ds.Tables("rootkit").Rows(Attack).Item(7)
- uid = ds.Tables("rootkit").Rows(Attack).Item(8)
-
- For KddCounter = 0 To NoRowsTablekddcup - 1
- If u14 = ds.Tables("kddcup$").Rows(KddCounter).Item(13) Then
- If u17 = ds.Tables("kddcup$").Rows(KddCounter).Item(16) Then
- If u25 = ds.Tables("kddcup$").Rows(KddCounter).Item(24) Then
- If u38 = ds.Tables("kddcup$").Rows(KddCounter).Item(37) Then
- If u36 = ds.Tables("kddcup$").Rows(KddCounter).Item(35) Then
- If ds.Tables("kddcup$").Rows(KddCounter).Item(41) = "rootkit." Then
- uAB = uAB + 1
- Else
- uA = uA + 1
- End If
- End If
- End If
- End If
- End If
- End If
- Next
- Dim Ocmd As New Data.SqlClient.SqlCommand
- Ocmd.CommandType = CommandType.StoredProcedure
- Ocmd.Connection = u2r
- Ocmd.Parameters.AddWithValue("@id", uid)
- Ocmd.Parameters.AddWithValue("@A", uA)
- Ocmd.Parameters.AddWithValue("@AB", uAB)
- Ocmd.CommandText = "updateu2r2"
- Try
- u2r.Open()
- Ocmd.ExecuteNonQuery()
- Catch ex As Exception
- End Try
- u2r.Close()
- Next
- TxtU2RDone.Text = "Done"
- End Sub
-
- Private Sub Button22_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button22.Click
- Dim dar2l As New SqlDataAdapter("Select * from phf", r2l)
-
- Dim ds As New DataSet
-
- dar2l.Fill(ds, "phf")
- datrain.Fill(ds, "kddcup$")
-
- Dim r6, r11, r12, r19, r22 As Double
- Dim rA, rAB, rid As Integer
-
- Dim NoRowsTablekddcup As Integer
- Dim NoRowsTableR2L As Integer
- Dim Attack As Integer
-
- NoRowsTablekddcup = ds.Tables("kddcup$").Rows.Count
- NoRowsTableR2L = ds.Tables("phf").Rows.Count
- For Attack = 0 To NoRowsTableR2L - 1
-
- r6 = ds.Tables("phf").Rows(Attack).Item(1)
- r11 = ds.Tables("phf").Rows(Attack).Item(2)
- r12 = ds.Tables("phf").Rows(Attack).Item(3)
- r19 = ds.Tables("phf").Rows(Attack).Item(4)
- r22 = ds.Tables("phf").Rows(Attack).Item(5)
- rA = ds.Tables("phf").Rows(Attack).Item(6)
- rAB = ds.Tables("phf").Rows(Attack).Item(7)
- rid = ds.Tables("phf").Rows(Attack).Item(8)

76

-
- For KddCounter = 0 To NoRowsTablekddcup - 1
- If r6 = ds.Tables("kddcup$").Rows(KddCounter).Item(5) Then
- If r11 = ds.Tables("kddcup$").Rows(KddCounter).Item(10) Then
- If r12 = ds.Tables("kddcup$").Rows(KddCounter).Item(11) Then
- If r19 = ds.Tables("kddcup$").Rows(KddCounter).Item(18) Then
- If r22 = ds.Tables("kddcup$").Rows(KddCounter).Item(21) Then
- If ds.Tables("kddcup$").Rows(KddCounter).Item(41) = "phf." Then
- rAB = rAB + 1
- Else
- rA = rA + 1
- End If
- End If
- End If
- End If
- End If
- End If
- Next
- Dim Ocmd As New Data.SqlClient.SqlCommand
- Ocmd.CommandType = CommandType.StoredProcedure
- Ocmd.Connection = r2l
- Ocmd.Parameters.AddWithValue("@id", rid)
- Ocmd.Parameters.AddWithValue("@A", rA)
- Ocmd.Parameters.AddWithValue("@AB", rAB)
- Ocmd.CommandText = "updater2l"
- Try
- r2l.Open()
- Ocmd.ExecuteNonQuery()
- Catch ex As Exception
- End Try
- r2l.Close()
- Next
- TxtR2LDone.Text = "Done"
- End Sub
-
- Private Sub Button5_Click_1(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button5.Click
- Dim daprobe As New SqlDataAdapter("Select * from ipsweep", probe)
-
- Dim ds As New DataSet
- daprobe.Fill(ds, "ipsweep")
- datrain.Fill(ds, "kddcup$")
-
-
- Dim p3 As String
- Dim p12, p27, p31, p35 As Double
- Dim pA, pAB, pid As Integer
-
-
- Dim NoRowsTablekddcup As Integer
- Dim NoRowsTableProbe As Integer
- Dim Attack As Integer
-
- NoRowsTablekddcup = ds.Tables("kddcup$").Rows.Count
- NoRowsTableProbe = ds.Tables("ipsweep").Rows.Count
-
- For Attack = 0 To NoRowsTableProbe - 1
-
- p3 = ds.Tables("ipsweep").Rows(Attack).Item(1)
- p12 = ds.Tables("ipsweep").Rows(Attack).Item(2)
- p27 = ds.Tables("ipsweep").Rows(Attack).Item(3)
- p31 = ds.Tables("ipsweep").Rows(Attack).Item(4)
- p35 = ds.Tables("ipsweep").Rows(Attack).Item(5)
- pA = ds.Tables("ipsweep").Rows(Attack).Item(6)
- pAB = ds.Tables("ipsweep").Rows(Attack).Item(7)
- pid = ds.Tables("ipsweep").Rows(Attack).Item(8)
-
- For KddCounter = 0 To NoRowsTablekddcup - 1
- If p3 = ds.Tables("kddcup$").Rows(KddCounter).Item(2) Then
- If p12 = ds.Tables("kddcup$").Rows(KddCounter).Item(11) Then
- If p27 = ds.Tables("kddcup$").Rows(KddCounter).Item(26) Then
- If p31 = ds.Tables("kddcup$").Rows(KddCounter).Item(30) Then

77

- If p35 = ds.Tables("kddcup$").Rows(KddCounter).Item(34) Then
- If ds.Tables("kddcup$").Rows(KddCounter).Item(41) = "ipsweep." Then
- pAB = pAB + 1
- Else
- pA = pA + 1
- End If
- End If
- End If
- End If
- End If
- End If
- Next
-
- Dim Ocmd As New Data.SqlClient.SqlCommand
- Ocmd.CommandType = CommandType.StoredProcedure
- Ocmd.Connection = probe
- Ocmd.Parameters.AddWithValue("@id", pid)
- Ocmd.Parameters.AddWithValue("@A", pA)
- Ocmd.Parameters.AddWithValue("@AB", pAB)
- Ocmd.CommandText = "updateprobe1"
- Try
- probe.Open()
- Ocmd.ExecuteNonQuery()
- Catch ex As Exception
- End Try
- probe.Close()
- Next
- TxtProbeDone.Text = "Done"
- End Sub
-
- Private Sub Button2_Click_1(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button2.Click
- Dim daprobe As New SqlDataAdapter("Select * from portsweep", probe)
-
- Dim ds As New DataSet
- daprobe.Fill(ds, "portsweep")
- datrain.Fill(ds, "kddcup$")
-
-
- Dim p3 As String
- Dim p12, p27, p31, p35 As Double
- Dim pA, pAB, pid As Integer
-
-
- Dim NoRowsTablekddcup As Integer
- Dim NoRowsTableProbe As Integer
- Dim Attack As Integer
-
- NoRowsTablekddcup = ds.Tables("kddcup$").Rows.Count
- NoRowsTableProbe = ds.Tables("portsweep").Rows.Count
-
- For Attack = 0 To NoRowsTableProbe - 1
-
- p3 = ds.Tables("portsweep").Rows(Attack).Item(1)
- p12 = ds.Tables("portsweep").Rows(Attack).Item(2)
- p27 = ds.Tables("portsweep").Rows(Attack).Item(3)
- p31 = ds.Tables("portsweep").Rows(Attack).Item(4)
- p35 = ds.Tables("portsweep").Rows(Attack).Item(5)
- pA = ds.Tables("portsweep").Rows(Attack).Item(6)
- pAB = ds.Tables("portsweep").Rows(Attack).Item(7)
- pid = ds.Tables("portsweep").Rows(Attack).Item(8)
-
- For KddCounter = 0 To NoRowsTablekddcup - 1
- If p3 = ds.Tables("kddcup$").Rows(KddCounter).Item(2) Then
- If p12 = ds.Tables("kddcup$").Rows(KddCounter).Item(11) Then
- If p27 = ds.Tables("kddcup$").Rows(KddCounter).Item(26) Then
- If p31 = ds.Tables("kddcup$").Rows(KddCounter).Item(30) Then
- If p35 = ds.Tables("kddcup$").Rows(KddCounter).Item(34) Then
- If ds.Tables("kddcup$").Rows(KddCounter).Item(41) = "portsweep." Then
- pAB = pAB + 1
- Else
- pA = pA + 1

78

- End If
- End If
- End If
- End If
- End If
- End If
- Next
-
- Dim Ocmd As New Data.SqlClient.SqlCommand
- Ocmd.CommandType = CommandType.StoredProcedure
- Ocmd.Connection = probe
- Ocmd.Parameters.AddWithValue("@id", pid)
- Ocmd.Parameters.AddWithValue("@A", pA)
- Ocmd.Parameters.AddWithValue("@AB", pAB)
- Ocmd.CommandText = "updateprobe2"
- Try
- probe.Open()
- Ocmd.ExecuteNonQuery()
- Catch ex As Exception
- End Try
- probe.Close()
- Next
- TxtProbeDone.Text = "Done"
- End Sub
-
- Private Sub Button1_Click_1(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button1.Click
- Dim daprobe As New SqlDataAdapter("Select * from satan", probe)
-
- Dim ds As New DataSet
- daprobe.Fill(ds, "satan")
- datrain.Fill(ds, "kddcup$")
-
-
- Dim p3 As String
- Dim p12, p27, p31, p35 As Double
- Dim pA, pAB, pid As Integer
-
-
- Dim NoRowsTablekddcup As Integer
- Dim NoRowsTableProbe As Integer
- Dim Attack As Integer
-
- NoRowsTablekddcup = ds.Tables("kddcup$").Rows.Count
- NoRowsTableProbe = ds.Tables("satan").Rows.Count
-
- For Attack = 0 To NoRowsTableProbe - 1
-
- p3 = ds.Tables("satan").Rows(Attack).Item(1)
- p12 = ds.Tables("satan").Rows(Attack).Item(2)
- p27 = ds.Tables("satan").Rows(Attack).Item(3)
- p31 = ds.Tables("satan").Rows(Attack).Item(4)
- p35 = ds.Tables("satan").Rows(Attack).Item(5)
- pA = ds.Tables("satan").Rows(Attack).Item(6)
- pAB = ds.Tables("satan").Rows(Attack).Item(7)
- pid = ds.Tables("satan").Rows(Attack).Item(8)
-
- For KddCounter = 0 To NoRowsTablekddcup - 1
- If p3 = ds.Tables("kddcup$").Rows(KddCounter).Item(2) Then
- If p12 = ds.Tables("kddcup$").Rows(KddCounter).Item(11) Then
- If p27 = ds.Tables("kddcup$").Rows(KddCounter).Item(26) Then
- If p31 = ds.Tables("kddcup$").Rows(KddCounter).Item(30) Then
- If p35 = ds.Tables("kddcup$").Rows(KddCounter).Item(34) Then
- If ds.Tables("kddcup$").Rows(KddCounter).Item(41) = "satan." Then
- pAB = pAB + 1
- Else
- pA = pA + 1
- End If
- End If
- End If
- End If
- End If

79

- End If
- Next
-
- Dim Ocmd As New Data.SqlClient.SqlCommand
- Ocmd.CommandType = CommandType.StoredProcedure
- Ocmd.Connection = probe
- Ocmd.Parameters.AddWithValue("@id", pid)
- Ocmd.Parameters.AddWithValue("@A", pA)
- Ocmd.Parameters.AddWithValue("@AB", pAB)
- Ocmd.CommandText = "updateprobe3"
- Try
- probe.Open()
- Ocmd.ExecuteNonQuery()
- Catch ex As Exception
- End Try
- probe.Close()
- Next
- TxtProbeDone.Text = "Done"
- End Sub
-
- Private Sub Button19_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button19.Click
-
- Dim dados As New SqlDataAdapter("Select * from back", dos)
- Dim ds As New DataSet
- dados.Fill(ds, "back")
- datrain.Fill(ds, "kddcup$")
-
- Dim d7, d8, d12, d13, d23 As Double
- Dim dA, dAB, did As Integer
-
- Dim NoRowsTablekddcup As Integer
- Dim NoRowsTableDos As Integer
- Dim Attack As Integer
-
- NoRowsTablekddcup = ds.Tables("kddcup$").Rows.Count
- NoRowsTableDos = ds.Tables("back").Rows.Count
-
- For Attack = 0 To NoRowsTableDos - 1
-
- d7 = ds.Tables("back").Rows(Attack).Item(1)
- d8 = ds.Tables("back").Rows(Attack).Item(2)
- d12 = ds.Tables("back").Rows(Attack).Item(3)
- d13 = ds.Tables("back").Rows(Attack).Item(4)
- d23 = ds.Tables("back").Rows(Attack).Item(5)
- dA = ds.Tables("back").Rows(Attack).Item(6)
- dAB = ds.Tables("back").Rows(Attack).Item(7)
- did = ds.Tables("back").Rows(Attack).Item(8)
-
- For KddCounter = 0 To NoRowsTablekddcup - 1
- If d7 = ds.Tables("kddcup$").Rows(KddCounter).Item(6) Then
- If d8 = ds.Tables("kddcup$").Rows(KddCounter).Item(7) Then
- If d12 = ds.Tables("kddcup$").Rows(KddCounter).Item(11) Then
- If d13 = ds.Tables("kddcup$").Rows(KddCounter).Item(12) Then
- If d23 = ds.Tables("kddcup$").Rows(KddCounter).Item(22) Then
- If ds.Tables("kddcup$").Rows(KddCounter).Item(41) = "back." Then
- dAB = dAB + 1
- Else
- dA = dA + 1
- End If
- End If
- End If
- End If
- End If
- End If
- Next
-
- Dim Ocmd As New Data.SqlClient.SqlCommand
- Ocmd.CommandType = CommandType.StoredProcedure
- Ocmd.Connection = dos
- Ocmd.Parameters.AddWithValue("@id", did)
- Ocmd.Parameters.AddWithValue("@A", dA)

80

- Ocmd.Parameters.AddWithValue("@AB", dAB)
- Ocmd.CommandText = "updatedos1"
- Try
- dos.Open()
- Ocmd.ExecuteNonQuery()
- Catch ex As Exception
- End Try
- dos.Close()
- Next
- TxtDosDone.Text = "Done"
- End Sub
-
- Private Sub Button18_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button18.Click
- Dim dados As New SqlDataAdapter("Select * from land", dos)
- Dim ds As New DataSet
- dados.Fill(ds, "land")
- datrain.Fill(ds, "kddcup$")
-
-
- Dim d7, d8, d12, d13, d23 As Double
- Dim dA, dAB, did As Integer
-
- Dim NoRowsTablekddcup As Integer
- Dim NoRowsTableDos As Integer
- Dim Attack As Integer
-
- NoRowsTablekddcup = ds.Tables("kddcup$").Rows.Count
- NoRowsTableDos = ds.Tables("land").Rows.Count
-
- For Attack = 0 To NoRowsTableDos - 1
-
- d7 = ds.Tables("land").Rows(Attack).Item(1)
- d8 = ds.Tables("land").Rows(Attack).Item(2)
- d12 = ds.Tables("land").Rows(Attack).Item(3)
- d13 = ds.Tables("land").Rows(Attack).Item(4)
- d23 = ds.Tables("land").Rows(Attack).Item(5)
- dA = ds.Tables("land").Rows(Attack).Item(6)
- dAB = ds.Tables("land").Rows(Attack).Item(7)
- did = ds.Tables("land").Rows(Attack).Item(8)
-
- For KddCounter = 0 To NoRowsTablekddcup - 1
- If d7 = ds.Tables("kddcup$").Rows(KddCounter).Item(6) Then
- If d8 = ds.Tables("kddcup$").Rows(KddCounter).Item(7) Then
- If d12 = ds.Tables("kddcup$").Rows(KddCounter).Item(11) Then
- If d13 = ds.Tables("kddcup$").Rows(KddCounter).Item(12) Then
- If d23 = ds.Tables("kddcup$").Rows(KddCounter).Item(22) Then
- If ds.Tables("kddcup$").Rows(KddCounter).Item(41) = "land." Then
- dAB = dAB + 1
- Else
- dA = dA + 1
- End If
- End If
- End If
- End If
- End If
- End If
- Next
-
- Dim Ocmd As New Data.SqlClient.SqlCommand
- Ocmd.CommandType = CommandType.StoredProcedure
- Ocmd.Connection = dos
- Ocmd.Parameters.AddWithValue("@id", did)
- Ocmd.Parameters.AddWithValue("@A", dA)
- Ocmd.Parameters.AddWithValue("@AB", dAB)
- Ocmd.CommandText = "updatedos2"
- Try
- dos.Open()
- Ocmd.ExecuteNonQuery()
- Catch ex As Exception
- End Try
- dos.Close()

81

- Next
- TxtDosDone.Text = "Done"
- End Sub
-
- Private Sub Button17_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button17.Click
- Dim dados As New SqlDataAdapter("Select * from neptune", dos)
- Dim ds As New DataSet
- dados.Fill(ds, "neptune")
- datrain.Fill(ds, "kddcup$")
-
-
- Dim d7, d8, d12, d13, d23 As Double
- Dim dA, dAB, did As Integer
-
- Dim NoRowsTablekddcup As Integer
- Dim NoRowsTableDos As Integer
- Dim Attack As Integer
-
- NoRowsTablekddcup = ds.Tables("kddcup$").Rows.Count
- NoRowsTableDos = ds.Tables("neptune").Rows.Count
-
- For Attack = 0 To NoRowsTableDos - 1
-
- d7 = ds.Tables("neptune").Rows(Attack).Item(1)
- d8 = ds.Tables("neptune").Rows(Attack).Item(2)
- d12 = ds.Tables("neptune").Rows(Attack).Item(3)
- d13 = ds.Tables("neptune").Rows(Attack).Item(4)
- d23 = ds.Tables("neptune").Rows(Attack).Item(5)
- dA = ds.Tables("neptune").Rows(Attack).Item(6)
- dAB = ds.Tables("neptune").Rows(Attack).Item(7)
- did = ds.Tables("neptune").Rows(Attack).Item(8)
-
- For KddCounter = 0 To NoRowsTablekddcup - 1
- If d7 = ds.Tables("kddcup$").Rows(KddCounter).Item(6) Then
- If d8 = ds.Tables("kddcup$").Rows(KddCounter).Item(7) Then
- If d12 = ds.Tables("kddcup$").Rows(KddCounter).Item(11) Then
- If d13 = ds.Tables("kddcup$").Rows(KddCounter).Item(12) Then
- If d23 = ds.Tables("kddcup$").Rows(KddCounter).Item(22) Then
- If ds.Tables("kddcup$").Rows(KddCounter).Item(41) = "neptune." Then
- dAB = dAB + 1
- Else
- dA = dA + 1
- End If
- End If
- End If
- End If
- End If
- End If
- Next
-
- Dim Ocmd As New Data.SqlClient.SqlCommand
- Ocmd.CommandType = CommandType.StoredProcedure
- Ocmd.Connection = dos
- Ocmd.Parameters.AddWithValue("@id", did)
- Ocmd.Parameters.AddWithValue("@A", dA)
- Ocmd.Parameters.AddWithValue("@AB", dAB)
- Ocmd.CommandText = "updatedos3"
- Try
- dos.Open()
- Ocmd.ExecuteNonQuery()
- Catch ex As Exception
- End Try
- dos.Close()
- Next
- TxtDosDone.Text = "Done"
- End Sub
-
- Private Sub Button16_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button16.Click
- Dim dados As New SqlDataAdapter("Select * from pod", dos)
- Dim ds As New DataSet

82

- dados.Fill(ds, "pod")
- datrain.Fill(ds, "kddcup$")
-
-
- Dim d7, d8, d12, d13, d23 As Double
- Dim dA, dAB, did As Integer
-
- Dim NoRowsTablekddcup As Integer
- Dim NoRowsTableDos As Integer
- Dim Attack As Integer
-
- NoRowsTablekddcup = ds.Tables("kddcup$").Rows.Count
- NoRowsTableDos = ds.Tables("pod").Rows.Count
-
- For Attack = 0 To NoRowsTableDos - 1
-
- d7 = ds.Tables("pod").Rows(Attack).Item(1)
- d8 = ds.Tables("pod").Rows(Attack).Item(2)
- d12 = ds.Tables("pod").Rows(Attack).Item(3)
- d13 = ds.Tables("pod").Rows(Attack).Item(4)
- d23 = ds.Tables("pod").Rows(Attack).Item(5)
- dA = ds.Tables("pod").Rows(Attack).Item(6)
- dAB = ds.Tables("pod").Rows(Attack).Item(7)
- did = ds.Tables("pod").Rows(Attack).Item(8)
-
- For KddCounter = 0 To NoRowsTablekddcup - 1
- If d7 = ds.Tables("kddcup$").Rows(KddCounter).Item(6) Then
- If d8 = ds.Tables("kddcup$").Rows(KddCounter).Item(7) Then
- If d12 = ds.Tables("kddcup$").Rows(KddCounter).Item(11) Then
- If d13 = ds.Tables("kddcup$").Rows(KddCounter).Item(12) Then
- If d23 = ds.Tables("kddcup$").Rows(KddCounter).Item(22) Then
- If ds.Tables("kddcup$").Rows(KddCounter).Item(41) = "pod." Then
- dAB = dAB + 1
- Else
- dA = dA + 1
- End If
- End If
- End If
- End If
- End If
- End If
- Next
-
- Dim Ocmd As New Data.SqlClient.SqlCommand
- Ocmd.CommandType = CommandType.StoredProcedure
- Ocmd.Connection = dos
- Ocmd.Parameters.AddWithValue("@id", did)
- Ocmd.Parameters.AddWithValue("@A", dA)
- Ocmd.Parameters.AddWithValue("@AB", dAB)
- Ocmd.CommandText = "updatedos4"
- Try
- dos.Open()
- Ocmd.ExecuteNonQuery()
- Catch ex As Exception
- End Try
- dos.Close()
- Next
- TxtDosDone.Text = "Done"
- End Sub
-
- Private Sub Button15_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button15.Click
- Dim dados As New SqlDataAdapter("Select * from smurf", dos)
- Dim ds As New DataSet
- dados.Fill(ds, "smurf")
- datrain.Fill(ds, "kddcup$")
-
-
- Dim d7, d8, d12, d13, d23 As Double
- Dim dA, dAB, did As Integer
-
- Dim NoRowsTablekddcup As Integer

83

- Dim NoRowsTableDos As Integer
- Dim Attack As Integer
-
- NoRowsTablekddcup = ds.Tables("kddcup$").Rows.Count
- NoRowsTableDos = ds.Tables("smurf").Rows.Count
-
- For Attack = 0 To NoRowsTableDos - 1
-
- d7 = ds.Tables("smurf").Rows(Attack).Item(1)
- d8 = ds.Tables("smurf").Rows(Attack).Item(2)
- d12 = ds.Tables("smurf").Rows(Attack).Item(3)
- d13 = ds.Tables("smurf").Rows(Attack).Item(4)
- d23 = ds.Tables("smurf").Rows(Attack).Item(5)
- dA = ds.Tables("smurf").Rows(Attack).Item(6)
- dAB = ds.Tables("smurf").Rows(Attack).Item(7)
- did = ds.Tables("smurf").Rows(Attack).Item(8)
-
- For KddCounter = 0 To NoRowsTablekddcup - 1
- If d7 = ds.Tables("kddcup$").Rows(KddCounter).Item(6) Then
- If d8 = ds.Tables("kddcup$").Rows(KddCounter).Item(7) Then
- If d12 = ds.Tables("kddcup$").Rows(KddCounter).Item(11) Then
- If d13 = ds.Tables("kddcup$").Rows(KddCounter).Item(12) Then
- If d23 = ds.Tables("kddcup$").Rows(KddCounter).Item(22) Then
- If ds.Tables("kddcup$").Rows(KddCounter).Item(41) = "smurf." Then
- dAB = dAB + 1
- Else
- dA = dA + 1
- End If
- End If
- End If
- End If
- End If
- End If
- Next
-
- Dim Ocmd As New Data.SqlClient.SqlCommand
- Ocmd.CommandType = CommandType.StoredProcedure
- Ocmd.Connection = dos
- Ocmd.Parameters.AddWithValue("@id", did)
- Ocmd.Parameters.AddWithValue("@A", dA)
- Ocmd.Parameters.AddWithValue("@AB", dAB)
- Ocmd.CommandText = "updatedos5"
- Try
- dos.Open()
- Ocmd.ExecuteNonQuery()
- Catch ex As Exception
- End Try
- dos.Close()
- Next
- TxtDosDone.Text = "Done"
- End Sub
-
- Private Sub Button6_Click_1(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button6.Click
- Dim dados As New SqlDataAdapter("Select * from teardrop", dos)
- Dim ds As New DataSet
- dados.Fill(ds, "teardrop")
- datrain.Fill(ds, "kddcup$")
-
-
- Dim d7, d8, d12, d13, d23 As Double
- Dim dA, dAB, did As Integer
-
- Dim NoRowsTablekddcup As Integer
- Dim NoRowsTableDos As Integer
- Dim Attack As Integer
-
- NoRowsTablekddcup = ds.Tables("kddcup$").Rows.Count
- NoRowsTableDos = ds.Tables("teardrop").Rows.Count
-
- For Attack = 0 To NoRowsTableDos - 1
-

84

- d7 = ds.Tables("teardrop").Rows(Attack).Item(1)
- d8 = ds.Tables("teardrop").Rows(Attack).Item(2)
- d12 = ds.Tables("teardrop").Rows(Attack).Item(3)
- d13 = ds.Tables("teardrop").Rows(Attack).Item(4)
- d23 = ds.Tables("teardrop").Rows(Attack).Item(5)
- dA = ds.Tables("teardrop").Rows(Attack).Item(6)
- dAB = ds.Tables("teardrop").Rows(Attack).Item(7)
- did = ds.Tables("teardrop").Rows(Attack).Item(8)
-
- For KddCounter = 0 To NoRowsTablekddcup - 1
- If d7 = ds.Tables("kddcup$").Rows(KddCounter).Item(6) Then
- If d8 = ds.Tables("kddcup$").Rows(KddCounter).Item(7) Then
- If d12 = ds.Tables("kddcup$").Rows(KddCounter).Item(11) Then
- If d13 = ds.Tables("kddcup$").Rows(KddCounter).Item(12) Then
- If d23 = ds.Tables("kddcup$").Rows(KddCounter).Item(22) Then
- If ds.Tables("kddcup$").Rows(KddCounter).Item(41) = "teardrop." Then
- dAB = dAB + 1
- Else
- dA = dA + 1
- End If
- End If
- End If
- End If
- End If
- End If
- Next
-
- Dim Ocmd As New Data.SqlClient.SqlCommand
- Ocmd.CommandType = CommandType.StoredProcedure
- Ocmd.Connection = dos
- Ocmd.Parameters.AddWithValue("@id", did)
- Ocmd.Parameters.AddWithValue("@A", dA)
- Ocmd.Parameters.AddWithValue("@AB", dAB)
- Ocmd.CommandText = "updatedos6"
- Try
- dos.Open()
- Ocmd.ExecuteNonQuery()
- Catch ex As Exception
- End Try
- dos.Close()
- Next
- TxtDosDone.Text = "Done"
- End Sub

- Code for calculating Fitness Function

Private Sub Button21_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
Button21.Click
 Dim dau2r As New SqlDataAdapter("Select * from buffer_overflow", u2r)
 Dim ds As New DataSet
 dau2r.Fill(ds, "buffer_overflow")
 Dim uA, uAB, uid As Integer
 Dim uFitnessValue As Double
 Dim NoRowsTableU2R As Integer
 NoRowsTableU2R = ds.Tables("buffer_overflow").Rows.Count
 Dim FirstPopValue, FinalPopValue, maxA, maxAB As Integer
 For i = 0 To NoRowsTableU2R - 1 Step 400
 maxA = 0
 maxAB = 0
 FirstPopValue = i
 FinalPopValue = i + 399
 If NoRowsTableU2R < FinalPopValue Then
 FinalPopValue = NoRowsTableU2R - 1
 End If
 For j = FirstPopValue To FinalPopValue

 If ds.Tables("buffer_overflow").Rows(j).Item(6) > maxA Then
 maxA = ds.Tables("buffer_overflow").Rows(j).Item(6)
 End If
 If ds.Tables("buffer_overflow").Rows(j).Item(7) > maxAB Then
 maxAB = ds.Tables("buffer_overflow").Rows(j).Item(7)

85

 End If
 Next
 For y = FirstPopValue To FinalPopValue
 uA = ds.Tables("buffer_overflow").Rows(y).Item(6)
 uAB = ds.Tables("buffer_overflow").Rows(y).Item(7)
 uid = ds.Tables("buffer_overflow").Rows(y).Item(8)
 uFitnessValue = 2 + ((uAB - uA) / (uA + uAB)) + uAB / maxAB - uA / maxA
 uFitnessValue = Double.Parse(uFitnessValue.ToString("#0.000"))
 Dim Ocmd As New Data.SqlClient.SqlCommand
 Ocmd.CommandType = CommandType.StoredProcedure
 Ocmd.Connection = u2r
 Ocmd.Parameters.AddWithValue("@id", uid)
 Ocmd.Parameters.AddWithValue("@FitnessValue", uFitnessValue)
 Ocmd.CommandText = "fitnessu2r1"
 Try
 u2r.Open()
 Ocmd.ExecuteNonQuery()
 Catch ex As Exception
 MsgBox(ex.Message)
 End Try
 u2r.Close()
 Next
 Next
 TxtU2RDone.Text = "Done"
 End Sub

 Private Sub Button20_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles Button20.Click
 Dim dau2r As New SqlDataAdapter("Select * from rootkit", u2r)
 Dim ds As New DataSet
 dau2r.Fill(ds, "rootkit")
 Dim uA, uAB, uid As Integer
 Dim uFitnessValue As Double
 Dim NoRowsTableU2R As Integer
 NoRowsTableU2R = ds.Tables("rootkit").Rows.Count
 Dim FirstPopValue, FinalPopValue, maxA, maxAB As Integer
 For i = 0 To NoRowsTableU2R - 1 Step 400
 maxA = 0
 maxAB = 0
 FirstPopValue = i
 FinalPopValue = i + 399
 If NoRowsTableU2R < FinalPopValue Then
 FinalPopValue = NoRowsTableU2R - 1
 End If
 For j = FirstPopValue To FinalPopValue

 If ds.Tables("rootkit").Rows(j).Item(6) > maxA Then
 maxA = ds.Tables("rootkit").Rows(j).Item(6)
 End If
 If ds.Tables("rootkit").Rows(j).Item(7) > maxAB Then
 maxAB = ds.Tables("rootkit").Rows(j).Item(7)
 End If
 Next
 For y = FirstPopValue To FinalPopValue
 uA = ds.Tables("rootkit").Rows(y).Item(6)
 uAB = ds.Tables("rootkit").Rows(y).Item(7)
 uid = ds.Tables("rootkit").Rows(y).Item(8)
 uFitnessValue = 2 + ((uAB - uA) / (uA + uAB)) + uAB / maxAB - uA / maxA
 uFitnessValue = Double.Parse(uFitnessValue.ToString("#0.000"))
 Dim Ocmd As New Data.SqlClient.SqlCommand
 Ocmd.CommandType = CommandType.StoredProcedure
 Ocmd.Connection = u2r
 Ocmd.Parameters.AddWithValue("@id", uid)
 Ocmd.Parameters.AddWithValue("@FitnessValue", uFitnessValue)
 Ocmd.CommandText = "fitnessu2r2"
 Try
 u2r.Open()
 Ocmd.ExecuteNonQuery()
 Catch ex As Exception
 MsgBox(ex.Message)
 End Try
 u2r.Close()
 Next

86

 Next
 TxtU2RDone.Text = "Done"
 End Sub

 Private Sub Button22_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles Button22.Click
 Dim dar2l As New SqlDataAdapter("Select * from phf", r2l)
 Dim ds As New DataSet
 dar2l.Fill(ds, "phf")
 Dim rA, rAB, rid As Integer
 Dim rFitnessValue As Double
 Dim NoRowsTableR2L As Integer
 NoRowsTableR2L = ds.Tables("phf").Rows.Count
 Dim FirstPopValue, FinalPopValue, maxA, maxAB As Integer
 For i = 0 To NoRowsTableR2L - 1 Step 400
 maxA = 0
 maxAB = 0
 FirstPopValue = i
 FinalPopValue = i + 399
 If NoRowsTableR2L < FinalPopValue Then
 FinalPopValue = NoRowsTableR2L - 1
 End If
 For j = FirstPopValue To FinalPopValue

 If ds.Tables("phf").Rows(j).Item(6) > maxA Then
 maxA = ds.Tables("phf").Rows(j).Item(6)
 End If
 If ds.Tables("phf").Rows(j).Item(7) > maxAB Then
 maxAB = ds.Tables("phf").Rows(j).Item(7)
 End If
 Next
 For y = FirstPopValue To FinalPopValue
 rA = ds.Tables("phf").Rows(y).Item(6)
 rAB = ds.Tables("phf").Rows(y).Item(7)
 rid = ds.Tables("phf").Rows(y).Item(8)
 rFitnessValue = 2 + ((rAB - rA) / (rA + rAB)) + rAB / maxAB - rA / maxA
 rFitnessValue = Double.Parse(rFitnessValue.ToString("#0.000"))
 Dim Ocmd As New Data.SqlClient.SqlCommand
 Ocmd.CommandType = CommandType.StoredProcedure
 Ocmd.Connection = r2l
 Ocmd.Parameters.AddWithValue("@id", rid)
 Ocmd.Parameters.AddWithValue("@FitnessValue", rFitnessValue)
 Ocmd.CommandText = "fitnessr2l"
 Try
 r2l.Open()
 Ocmd.ExecuteNonQuery()
 Catch ex As Exception
 MsgBox(ex.Message)
 End Try
 r2l.Close()
 Next
 Next
 TxtR2LDone.Text = "Done"
 End Sub
 Private Sub Button5_Click_1(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles Button5.Click
 Dim daprobe As New SqlDataAdapter("Select * from ipsweep", probe)
 Dim ds As New DataSet
 daprobe.Fill(ds, "ipsweep")
 Dim pA, pAB, pid As Integer
 Dim pFitnessValue As Double
 Dim NoRowsTableprobe As Integer
 NoRowsTableprobe = ds.Tables("ipsweep").Rows.Count
 Dim FirstPopValue, FinalPopValue, maxA, maxAB As Integer
 For i = 0 To NoRowsTableprobe - 1 Step 400
 maxA = 0
 maxAB = 0
 FirstPopValue = i
 FinalPopValue = i + 399
 If NoRowsTableprobe < FinalPopValue Then
 FinalPopValue = NoRowsTableprobe - 1
 End If
 For j = FirstPopValue To FinalPopValue

87

 If ds.Tables("ipsweep").Rows(j).Item(6) > maxA Then
 maxA = ds.Tables("ipsweep").Rows(j).Item(6)
 End If
 If ds.Tables("ipsweep").Rows(j).Item(7) > maxAB Then
 maxAB = ds.Tables("ipsweep").Rows(j).Item(7)
 End If
 Next
 For y = FirstPopValue To FinalPopValue
 pA = ds.Tables("ipsweep").Rows(y).Item(6)
 pAB = ds.Tables("ipsweep").Rows(y).Item(7)
 pid = ds.Tables("ipsweep").Rows(y).Item(8)
 pFitnessValue = 2 + ((pAB - pA) / (pA + pAB)) + pAB / maxAB - pA / maxA
 pFitnessValue = Double.Parse(pFitnessValue.ToString("#0.000"))
 Dim Ocmd As New Data.SqlClient.SqlCommand
 Ocmd.CommandType = CommandType.StoredProcedure
 Ocmd.Connection = probe
 Ocmd.Parameters.AddWithValue("@id", pid)
 Ocmd.Parameters.AddWithValue("@FitnessValue", pFitnessValue)
 Ocmd.CommandText = "fitnessprobe1"
 Try
 probe.Open()
 Ocmd.ExecuteNonQuery()
 Catch ex As Exception
 MsgBox(ex.Message)
 End Try
 probe.Close()
 Next
 Next
 TxtProbeDone.Text = "Done"
 End Sub
 Private Sub Button2_Click_1(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles Button2.Click
 Dim daprobe As New SqlDataAdapter("Select * from portsweep", probe)
 Dim ds As New DataSet
 daprobe.Fill(ds, "portsweep")
 Dim pA, pAB, pid As Integer
 Dim pFitnessValue As Double
 Dim NoRowsTableprobe As Integer
 NoRowsTableprobe = ds.Tables("portsweep").Rows.Count
 Dim FirstPopValue, FinalPopValue, maxA, maxAB As Integer
 For i = 0 To NoRowsTableprobe - 1 Step 400
 maxA = 0
 maxAB = 0
 FirstPopValue = i
 FinalPopValue = i + 399
 If NoRowsTableprobe < FinalPopValue Then
 FinalPopValue = NoRowsTableprobe - 1
 End If
 For j = FirstPopValue To FinalPopValue
 If ds.Tables("portsweep").Rows(j).Item(6) > maxA Then
 maxA = ds.Tables("portsweep").Rows(j).Item(6)
 End If
 If ds.Tables("portsweep").Rows(j).Item(7) > maxAB Then
 maxAB = ds.Tables("portsweep").Rows(j).Item(7)
 End If
 Next
 For y = FirstPopValue To FinalPopValue
 pA = ds.Tables("portsweep").Rows(y).Item(6)
 pAB = ds.Tables("portsweep").Rows(y).Item(7)
 pid = ds.Tables("portsweep").Rows(y).Item(8)
 pFitnessValue = 2 + ((pAB - pA) / (pA + pAB)) + pAB / maxAB - pA / maxA
 pFitnessValue = Double.Parse(pFitnessValue.ToString("#0.000"))
 Dim Ocmd As New Data.SqlClient.SqlCommand
 Ocmd.CommandType = CommandType.StoredProcedure
 Ocmd.Connection = probe
 Ocmd.Parameters.AddWithValue("@id", pid)
 Ocmd.Parameters.AddWithValue("@FitnessValue", pFitnessValue)
 Ocmd.CommandText = "fitnessprobe2"

 Try
 probe.Open()
 Ocmd.ExecuteNonQuery()
 Catch ex As Exception
 MsgBox(ex.Message)

88

 End Try
 probe.Close()
 Next
 Next
 TxtProbeDone.Text = "Done"
 End Sub
 Private Sub Button1_Click_1(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles Button1.Click
 Dim daprobe As New SqlDataAdapter("Select * from satan", probe)
 Dim ds As New DataSet
 daprobe.Fill(ds, "satan")
 Dim pA, pAB, pid As Integer
 Dim pFitnessValue As Double
 Dim NoRowsTableprobe As Integer
 NoRowsTableprobe = ds.Tables("satan").Rows.Count
 Dim FirstPopValue, FinalPopValue, maxA, maxAB As Integer
 For i = 0 To NoRowsTableprobe - 1 Step 400
 maxA = 0
 maxAB = 0
 FirstPopValue = i
 FinalPopValue = i + 399
 If NoRowsTableprobe < FinalPopValue Then
 FinalPopValue = NoRowsTableprobe - 1
 End If
 For j = FirstPopValue To FinalPopValue
 If ds.Tables("satan").Rows(j).Item(6) > maxA Then
 maxA = ds.Tables("satan").Rows(j).Item(6)
 End If
 If ds.Tables("satan").Rows(j).Item(7) > maxAB Then
 maxAB = ds.Tables("satan").Rows(j).Item(7)
 End If
 Next
 For y = FirstPopValue To FinalPopValue
 pA = ds.Tables("satan").Rows(y).Item(6)
 pAB = ds.Tables("satan").Rows(y).Item(7)
 pid = ds.Tables("satan").Rows(y).Item(8)
 pFitnessValue = 2 + ((pAB - pA) / (pA + pAB)) + pAB / maxAB - pA / maxA
 pFitnessValue = Double.Parse(pFitnessValue.ToString("#0.000"))
 Dim Ocmd As New Data.SqlClient.SqlCommand
 Ocmd.CommandType = CommandType.StoredProcedure
 Ocmd.Connection = probe
 Ocmd.Parameters.AddWithValue("@id", pid)
 Ocmd.Parameters.AddWithValue("@FitnessValue", pFitnessValue)
 Ocmd.CommandText = "fitnessprobe3"
 Try
 probe.Open()
 Ocmd.ExecuteNonQuery()
 Catch ex As Exception
 MsgBox(ex.Message)
 End Try
 probe.Close()
 Next
 Next
 TxtProbeDone.Text = "Done"
 End Sub
 Private Sub Button19_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles Button19.Click
 Dim dados As New SqlDataAdapter("Select * from back", dos)
 Dim ds As New DataSet
 dados.Fill(ds, "back")
 Dim dosA, dosAB, dosid As Integer
 Dim dosFitnessValue As Double
 Dim NoRowsTabledos As Integer
 NoRowsTabledos = ds.Tables("back").Rows.Count
 Dim FirstPopValue, FinalPopValue, maxA, maxAB As Integer
 For i = 0 To NoRowsTabledos - 1 Step 400
 maxA = 0
 maxAB = 0
 FirstPopValue = i
 FinalPopValue = i + 399
 If NoRowsTabledos < FinalPopValue Then
 FinalPopValue = NoRowsTabledos - 1
 End If

89

 For j = FirstPopValue To FinalPopValue
 If ds.Tables("back").Rows(j).Item(6) > maxA Then
 maxA = ds.Tables("back").Rows(j).Item(6)
 End If
 If ds.Tables("back").Rows(j).Item(7) > maxAB Then
 maxAB = ds.Tables("back").Rows(j).Item(7)
 End If
 Next
 For y = FirstPopValue To FinalPopValue
 dosA = ds.Tables("back").Rows(y).Item(6)
 dosAB = ds.Tables("back").Rows(y).Item(7)
 dosid = ds.Tables("back").Rows(y).Item(8)
 dosFitnessValue = 2 + ((dosAB - dosA) / (dosA + dosAB)) + dosAB / maxAB - dosA / maxA
 dosFitnessValue = Double.Parse(dosFitnessValue.ToString("#0.000"))
 Dim Ocmd As New Data.SqlClient.SqlCommand
 Ocmd.CommandType = CommandType.StoredProcedure
 Ocmd.Connection = dos
 Ocmd.Parameters.AddWithValue("@id", dosid)
 Ocmd.Parameters.AddWithValue("@FitnessValue", dosFitnessValue)
 Ocmd.CommandText = "fitnessdos1"
 Try
 dos.Open()
 Ocmd.ExecuteNonQuery()
 Catch ex As Exception
 MsgBox(ex.Message)
 End Try
 dos.Close()
 Next
 Next
 TxtDosDone.Text = "Done"
 End Sub
 Private Sub Button18_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles Button18.Click
 Dim dados As New SqlDataAdapter("Select * from land", dos)
 Dim ds As New DataSet
 dados.Fill(ds, "land")
 Dim dosA, dosAB, dosid As Integer
 Dim dosFitnessValue As Double
 Dim NoRowsTabledos As Integer
 NoRowsTabledos = ds.Tables("land").Rows.Count
 Dim FirstPopValue, FinalPopValue, maxA, maxAB As Integer
 For i = 0 To NoRowsTabledos - 1 Step 400
 maxA = 0
 maxAB = 0
 FirstPopValue = i
 FinalPopValue = i + 399
 If NoRowsTabledos < FinalPopValue Then
 FinalPopValue = NoRowsTabledos - 1
 End If

 For j = FirstPopValue To FinalPopValue
 If ds.Tables("land").Rows(j).Item(6) > maxA Then
 maxA = ds.Tables("land").Rows(j).Item(6)
 End If
 If ds.Tables("land").Rows(j).Item(7) > maxAB Then
 maxAB = ds.Tables("land").Rows(j).Item(7)
 End If
 Next
 For y = FirstPopValue To FinalPopValue
 dosA = ds.Tables("land").Rows(y).Item(6)
 dosAB = ds.Tables("land").Rows(y).Item(7)
 dosid = ds.Tables("land").Rows(y).Item(8)
 dosFitnessValue = 2 + ((dosAB - dosA) / (dosA + dosAB)) + dosAB / maxAB - dosA / maxA
 dosFitnessValue = Double.Parse(dosFitnessValue.ToString("#0.000"))
 Dim Ocmd As New Data.SqlClient.SqlCommand
 Ocmd.CommandType = CommandType.StoredProcedure
 Ocmd.Connection = dos
 Ocmd.Parameters.AddWithValue("@id", dosid)
 Ocmd.Parameters.AddWithValue("@FitnessValue", dosFitnessValue)
 Ocmd.CommandText = "fitnessdos2"
 Try
 dos.Open()
 Ocmd.ExecuteNonQuery()

90

 Catch ex As Exception
 MsgBox(ex.Message)
 End Try
 dos.Close()
 Next
 Next
 TxtDosDone.Text = "Done"
 End Sub
 Private Sub Button17_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles Button17.Click
 Dim dados As New SqlDataAdapter("Select * from neptune", dos)
 Dim ds As New DataSet
 dados.Fill(ds, "neptune")
 Dim dosA, dosAB, dosid As Integer
 Dim dosFitnessValue As Double
 Dim NoRowsTabledos As Integer
 NoRowsTabledos = ds.Tables("neptune").Rows.Count
 Dim FirstPopValue, FinalPopValue, maxA, maxAB As Integer
 For i = 0 To NoRowsTabledos - 1 Step 400
 maxA = 0
 maxAB = 0
 FirstPopValue = i
 FinalPopValue = i + 399
 If NoRowsTabledos < FinalPopValue Then
 FinalPopValue = NoRowsTabledos - 1
 End If
 For j = FirstPopValue To FinalPopValue
 If ds.Tables("neptune").Rows(j).Item(6) > maxA Then
 maxA = ds.Tables("neptune").Rows(j).Item(6)
 End If
 If ds.Tables("neptune").Rows(j).Item(7) > maxAB Then
 maxAB = ds.Tables("neptune").Rows(j).Item(7)
 End If
 Next
 For y = FirstPopValue To FinalPopValue
 dosA = ds.Tables("neptune").Rows(y).Item(6)
 dosAB = ds.Tables("neptune").Rows(y).Item(7)
 dosid = ds.Tables("neptune").Rows(y).Item(8)
 dosFitnessValue = 2 + ((dosAB - dosA) / (dosA + dosAB)) + dosAB / maxAB - dosA / maxA
 dosFitnessValue = Double.Parse(dosFitnessValue.ToString("#0.000"))
 Dim Ocmd As New Data.SqlClient.SqlCommand
 Ocmd.CommandType = CommandType.StoredProcedure
 Ocmd.Connection = dos
 Ocmd.Parameters.AddWithValue("@id", dosid)
 Ocmd.Parameters.AddWithValue("@FitnessValue", dosFitnessValue)
 Ocmd.CommandText = "fitnessdos3"
 Try
 dos.Open()
 Ocmd.ExecuteNonQuery()
 Catch ex As Exception
 MsgBox(ex.Message)
 End Try

 dos.Close()
 Next
 Next
 TxtDosDone.Text = "Done"
 End Sub
 Private Sub Button16_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles Button16.Click
 Dim dados As New SqlDataAdapter("Select * from pod", dos)
 Dim ds As New DataSet
 dados.Fill(ds, "pod")
 Dim dosA, dosAB, dosid As Integer
 Dim dosFitnessValue As Double
 Dim NoRowsTabledos As Integer
 NoRowsTabledos = ds.Tables("pod").Rows.Count
 Dim FirstPopValue, FinalPopValue, maxA, maxAB As Integer
 For i = 0 To NoRowsTabledos - 1 Step 400
 maxA = 0
 maxAB = 0
 FirstPopValue = i
 FinalPopValue = i + 399
 If NoRowsTabledos < FinalPopValue Then

91

 FinalPopValue = NoRowsTabledos - 1
 End If
 For j = FirstPopValue To FinalPopValue
 If ds.Tables("pod").Rows(j).Item(6) > maxA Then
 maxA = ds.Tables("pod").Rows(j).Item(6)
 End If
 If ds.Tables("pod").Rows(j).Item(7) > maxAB Then
 maxAB = ds.Tables("pod").Rows(j).Item(7)
 End If
 Next
 For y = FirstPopValue To FinalPopValue
 dosA = ds.Tables("pod").Rows(y).Item(6)
 dosAB = ds.Tables("pod").Rows(y).Item(7)
 dosid = ds.Tables("pod").Rows(y).Item(8)
 dosFitnessValue = 2 + ((dosAB - dosA) / (dosA + dosAB)) + dosAB / maxAB - dosA / maxA
 dosFitnessValue = Double.Parse(dosFitnessValue.ToString("#0.000"))
 Dim Ocmd As New Data.SqlClient.SqlCommand
 Ocmd.CommandType = CommandType.StoredProcedure
 Ocmd.Connection = dos
 Ocmd.Parameters.AddWithValue("@id", dosid)
 Ocmd.Parameters.AddWithValue("@FitnessValue", dosFitnessValue)
 Ocmd.CommandText = "fitnessdos4"
 Try
 dos.Open()
 Ocmd.ExecuteNonQuery()
 Catch ex As Exception
 MsgBox(ex.Message)
 End Try
 dos.Close()
 Next
 Next
 TxtDosDone.Text = "Done"
 End Sub
 Private Sub Button15_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles Button15.Click
 Dim dados As New SqlDataAdapter("Select * from smurf", dos)
 Dim ds As New DataSet
 dados.Fill(ds, "smurf")
 Dim dosA, dosAB, dosid As Integer
 Dim dosFitnessValue As Double
 Dim NoRowsTabledos As Integer
 NoRowsTabledos = ds.Tables("smurf").Rows.Count
 Dim FirstPopValue, FinalPopValue, maxA, maxAB As Integer
 For i = 0 To NoRowsTabledos - 1 Step 400
 maxA = 0
 maxAB = 0
 FirstPopValue = i
 FinalPopValue = i + 399
 If NoRowsTabledos < FinalPopValue Then
 FinalPopValue = NoRowsTabledos - 1
 End If
 For j = FirstPopValue To FinalPopValue
 If ds.Tables("smurf").Rows(j).Item(6) > maxA Then
 maxA = ds.Tables("smurf").Rows(j).Item(6)
 End If
 If ds.Tables("smurf").Rows(j).Item(7) > maxAB Then
 maxAB = ds.Tables("smurf").Rows(j).Item(7)
 End If
 Next
 For y = FirstPopValue To FinalPopValue
 dosA = ds.Tables("smurf").Rows(y).Item(6)
 dosAB = ds.Tables("smurf").Rows(y).Item(7)
 dosid = ds.Tables("smurf").Rows(y).Item(8)
 dosFitnessValue = 2 + ((dosAB - dosA) / (dosA + dosAB)) + dosAB / maxAB - dosA / maxA
 dosFitnessValue = Double.Parse(dosFitnessValue.ToString("#0.000"))
 Dim Ocmd As New Data.SqlClient.SqlCommand
 Ocmd.CommandType = CommandType.StoredProcedure
 Ocmd.Connection = dos
 Ocmd.Parameters.AddWithValue("@id", dosid)
 Ocmd.Parameters.AddWithValue("@FitnessValue", dosFitnessValue)
 Ocmd.CommandText = "fitnessdos5"
 Try
 dos.Open()

92

 Ocmd.ExecuteNonQuery()
 Catch ex As Exception
 MsgBox(ex.Message)
 End Try
 dos.Close()
 Next
 Next
 TxtDosDone.Text = "Done"
 End Sub
 Private Sub Button6_Click_1(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles Button6.Click
 Dim dados As New SqlDataAdapter("Select * from teardrop", dos)
 Dim ds As New DataSet
 dados.Fill(ds, "teardrop")
 Dim dosA, dosAB, dosid As Integer
 Dim dosFitnessValue As Double
 Dim NoRowsTabledos As Integer
 NoRowsTabledos = ds.Tables("teardrop").Rows.Count
 Dim FirstPopValue, FinalPopValue, maxA, maxAB As Integer
 For i = 0 To NoRowsTabledos - 1 Step 400
 maxA = 0
 maxAB = 0
 FirstPopValue = i
 FinalPopValue = i + 399
 If NoRowsTabledos < FinalPopValue Then
 FinalPopValue = NoRowsTabledos - 1
 End If
 For j = FirstPopValue To FinalPopValue
 If ds.Tables("teardrop").Rows(j).Item(6) > maxA Then
 maxA = ds.Tables("teardrop").Rows(j).Item(6)
 End If
 If ds.Tables("teardrop").Rows(j).Item(7) > maxAB Then
 maxAB = ds.Tables("teardrop").Rows(j).Item(7)
 End If
 Next
 For y = FirstPopValue To FinalPopValue
 dosA = ds.Tables("teardrop").Rows(y).Item(6)
 dosAB = ds.Tables("teardrop").Rows(y).Item(7)
 dosid = ds.Tables("teardrop").Rows(y).Item(8)
 dosFitnessValue = 2 + ((dosAB - dosA) / (dosA + dosAB)) + dosAB / maxAB - dosA / maxA
 dosFitnessValue = Double.Parse(dosFitnessValue.ToString("#0.000"))
 Dim Ocmd As New Data.SqlClient.SqlCommand
 Ocmd.CommandType = CommandType.StoredProcedure
 Ocmd.Connection = dos
 Ocmd.Parameters.AddWithValue("@id", dosid)
 Ocmd.Parameters.AddWithValue("@FitnessValue", dosFitnessValue)
 Ocmd.CommandText = "fitnessdos6"
 Try
 dos.Open()
 Ocmd.ExecuteNonQuery()
 Catch ex As Exception
 MsgBox(ex.Message)
 End Try
 dos.Close()
 Next
 Next
 TxtDosDone.Text = "Done"
 End Sub

- Code for using Steady State Genetic Algorithm
- Public Class Form1
- Private U2R As New SqlConnection("Data Source=MO3ATH-PC;Initial Catalog=S-

U2R;Integrated Security=True")
- Private CSTrain As New SqlConnection("Data Source=MO3ATH-PC;Initial

Catalog=master;Integrated Security=True")
- Private datrain As New SqlDataAdapter("Select * from kddcup$", CSTrain)
-
- Dim ds As New DataSet
- Dim NoRowsTableU2R_initial As Integer
- Dim NoRowsTableU2R As Integer
- Dim FirstPopValue, FinalPopValue As Integer
- Dim GAParameter As String

93

- Dim dau2r As New SqlDataAdapter("Select * from rootkit", U2R)
- Dim steep1, steep2, steep3 As Integer
- Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles MyBase.Load
- dau2r.Fill(ds, "rootkit")
- End Sub
- Private Sub Button13_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button13.Click
- If CmbSelection.SelectedItem = Nothing Then
- MsgBox("Please Select Selection type")
- Exit Sub
- ElseIf CmbCrossover.SelectedItem = Nothing Then
- MsgBox("Please Select Crossover type")
- Exit Sub
- ElseIf CmbReplacment.SelectedItem = Nothing Then
- MsgBox("Please Select Replacement type")
- Exit Sub
- ElseIf TxtPopSize.Text = "" Then
- MsgBox("Please determine the population size")
- Exit Sub
- End If
- GAParameter = ""
- If CmbSelection.SelectedIndex = 0 Then
- GAParameter = GAParameter & "1"
- ElseIf CmbSelection.SelectedIndex = 1 Then
- GAParameter = GAParameter & "2"
- ElseIf CmbSelection.SelectedIndex = 2 Then
- GAParameter = GAParameter & "3"
- ElseIf CmbSelection.SelectedIndex = 3 Then
- GAParameter = GAParameter & "4"
- ElseIf CmbSelection.SelectedIndex = 4 Then
- GAParameter = GAParameter & "5"
- End If
- ' DataBase Definition
- Dim NoRowsTableU2R As Integer
- NoRowsTableU2R = ds.Tables("u2r").Rows.Count
- ' Population definitions + parameter of population definition
- Dim PopIndex, PopulationIndex As Integer
- ' RWS -------------
- Dim RndNum As Double
- Dim SelectedIndividual As Integer
- Dim SumFitness, AverageFitness, ExpectedFitness, SumExpectedFitness,

SumExpectedFitness1 As Double
- Dim j As Integer
- Dim icount As Integer
- ' Elitest -----------
- Dim icount1, icount2, icount3 As Integer
- Dim TempInt As Integer
- Dim TempDouble As Double
- ' Ranking -----------
- Dim AllPopulation_Ranked As Integer(,) = New Integer(NoRowsTableU2R, 1) {}
- Dim AllPopulation_FitnessRanked As Double(,) = New Double(NoRowsTableU2R, 1) {}
- Dim min, max As Double
- Dim y As Double
- Dim x As Integer
- ' Tournament -------------
- Dim RndNum1, RndNum2, Difference, steep As Integer
- Dim TableNameu2r As String
- NoRowsTableU2R = ds.Tables("rootkit").Rows.Count
- TableNameu2r = "rootkit"
- dau2r.Fill(ds, TableNameu2r)
- NoRowsTableU2R = ds.Tables(TableNameu2r).Rows.Count
- Dim Generation As Integer
- Generation = 1
- Dim OldGeneration As Double(,) = New Double(NoRowsTableU2R, 11) {}
- Dim LastGenerationNoRowsTabledos As Integer
- LastGenerationNoRowsTabledos = 0
-
- ' ##### Start of GENERATION ##
- Do While LastGenerationNoRowsTabledos < NoRowsTableU2R 'And Generation <> 16
- ds.Clear()
- datrain.Fill(ds, "kddcup$")

94

- dau2r.Fill(ds, TableNameu2r)
- NoRowsTableU2R = ds.Tables(TableNameu2r).Rows.Count
- Dim AllPopulation_Old As Double(,) = New Double(NoRowsTableU2R, 1) {}
- Dim AllPopulation_New As Double(,) = New Double(NoRowsTableU2R, 1) {}
- Dim CrossedPopulation As Double(,) = New Double(NoRowsTableU2R, 4) {}
- Dim CurrentGeneration As Double(,) = New Double(NoRowsTableU2R, 11) {}
- Dim SelectedGeneration As Double(,) = New Double(NoRowsTableU2R, 11) {}
- For PopulationIndex = 0 To NoRowsTableU2R - 1 Step Val(TxtPopSize.Text)
- FirstPopValue = PopulationIndex
- FinalPopValue = PopulationIndex + Val(TxtPopSize.Text) - 1
- If NoRowsTableU2R < FinalPopValue Then
- FinalPopValue = NoRowsTableU2R - 1
- End If
- If Generation = 1 Then
- For PopIndex = 0 To NoRowsTableU2R - 1
- OldGeneration(PopIndex, 0) = 0
- OldGeneration(PopIndex, 1) = 0
- OldGeneration(PopIndex, 2) = 0
- OldGeneration(PopIndex, 3) = 0
- OldGeneration(PopIndex, 4) = 0
- OldGeneration(PopIndex, 5) = 0
- OldGeneration(PopIndex, 6) = 0
- OldGeneration(PopIndex, 7) = 0
- OldGeneration(PopIndex, 8) = 0
- OldGeneration(PopIndex, 9) = 0
- OldGeneration(PopIndex, 10) = 0
- OldGeneration(PopIndex, 11) = 0
- Next
- End If
- ' ##
- ' Selection Process
- If CmbSelection.SelectedIndex = 0 Then
- ' RWS Selection
- SumFitness = 0
- For icount = FirstPopValue To FinalPopValue
- SumFitness = SumFitness + ds.Tables("rootkit").Rows(icount).Item(9)
- Next
- AverageFitness = SumFitness / (FinalPopValue - FirstPopValue + 1)
- SumExpectedFitness = 0
- For icount = FirstPopValue To FinalPopValue
- SumExpectedFitness = SumExpectedFitness +

ds.Tables("rootkit").Rows(icount).Item(9) / AverageFitness
- Next
- For icount = FirstPopValue To FinalPopValue
- RndNum = Int((Rnd() * 100)) Mod SumExpectedFitness
- SumExpectedFitness1 = 0
- j = FirstPopValue
- While (j < FinalPopValue)
- ExpectedFitness = ds.Tables("rootkit").Rows(j).Item(9) / AverageFitness
- SumExpectedFitness1 = SumExpectedFitness1 + ExpectedFitness
- SelectedIndividual = ds.Tables("rootkit").Rows(j).Item(8)
- If SumExpectedFitness1 > RndNum Then
- Exit While
- Else
- j = j + 1
- End If
- End While
- AllPopulation_New(icount, 0) = ds.Tables("rootkit").Rows(SelectedIndividual - 1).Item(8)
- AllPopulation_New(icount, 1) = ds.Tables("rootkit").Rows(SelectedIndividual - 1).Item(9)
- Next
- ElseIf CmbSelection.SelectedIndex = 1 Then
- 'Elitist Selection
- '**
- For icount1 = FirstPopValue To FinalPopValue
- AllPopulation_New(icount1, 0) = ds.Tables("rootkit").Rows(icount1).Item(8)
- AllPopulation_New(icount1, 1) = ds.Tables("rootkit").Rows(icount1).Item(9)
- Next
- For icount2 = FirstPopValue To FinalPopValue
- For icount3 = FirstPopValue To FinalPopValue - 1
- If AllPopulation_New(icount3 + 1, 1) > AllPopulation_New(icount3, 1) Then
- TempInt = AllPopulation_New(icount3 + 1, 0)
- TempDouble = AllPopulation_New(icount3 + 1, 1)

95

- AllPopulation_New(icount3 + 1, 0) = AllPopulation_New(icount3, 0)
- AllPopulation_New(icount3 + 1, 1) = AllPopulation_New(icount3, 1)
- AllPopulation_New(icount3, 0) = TempInt
- AllPopulation_New(icount3, 1) = TempDouble
- End If
- Next
- Next
- '**
- ElseIf CmbSelection.SelectedIndex = 2 Then
- ' Ranking Selection
- For icount1 = FirstPopValue To FinalPopValue
- AllPopulation_New(icount1, 0) = ds.Tables("rootkit").Rows(icount1).Item(8)
- AllPopulation_New(icount1, 1) = ds.Tables("rootkit").Rows(icount1).Item(9)
- Next
- For icount2 = FirstPopValue To FinalPopValue
- For icount3 = FirstPopValue To FinalPopValue - 1
- If AllPopulation_New(icount3 + 1, 1) > AllPopulation_New(icount3, 1) Then
- TempInt = AllPopulation_New(icount3 + 1, 0)
- TempDouble = AllPopulation_New(icount3 + 1, 1)
- AllPopulation_New(icount3 + 1, 0) = AllPopulation_New(icount3, 0)
- AllPopulation_New(icount3 + 1, 1) = AllPopulation_New(icount3, 1)
- AllPopulation_New(icount3, 0) = TempInt
- AllPopulation_New(icount3, 1) = TempDouble
- End If
- Next
- Next
- For PopIndex = FirstPopValue To FinalPopValue
- AllPopulation_Ranked(PopIndex, 0) = AllPopulation_New(PopIndex, 0)
- AllPopulation_Ranked(PopIndex, 1) = FinalPopValue - PopIndex + 1
- Next
- For PopIndex = FirstPopValue To FinalPopValue
- x = Rnd() * 100
- y = x / 100 + 1
- max = y
- If max = 1 Then
- max = 1.1
- End If
- min = 2 - max
- AllPopulation_FitnessRanked(PopIndex, 0) = AllPopulation_Ranked(PopIndex, 0)
- AllPopulation_FitnessRanked(PopIndex, 1) = max - (max - min) *

((AllPopulation_Ranked(PopIndex, 1) - 1) / (Val(TxtPopSize.Text) - 1))
- Next
- SumFitness = 0
- For icount = FirstPopValue To FinalPopValue
- SumFitness = SumFitness + AllPopulation_FitnessRanked(icount, 1)
- Next
- AverageFitness = SumFitness / (FinalPopValue - FirstPopValue + 1)
- SumExpectedFitness = 0
- For icount = FirstPopValue To FinalPopValue
- SumExpectedFitness = SumExpectedFitness + ds.Tables("rootkit").Rows(icount).Item(9) /

AverageFitness
- Next
- For icount = FirstPopValue To FinalPopValue
- RndNum = Int((Rnd() * 100)) Mod SumExpectedFitness
- SumExpectedFitness1 = 0
- j = FirstPopValue
- While (j < FinalPopValue)
- ExpectedFitness = ds.Tables("rootkit").Rows(j).Item(9) / AverageFitness
- SumExpectedFitness1 = SumExpectedFitness1 + ExpectedFitness
- SelectedIndividual = AllPopulation_FitnessRanked(j, 0)
- If SumExpectedFitness1 > RndNum Then
- Exit While
- Else
- j = j + 1
- End If
- End While
- AllPopulation_New(icount, 0) = AllPopulation_FitnessRanked(j, 0)
- AllPopulation_New(icount, 1) = AllPopulation_FitnessRanked(j, 1)
- Next
- ' **
- ElseIf CmbSelection.SelectedIndex = 3 Then
- ' SUS

96

- SumFitness = 0
- For icount = FirstPopValue To FinalPopValue
- SumFitness = SumFitness + ds.Tables("rootkit").Rows(icount).Item(9)
- Next
- AverageFitness = SumFitness / (FinalPopValue - FirstPopValue + 1)
- For icount = FirstPopValue To FinalPopValue
- RndNum = icount Mod Val(TxtPopSize.Text)
- SumExpectedFitness = 0
- j = FirstPopValue
- While (j < FinalPopValue)
- ExpectedFitness = ds.Tables("rootkit").Rows(j).Item(9) / AverageFitness
- SumExpectedFitness = SumExpectedFitness + ExpectedFitness
- SelectedIndividual = ds.Tables("rootkit").Rows(j).Item(8)
- If SumExpectedFitness > RndNum Then
- Exit While
- Else
- j = j + 1
- End If
- End While
- AllPopulation_New(icount, 0) = ds.Tables("rootkit").Rows(j).Item(8)
- AllPopulation_New(icount, 1) = ds.Tables("rootkit").Rows(j).Item(9)
- Next
- ' ***
- ElseIf CmbSelection.SelectedIndex = 4 Then
- ' Tournament Selection
- Difference = FinalPopValue - FirstPopValue
- Difference = Difference + 1
- For icount = FirstPopValue To FinalPopValue
- Do
- RndNum1 = Int((Rnd() * 100)) Mod Difference + FirstPopValue + 1
- RndNum2 = Int((Rnd() * 100)) Mod Difference + FirstPopValue + 1
- Loop While (RndNum1 = RndNum2 And Difference - 1 > 0)
- If ds.Tables("rootkit").Rows(RndNum1 - 1).Item(9) >

ds.Tables("rootkit").Rows(RndNum2 - 1).Item(9) Then
- AllPopulation_New(icount, 0) = ds.Tables("rootkit").Rows(RndNum1 - 1).Item(8)
- AllPopulation_New(icount, 1) = ds.Tables("rootkit").Rows(RndNum1 - 1).Item(9)
- Else
- AllPopulation_New(icount, 0) = ds.Tables("rootkit").Rows(RndNum2 - 1).Item(8)
- AllPopulation_New(icount, 1) = ds.Tables("rootkit").Rows(RndNum2 - 1).Item(9)
- End If
- Next
- End If
- Next
- ' ##
- ' Crossover Process
- Dim Cross11, Cross21, Cross12, Cross22, Cross13, Cross23, Cross14, Cross24,

Cross15, Cross25, Change As Double
- If NoRowsTableU2R Mod 2 <> 0 Then
- NoRowsTableU2R = NoRowsTableU2R - 1
- End If
- If CmbCrossover.SelectedIndex = 0 Then
- GAParameter = GAParameter & "1"
- For steep = 0 To NoRowsTableU2R - 1 Step 2
- RndNum1 = Int((Rnd() * 100)) Mod Val(TxtPopSize.Text)
- Cross11 = ds.Tables("rootkit").Rows(steep).Item(1)
- Cross21 = ds.Tables("rootkit").Rows(steep + 1).Item(1)
- If RndNum1 > 1 Then
- Cross12 = ds.Tables("rootkit").Rows(steep).Item(2)
- Cross22 = ds.Tables("rootkit").Rows(steep + 1).Item(2)
- Else
- Cross12 = ds.Tables("rootkit").Rows(steep + 1).Item(2)
- Cross22 = ds.Tables("rootkit").Rows(steep).Item(2)
- End If
- If RndNum1 > 2 Then
- Cross13 = ds.Tables("rootkit").Rows(steep).Item(3)
- Cross23 = ds.Tables("rootkit").Rows(steep + 1).Item(3)
- Else
- Cross13 = ds.Tables("rootkit").Rows(steep + 1).Item(3)
- Cross23 = ds.Tables("rootkit").Rows(steep).Item(3)
- End If
- If RndNum1 > 3 Then
- Cross14 = ds.Tables("rootkit").Rows(steep).Item(4)

97

- Cross24 = ds.Tables("rootkit").Rows(steep + 1).Item(4)
- Else
- Cross14 = ds.Tables("rootkit").Rows(steep + 1).Item(4)
- Cross24 = ds.Tables("rootkit").Rows(steep).Item(4)
- End If
- If RndNum1 <= 4 Then
- Cross15 = ds.Tables("rootkit").Rows(steep + 1).Item(5)
- Cross25 = ds.Tables("rootkit").Rows(steep).Item(5)
- Else
- Cross15 = ds.Tables("rootkit").Rows(steep).Item(5)
- Cross25 = ds.Tables("rootkit").Rows(steep + 1).Item(5)
- End If
- CrossedPopulation(steep, 0) = Cross11
- CrossedPopulation(steep, 1) = Cross12
- CrossedPopulation(steep, 2) = Cross13
- CrossedPopulation(steep, 3) = Cross14
- CrossedPopulation(steep, 4) = Cross15
- CrossedPopulation(steep + 1, 0) = Cross21
- CrossedPopulation(steep + 1, 1) = Cross22
- CrossedPopulation(steep + 1, 2) = Cross23
- CrossedPopulation(steep + 1, 3) = Cross24
- CrossedPopulation(steep + 1, 4) = Cross25
- Next
- ElseIf CmbCrossover.SelectedIndex = 1 Then
- GAParameter = GAParameter & "2"
- For steep = 0 To NoRowsTableU2R - 1 Step 2
- RndNum1 = Int((Rnd() * 100)) Mod 2 + 1
- Cross11 = ds.Tables("rootkit").Rows(steep).Item(1)
- Cross21 = ds.Tables("rootkit").Rows(steep + 1).Item(1)
- If RndNum1 = 1 Then
- Cross12 = ds.Tables("rootkit").Rows(steep + 1).Item(2)
- Cross22 = ds.Tables("rootkit").Rows(steep).Item(2)
-
- Cross13 = ds.Tables("rootkit").Rows(steep + 1).Item(3)
- Cross23 = ds.Tables("rootkit").Rows(steep).Item(3)
-
- Cross14 = ds.Tables("rootkit").Rows(steep).Item(4)
- Cross24 = ds.Tables("rootkit").Rows(steep + 1).Item(4)
-
- Cross15 = ds.Tables("rootkit").Rows(steep).Item(5)
- Cross25 = ds.Tables("rootkit").Rows(steep + 1).Item(5)
- ElseIf RndNum1 = 2 Then
- Cross12 = ds.Tables("rootkit").Rows(steep).Item(2)
- Cross22 = ds.Tables("rootkit").Rows(steep + 1).Item(2)
-
- Cross13 = ds.Tables("rootkit").Rows(steep + 1).Item(3)
- Cross23 = ds.Tables("rootkit").Rows(steep).Item(3)
-
- Cross14 = ds.Tables("rootkit").Rows(steep + 1).Item(4)
- Cross24 = ds.Tables("rootkit").Rows(steep).Item(4)
-
- Cross15 = ds.Tables("rootkit").Rows(steep).Item(5)
- Cross25 = ds.Tables("rootkit").Rows(steep + 1).Item(5)
- End If
- CrossedPopulation(steep, 0) = Cross11
- CrossedPopulation(steep, 1) = Cross12
- CrossedPopulation(steep, 2) = Cross13
- CrossedPopulation(steep, 3) = Cross14
- CrossedPopulation(steep, 4) = Cross15
- CrossedPopulation(steep + 1, 0) = Cross21
- CrossedPopulation(steep + 1, 1) = Cross22
- CrossedPopulation(steep + 1, 2) = Cross23
- CrossedPopulation(steep + 1, 3) = Cross24
- CrossedPopulation(steep + 1, 4) = Cross25
- Next
- ElseIf CmbCrossover.SelectedIndex = 2 Then
- GAParameter = GAParameter & "3"
- For steep = 0 To NoRowsTableU2R - 1 Step 2
- RndNum1 = Int((Rnd() * 100)) Mod 5 + 1
- RndNum2 = Int((Rnd() * 100)) Mod 5 + 1
- If RndNum1 = 1 Then
- Cross11 = ds.Tables("rootkit").Rows(steep + 1).Item(1)

98

- Cross21 = ds.Tables("rootkit").Rows(steep).Item(1)
- Else
- Cross11 = ds.Tables("rootkit").Rows(steep).Item(1)
- Cross21 = ds.Tables("rootkit").Rows(steep + 1).Item(1)
- End If
- If RndNum1 = 2 Then
- Cross12 = ds.Tables("rootkit").Rows(steep + 1).Item(2)
- Cross22 = ds.Tables("rootkit").Rows(steep).Item(2)
- Else
- Cross12 = ds.Tables("rootkit").Rows(steep).Item(2)
- Cross22 = ds.Tables("rootkit").Rows(steep + 1).Item(2)
- End If
- If RndNum1 = 3 Then
- Cross13 = ds.Tables("rootkit").Rows(steep + 1).Item(3)
- Cross23 = ds.Tables("rootkit").Rows(steep).Item(3)
- Else
- Cross13 = ds.Tables("rootkit").Rows(steep).Item(3)
- Cross23 = ds.Tables("rootkit").Rows(steep + 1).Item(3)
- End If
- If RndNum1 = 4 Then
- Cross14 = ds.Tables("rootkit").Rows(steep + 1).Item(4)
- Cross24 = ds.Tables("rootkit").Rows(steep).Item(4)
- Else
- Cross14 = ds.Tables("rootkit").Rows(steep).Item(4)
- Cross24 = ds.Tables("rootkit").Rows(steep + 1).Item(4)
- End If
- If RndNum1 = 5 Then
- Cross15 = ds.Tables("rootkit").Rows(steep + 1).Item(5)
- Cross25 = ds.Tables("rootkit").Rows(steep).Item(5)
- Else
- Cross15 = ds.Tables("rootkit").Rows(steep).Item(5)
- Cross25 = ds.Tables("rootkit").Rows(steep + 1).Item(5)
- End If
- If RndNum2 = 1 Then
- Change = Cross11
- Cross11 = Cross21
- Cross21 = Change
- End If
- If RndNum2 = 2 Then
- Change = Cross12
- Cross12 = Cross22
- Cross22 = Change
- End If
- If RndNum2 = 3 Then
- Change = Cross13
- Cross13 = Cross23
- Cross23 = Change
- End If
- If RndNum2 = 4 Then
- Change = Cross14
- Cross14 = Cross24
- Cross24 = Change
- End If
- If RndNum2 = 5 Then
- Change = Cross15
- Cross15 = Cross25
- Cross25 = Change
- End If
- CrossedPopulation(steep, 0) = Cross11
- CrossedPopulation(steep, 1) = Cross12
- CrossedPopulation(steep, 2) = Cross13
- CrossedPopulation(steep, 3) = Cross14
- CrossedPopulation(steep, 4) = Cross15
- CrossedPopulation(steep + 1, 0) = Cross21
- CrossedPopulation(steep + 1, 1) = Cross22
- CrossedPopulation(steep + 1, 2) = Cross23
- CrossedPopulation(steep + 1, 3) = Cross24
- CrossedPopulation(steep + 1, 4) = Cross25
- Next
- End If
- ' ##
- ' Mutation Process

99

- For steep = 0 To NoRowsTableU2R - 1 Step 5
- RndNum = Int((Rnd() * 100)) Mod 5 + 1
- If RndNum = 1 Then
- If CrossedPopulation(steep, 0) = 0 Then
- CrossedPopulation(steep, 0) = 1
- Else
- CrossedPopulation(steep, 0) = 0
- End If
- End If
- If RndNum = 2 Then
- CrossedPopulation(steep, 1) = Int((Rnd() * 100)) Mod 4 + 1
- End If
- If RndNum = 3 Then
- If CrossedPopulation(steep, 2) = 0 Then
- CrossedPopulation(steep, 2) = 1
- Else
- CrossedPopulation(steep, 2) = 0
- End If
- End If
- If RndNum = 4 Then
- If CrossedPopulation(steep, 3) = 0 Then
- CrossedPopulation(steep, 3) = 1
- Else
- CrossedPopulation(steep, 3) = 0
- End If
- End If
- If RndNum = 5 Then
- CrossedPopulation(steep, 4) = Int(Rnd() * 100) / 100
- End If
- Next
- ' ##
- ' Evaluation
- Dim NoRowsTablekddcup As Integer
- Dim kddcounter As Integer
- Dim dAB, dA As Integer
- Dim maxAB, maxA As Double
- Dim d7, d8, d12, d13, d23 As Double
- Dim Attack As Integer
- NoRowsTablekddcup = ds.Tables("kddcup$").Rows.Count
- maxA = 0
- maxAB = 0
- For j = 0 To NoRowsTableU2R - 1
- If ds.Tables(TableNameu2r).Rows(j).Item(6) > maxA Then
- maxA = ds.Tables(TableNameu2r).Rows(j).Item(6)
- End If
- If ds.Tables(TableNameu2r).Rows(j).Item(7) > maxAB Then
- maxAB = ds.Tables(TableNameu2r).Rows(j).Item(7)
- End If
- Next
- Dim FitnessValue As Double
- For Attack = 0 To NoRowsTableU2R - 1
- dAB = 0
- dA = 0
- d7 = CrossedPopulation(Attack, 0)
- d8 = CrossedPopulation(Attack, 1)
- d12 = CrossedPopulation(Attack, 2)
- d13 = CrossedPopulation(Attack, 3)
- d23 = CrossedPopulation(Attack, 4)
- For kddcounter = 0 To NoRowsTablekddcup - 1
- If d7 = ds.Tables("kddcup$").Rows(kddcounter).Item(6) Then
- If d8 = ds.Tables("kddcup$").Rows(kddcounter).Item(7) Then
- If d12 = ds.Tables("kddcup$").Rows(kddcounter).Item(11) Then
- If d13 = ds.Tables("kddcup$").Rows(kddcounter).Item(12) Then
- If d23 = ds.Tables("kddcup$").Rows(kddcounter).Item(22) Then
- If ds.Tables("kddcup$").Rows(kddcounter).Item(41) = "rootkit." Then
- dAB = dAB + 1
- Else
- dA = dA + 1
- End If
- End If
- End If
- End If

100

- End If
- End If
- Next
- If dAB = 0 And dA = 0 Then
- FitnessValue = Val(Rnd() + 2.5)
- Else
- FitnessValue = 2 + ((dAB - dA) / (dA + dAB)) + dAB / maxAB - dA / maxA
- End If
- CurrentGeneration(Attack, 0) = 0
- CurrentGeneration(Attack, 1) = CrossedPopulation(Attack, 0)
- CurrentGeneration(Attack, 2) = CrossedPopulation(Attack, 1)
- CurrentGeneration(Attack, 3) = CrossedPopulation(Attack, 2)
- CurrentGeneration(Attack, 4) = CrossedPopulation(Attack, 3)
- CurrentGeneration(Attack, 5) = CrossedPopulation(Attack, 4)
- CurrentGeneration(Attack, 6) = dA
- CurrentGeneration(Attack, 7) = dAB
- CurrentGeneration(Attack, 8) = NoRowsTableU2R + Attack
- CurrentGeneration(Attack, 9) = FitnessValue
- CurrentGeneration(Attack, 10) = Generation
- CurrentGeneration(Attack, 11) = Val(GAParameter)
- Next
- ' ##
- ' Replacement Process
- If CmbReplacment.SelectedIndex = 0 Then
- Dim ComparedIndex As Integer
- Dim RemindIndex As Integer
- If CurrentGeneration.Length < OldGeneration.Length Then
- ComparedIndex = CurrentGeneration.Length
- RemindIndex = Math.Abs(OldGeneration.Length - CurrentGeneration.Length)
- Else
- ComparedIndex = OldGeneration.Length
- RemindIndex = Math.Abs(CurrentGeneration.Length - OldGeneration.Length)
- End If
- For PopIndex = 0 To OldGeneration.GetUpperBound(0) - 1
- If Generation = 1 Then
- SelectedGeneration(PopIndex, 0) = CurrentGeneration(PopIndex, 0)
- SelectedGeneration(PopIndex, 1) = CurrentGeneration(PopIndex, 1)
- SelectedGeneration(PopIndex, 2) = CurrentGeneration(PopIndex, 2)
- SelectedGeneration(PopIndex, 3) = CurrentGeneration(PopIndex, 3)
- SelectedGeneration(PopIndex, 4) = CurrentGeneration(PopIndex, 4)
- SelectedGeneration(PopIndex, 5) = CurrentGeneration(PopIndex, 5)
- SelectedGeneration(PopIndex, 6) = CurrentGeneration(PopIndex, 6)
- SelectedGeneration(PopIndex, 7) = CurrentGeneration(PopIndex, 7)
- SelectedGeneration(PopIndex, 8) = CurrentGeneration(PopIndex, 8)
- SelectedGeneration(PopIndex, 9) = CurrentGeneration(PopIndex, 9)
- SelectedGeneration(PopIndex, 10) = CurrentGeneration(PopIndex, 10)
- SelectedGeneration(PopIndex, 11) = CurrentGeneration(PopIndex, 11)
- Else
- If CurrentGeneration(PopIndex, 9) > OldGeneration(PopIndex, 9) Then
- SelectedGeneration(PopIndex, 0) = CurrentGeneration(PopIndex, 0)
- SelectedGeneration(PopIndex, 1) = CurrentGeneration(PopIndex, 1)
- SelectedGeneration(PopIndex, 2) = CurrentGeneration(PopIndex, 2)
- SelectedGeneration(PopIndex, 3) = CurrentGeneration(PopIndex, 3)
- SelectedGeneration(PopIndex, 4) = CurrentGeneration(PopIndex, 4)
- SelectedGeneration(PopIndex, 5) = CurrentGeneration(PopIndex, 5)
- SelectedGeneration(PopIndex, 6) = CurrentGeneration(PopIndex, 6)
- SelectedGeneration(PopIndex, 7) = CurrentGeneration(PopIndex, 7)
- SelectedGeneration(PopIndex, 8) = CurrentGeneration(PopIndex, 8)
- SelectedGeneration(PopIndex, 9) = CurrentGeneration(PopIndex, 9)
- SelectedGeneration(PopIndex, 10) = CurrentGeneration(PopIndex, 10)
- SelectedGeneration(PopIndex, 11) = CurrentGeneration(PopIndex, 11)
- Else
- SelectedGeneration(PopIndex, 0) = OldGeneration(PopIndex, 0)
- SelectedGeneration(PopIndex, 1) = OldGeneration(PopIndex, 1)
- SelectedGeneration(PopIndex, 2) = OldGeneration(PopIndex, 2)
- SelectedGeneration(PopIndex, 3) = OldGeneration(PopIndex, 3)
- SelectedGeneration(PopIndex, 4) = OldGeneration(PopIndex, 4)
- SelectedGeneration(PopIndex, 5) = OldGeneration(PopIndex, 5)
- SelectedGeneration(PopIndex, 6) = OldGeneration(PopIndex, 6)
- SelectedGeneration(PopIndex, 7) = OldGeneration(PopIndex, 7)
- SelectedGeneration(PopIndex, 8) = OldGeneration(PopIndex, 8)
- SelectedGeneration(PopIndex, 9) = OldGeneration(PopIndex, 9)

101

- SelectedGeneration(PopIndex, 10) = OldGeneration(PopIndex, 10)
- SelectedGeneration(PopIndex, 11) = OldGeneration(PopIndex, 11)
- End If
- End If
- Next
- For PopIndex = OldGeneration.GetUpperBound(0) To CurrentGeneration.GetUpperBound(0) - 1
- SelectedGeneration(PopIndex, 0) = CurrentGeneration(PopIndex, 0)
- SelectedGeneration(PopIndex, 1) = CurrentGeneration(PopIndex, 1)
- SelectedGeneration(PopIndex, 2) = CurrentGeneration(PopIndex, 2)
- SelectedGeneration(PopIndex, 3) = CurrentGeneration(PopIndex, 3)
- SelectedGeneration(PopIndex, 4) = CurrentGeneration(PopIndex, 4)
- SelectedGeneration(PopIndex, 5) = CurrentGeneration(PopIndex, 5)
- SelectedGeneration(PopIndex, 6) = CurrentGeneration(PopIndex, 6)
- SelectedGeneration(PopIndex, 7) = CurrentGeneration(PopIndex, 7)
- SelectedGeneration(PopIndex, 8) = CurrentGeneration(PopIndex, 8)
- SelectedGeneration(PopIndex, 9) = CurrentGeneration(PopIndex, 9)
- SelectedGeneration(PopIndex, 10) = CurrentGeneration(PopIndex, 10)
- SelectedGeneration(PopIndex, 11) = CurrentGeneration(PopIndex, 11)
- Next
- End If
- LastGenerationNoRowsTabledos = NoRowsTableU2R
- ' Saving Data in the Table
- Dim CheckCounter As Integer
- Dim Redundant As Integer
- For PopIndex = 0 To NoRowsTableU2R - 1
- d7 = SelectedGeneration(PopIndex, 1)
- d8 = SelectedGeneration(PopIndex, 2)
- d12 = SelectedGeneration(PopIndex, 3)
- d13 = SelectedGeneration(PopIndex, 4)
- d23 = SelectedGeneration(PopIndex, 5)
- Redundant = 0
- For CheckCounter = 0 To NoRowsTableU2R - 1
- If d7 = ds.Tables(TableNameu2r).Rows(CheckCounter).Item(1) And d8 =

ds.Tables(TableNameu2r).Rows(CheckCounter).Item(2) And d12 =
ds.Tables(TableNameu2r).Rows(CheckCounter).Item(3) And d13 =
ds.Tables(TableNameu2r).Rows(CheckCounter).Item(4) And d23 =
ds.Tables(TableNameu2r).Rows(CheckCounter).Item(5) Then

- Redundant = Redundant + 1
- Exit For
- End If
- Next
- Dim Ocmd As New SqlCommand
- If Redundant = 0 Then
- Ocmd.CommandType = CommandType.StoredProcedure
- Ocmd.Connection = U2R
- Ocmd.Parameters.AddWithValue("@tableid", SelectedGeneration(PopIndex, 0))
- Ocmd.Parameters.AddWithValue("@f7", SelectedGeneration(PopIndex, 1))
- Ocmd.Parameters.AddWithValue("@f8", SelectedGeneration(PopIndex, 2))
- Ocmd.Parameters.AddWithValue("@f12", SelectedGeneration(PopIndex, 3))
- Ocmd.Parameters.AddWithValue("@f13", SelectedGeneration(PopIndex, 4))
- Ocmd.Parameters.AddWithValue("@f23", SelectedGeneration(PopIndex, 5))
- Ocmd.Parameters.AddWithValue("@A", SelectedGeneration(PopIndex, 6))
- Ocmd.Parameters.AddWithValue("@AB", SelectedGeneration(PopIndex, 7))
- Ocmd.Parameters.AddWithValue("@FitnessValue", SelectedGeneration(PopIndex, 9))
- Ocmd.Parameters.AddWithValue("@generation", SelectedGeneration(PopIndex, 10))
- Ocmd.Parameters.AddWithValue("@GAparameter", SelectedGeneration(PopIndex, 11))
- Ocmd.CommandText = "u2r00insert"
- Try
- U2R.Open()
- Ocmd.ExecuteNonQuery()
- Catch ex As Exception
- MsgBox(ex.Message)
- End Try
- U2R.Close()
- End If
- Next
- ' ***
- ' afeter replacement exchange AllPop1 with AllPop2
- OldGeneration = New Double(NoRowsTableU2R, 11) {}
- For PopIndex = 0 To NoRowsTableU2R - 1
- OldGeneration(PopIndex, 0) = CurrentGeneration(PopIndex, 0)
- OldGeneration(PopIndex, 1) = CurrentGeneration(PopIndex, 1)

102

- OldGeneration(PopIndex, 2) = CurrentGeneration(PopIndex, 2)
- OldGeneration(PopIndex, 3) = CurrentGeneration(PopIndex, 3)
- OldGeneration(PopIndex, 4) = CurrentGeneration(PopIndex, 4)
- OldGeneration(PopIndex, 5) = CurrentGeneration(PopIndex, 5)
- OldGeneration(PopIndex, 6) = CurrentGeneration(PopIndex, 6)
- OldGeneration(PopIndex, 7) = CurrentGeneration(PopIndex, 7)
- OldGeneration(PopIndex, 8) = CurrentGeneration(PopIndex, 8)
- OldGeneration(PopIndex, 9) = CurrentGeneration(PopIndex, 9)
- OldGeneration(PopIndex, 10) = CurrentGeneration(PopIndex, 10)
- OldGeneration(PopIndex, 11) = CurrentGeneration(PopIndex, 11)
- Next
- Generation = Generation + 1
- ds.Clear()
- dau2r.Fill(ds, TableNameu2r)
- NoRowsTableU2R = ds.Tables(TableNameu2r).Rows.Count
- ' ##### END of GENERATION

###
- Loop
- MsgBox("End")
- End Sub
- End Class

- Code for Testing for R2L-phf

Dim U2RCounter, TestCounter As Integer
 NoRowsTabler2l = ds.Tables(r2lname).Rows.Count
 NoRowsTableTest = ds.Tables("KDDtest$").Rows.Count
 For TestCounter = 0 To NoRowsTableTest - 1
 r6 = ds.Tables("KDDtest$").Rows(TestCounter).Item(6)
 r11 = ds.Tables("KDDtest$").Rows(TestCounter).Item(11)
 r12 = ds.Tables("KDDtest$").Rows(TestCounter).Item(12)
 r19 = ds.Tables("KDDtest$").Rows(TestCounter).Item(19)
 r22 = ds.Tables("KDDtest$").Rows(TestCounter).Item(22)

 For U2RCounter = 0 To NoRowsTabler2l - 1
 If ds.Tables(r2lname).Rows(U2RCounter).Item(1) = r6 Then
 If ds.Tables(r2lname).Rows(U2RCounter).Item(2) = r11 Then
 If ds.Tables(r2lname).Rows(U2RCounter).Item(3) = r12 Then
 If ds.Tables(r2lname).Rows(U2RCounter).Item(4) = r19 Then
 If ds.Tables(r2lname).Rows(U2RCounter).Item(5) = r22 Then
 If ds.Tables("KDDtest$").Rows(TestCounter).Item(42) = "phf." Then
 match.Text = Val(match.Text) + 1
 ElseIf ds.Tables("KDDtest$").Rows(TestCounter).Item(42) = "normal." Then
 Txtnormal.Text = Val(Txtnormal.Text) + 1
 Else
 mismatch.Text = Val(mismatch.Text) + 1
 End If
 Exit For
 End If
 End If
 End If
 End If
 End If
 Next
 Next

