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Abstract  

 
 

Graph embedding or graph mapping is an important aspect for interconnection 

networks used for communication between processors in parallel systems. Some 

parallel algorithms use communication structures which can be represented by hex-

cells. In order to run these algorithms on a tree-hypercube multiprocessor system, 

without changing the current topology and the running application, their 

communication graphs need to be embedded into tree- hypercube. 

 

In this thesis, we have designed an algorithm for embedding hex-cells of n nodes into 

tree-hypercube TH(2,d) where d >= 2. The  embedding has dilation one, congestion 

one, and expansion 1.1. In the algorithm an embedding of irregular shape of  hex-cells 

into tree-hypercube TH(2,d) where d >= 2 is performed. We have also designed an 

algorithm for embedding hex-cells HC(i), where i= 1,2 into tree-hypercube TH (2, d), 

where d = 2i. 

 

As a result the embedding of Hex-cells  into Tree-Hypercube in algorithm 4.1 has 

dilation one, congestion one, and expansion 1.1, and an embedding of irregular shape 

of  hex-cells into tree-hypercube TH(2,d) where d >= 2 is performed.  In algorithm 

4.2 the embedding  has  dilation 1, congestion 1 and expansion 1.1 when mapping  

HC(1); and  dilation 1, congestion 1  expansion 1.3 when mapping HC(2). 
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Chapter One 

 

Introduction 

 

 

 

        Parallel computing is a form of computing in which many instructions are carried 

out simultaneously [12]. Parallel computing operates on the principle that large 

problems can almost always be divided into smaller ones, which may be carried out 

concurrently ("in parallel"). Parallel computing exists in several different forms: bit-

level parallelism, instruction level parallelism, data parallelism, and task parallelism. It 

has been used for many years, mainly in high performance computing, but interest in it 

has become greater in recent years due to physical constraints preventing frequency 

scaling. Parallel computing has recently become the dominant paradigm in computer 

architecture, mainly in the form of multi core processors [4]. 

 

Interconnection networks provide mechanisms for data transfer between processing 

nodes or between processors and memory modules; they are classified as static and 

dynamic. Static interconnection networks consist of point–to-point  communication links 

among processing nodes, they are also referred to as direct networks. Dynamic networks 

on the other hand, are built using switches and  communication links. Communication 

links are connected to one another dynamically by the switches to establish paths among 

processing nodes and memory banks. Dynamic networks are also referred to as indirect 

networks.   

 

One of the primary design considerations for a massive multiprocessor system is the 

topology of the interconnection network used for communication between processors. 

Some of the important interconnection networks which have been studied so far are 

hypercube, meshes, trees, mesh-of-trees [27], tree-hypercube [19], hex-cell [24], and 

pyramids. tree-hypercube is one of the  popular general purpose networks due to its small 

degree, short diameter, symmetry, optimal fault-tolerant properties, embedding of other 

networks, and their ability of implementing  fast algorithms [19].  
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One of the important properties of any general interconnection network is that it should 

be able to embed other interconnection networks with low overheads. This attribute 

makes it a good candidate for a topology underlying a general-purpose parallel machine 

[7]. The problem of mapping other interconnection topologies into tree-hypercube 

network has not received much attention from researchers.  

 

Topology embedding is an important aspect in parallel computing for performing 

mapping techniques between network topologies. Such that each processing element 

(node or vertex) and edge in the a graph  G = (V,E) that represents the guest topology is 

mapped into nodes and edges of  graph G' = (V',E') which represents the host graph.   

This mapping  has two advantages; the first one is that it  reduces the amount of time 

processes spend interacting with each other, and the second is that it  reduces the total 

amount of  time some processes are idle while the others are engaged in performing some 

tasks. This improves the performance of communication between processing nodes, and 

gets over the problem of congesting communication. Another main advantage for 

embedding, is that if a graph G is mapped  into G', then G' can simulate the behavior of G 

with less overhead  [12] of executing tasks in parallel.  

 

In our research, we will discuss the problem of embedding hex-cell static networks into 

tree-hypercube network. In this thesis, we have designed an algorithm for embedding 

hex-cells of n nodes into tree-hypercube TH(2,d) where d >= 2. We have also designed 

an algorithm for embedding hex-cells HC (i), where i = 1, 2 into tree-hypercube TH (2, 

d), where d = 2i, with dilation and congestion one, and expansion 1.1 for mapping HC(1), 

and expansion 1.3 for mapping HC(2), depending on the structure and depth of the tree-

hypercube.  

 

1.1 Terminologies: 

Here, we introduce various criteria used to characterize the cost and performance of static 

interconnection networks [12]. We use these criteria to evaluate static networks, the 

embedding of such network topologies introduced in chapter two. 
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Degree  

 

The degree of an interconnection network is defined as the maximum number of nodes at 

any node in the network. A desirable feature in an interconnection network is that the 

number of ports would not grow at the same rate as the number of processors. Therefore, 

it is useful to have a network with relatively few ports per node, since this will affect the 

expandability of the network [19].  

 

Diameter  

The diameter of an interconnection network  is the maximum distance  between any two 

nodes in the network, measured in terms of number of edges. The diameter is an 

important measure of the power of the interconnection network. It is useful to make this 

parameter as low as possible, since it will not only reduce the traveling time for 

messages, but also minimizes message density in the links of  the network. 

 

Average Distance 

The average distance of an interconnection network is the average value of all distances 

between pairs of nodes in the network. One important measure of the power of a an 

interconnection network is the average distance between all nodes. It is very important to 

keep this parameter as low as possible, since it will reduce the traveling time for 

messages and provides more uniform message density in all links [19]. 

 

Bisection Width 

The bisection width of  a network, is defined as the minimum number of edges that must 

be removed to partition the network into two equal halves [19].   

 

Bisection Bandwidth 

The bisection bandwidth of a network is defined as the minimum volume of 

communication allowed between any two halves of a network [19]. 
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Cost 

The number of edges  in the network, the smaller the better [19].   

 

Congestion of Mapping 

 The maximum number of edges in E that are mapped onto any edge in E' is called the 

congestion of mapping [12].  

 

 Dilation of Mapping 

 The maximum number of edges in E' that any edge  in E is mapped into is called the 

dilation of mapping. 

 

Expansion of Mapping   

 The ratio of the number of nodes  V'  in the guest graph G' = (V', E')    to  nodes  V  in 

host graph G = (V, E). 

 

1.2  Statement of the problem 

There are some static interconnection networks which have been studied in the literature, 

such as hypercube, tree hypercube, tree, star, and ring. In particular, we are concerned 

with hex-cell interconnection network topology and tree-hypercube network. We study 

the problem of embedding hex-cell  networks into tree-hypercube networks.  

 

A good mapping is said to exist when adjacent processors in the guest network are 

mapped to reasonably close processors in the host network (i.e. small dilation) and when 

the paths between adjacent processors in the guest network are chosen in such a way that 

the congestion at each host node and across each host edge is moderately small (i.e. small 

congestion). 
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1.3 Goals  

 

• Exploring and introducing the problem of embedding hex-cell networks into tree-

hypercube networks. 

• Developing a new mapping algorithm which allows the embedding hex-cell into 

tree-hypercube networks. We consider some embedding parameters such as 

congestion of mapping, dilation, and expansion.  

• Developing an application to show  the advantage of embedding  of hex-cells into 

tree-hypercube networks.  

 

 

1.4 Significance 

 

Mapping interconnection topologies into tree-hypercube networks improves the 

performance of parallel systems by minimizing the overhead of executing tasks in 

parallel; we consider embedding hex-cell networks into tree-hypercube networks.  

The need for processor embedding or mapping comes from the need of a programmer 

to run an application on other topologies. In our case the programmer needs to run a 

hex-cell application on a tree-hypercube interconnection topology, without changing 

the application and the current interconnection topology (hex-cell). So we need to 

map the hex-cell into tree-hypercube networks, which means that the tree-hypercube 

can simulate hex-cell topology.  
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Chapter Two  

 

Network Topologies 

 

 

A wide variety of network topologies have been used in interconnection networks. 

These topologies try to trade off   cost and scalability with performance. While pure 

topologies have attractive mathematical properties, in practice interconnection 

networks tend to be a combination or modification of the pure topologies discussed in 

this section.  

 

2.1 Interconnection Networks Overview 

In this subsection we introduce some interconnection networks that have been studied 

in literature, such as bus-based networks, completely-connected network, star, linear 

arrays, meshes, hypercubes, tree-hypercubes, and hex-cells. 

 

Bus-Based Networks 

A bus-based network is the simplest network consisting of a shared medium that is 

common to all  the nodes. A bus has the desirable property that the cost of the 

network scales linearly as the number of nodes p. This cost is typically associated 

with bus interfaces. Furthermore, the distance between any two nodes in the network 

is constant (O (1)). Buses are also ideal for broadcasting information among nodes. 

Since the transmission medium is shared, there is little overhead associated with 

broadcast compared to point-to-point message transfer [12].  

 

      Completely-Connected Networks  

In a  completely-connected network, each node has a direct communication link to 

every other node in the network. Figure 2.1 illustrates a completely-connected 

network  of eight nodes. This network is ideal in the sense that a node can send a 

message to another node in a single step, since a communication link exists between 

each two nodes [12].  
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Star- Connected Networks 

In a star-connected network, one processor acts as the central processor. Every other 

processor has a communication link connecting it to this processor. Figure 2.2 shows 

a star-connected network of nine processors. Communication between any pair of 

processors is routed through the central processor, just as the shared bus forms the 

medium for all communication in a bus-based network. The central processor is the 

bottleneck in the star topology  [12]. 

 

 

 

Figure 2.1: A completely connected network     Figure 2.2: A star connected network. 

 

Linear Arrays and Meshes 

A linear array is a static network in which each node (except the two nodes at the 

ends) has two neighbors, one each to its left and right. A simple extension of the 

linear array (Figure 2.3-a) is the ring (Figure 2.3-b). The ring has a wraparound 

connection between the extremities of the linear array. In this case, each node has two 

neighbors.  

 

Figure 2.3:  linear arrays: (a) with no wraparound links, (b) with wraparound links. 
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A two-dimensional mesh illustrated in Figure 2.4 is an extension of the linear array to 

two-dimensions. Each dimension has √ p nodes with a node identified by a two-tuple 

(i, j). Every node (except those on the periphery) is connected to four other nodes 

whose indices differ in any dimension by one. A 2-D mesh has the property that it can 

be laid out in 2-D space, making it attractive from a wiring standpoint. Furthermore, a 

variety of regularly structured computations map very naturally to a 2-D mesh. For 

this reason, 2-D meshes were often used as in parallel machines [12]. 

 

 

 

Figure 2.4:  Two-dimensional mesh. 

 Hypercubes 

 The hypercube topology is an interconnection topology and known to be able to simulate 

other structures such as linear arrays and rings. The construction of a hypercube is 

illustrated in Figure 2.5. A zero-dimensional hypercube consist of 2
0
, i.e,  one node. A 

one-dimensional hypercube is constructed from two zero-dimensional hypercube by 

connecting them. A two dimensional hypercube of four nodes is constructed from two 

one-dimensional hypercubes by connecting corresponding nodes. In general, a d-

dimensional hypercube is constructed recursively by connecting corresponding nodes of  

two (d-1) dimensional hypercubes, Figure 2.5 illustrates this for up to 16 nodes in a 4-D 

hypercube [12].  
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Figure 2.5:  Recursive construction of hypercubes from hypercubes of lower 

dimensions 

 

It is useful to derive a numbering scheme for nodes in a hypercube. A simple 

numbering scheme can be derived from the construction of a hypercube as illustrated 

in Figure 2.5. If we have a numbering of two subcubes of dimension  d-1, we can 

derive a numbering scheme for the cube of dimension   d  by prefixing the labels of 

one of the subcubes with “ 0” and the labels of the other subcubes with a “1”. This 

numbering scheme has the useful  property that the minimum distance between two 

nodes is given by the number of bits that are different in two labels. For example, 

nodes labeled  0110 and 0101 are two edges apart, since they differ at two bit 

positions. This property is useful for deriving a number of parallel algorithms for the 

hypercube architecture.  
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      Tree- Hypercube Networks 

 

Here, we define a tree-hypercube [19] and describe a recursive construction 

mechanism. A tree-hypercube network TH (s, d) is constructed by taking a full tree of 

degree s, where s is a power of 2 and depth d. Levels of the tree are numbered 0, 1, 

…, d. Each level k has s
k
 nodes representing processing elements and labeled from 0 

to s
k
-1 in binary code and interconnected as a hypercube. Thus, nodes at level k 

constitute (k log s)-cube. Each node in a tree-hypercube is identified by a pair (l, x), 

where l denotes the level number and x is the cube address. The total number of 

nodes in TH (s, d) is N = (s
d+1

-1)/(s-1).  Figures 2.6 and  2.7 display two tree-

hypercube TH (2, 2) and TH (2, 3), respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                      Figure 2.6:  Tree-Hypercube TH (2, 2) 
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Figure 2.7:  Tree-Hypercube TH (2, 3) 

 

 

 A Tree-Hypercube network combines the advantages of both trees and hypercubes and 

avoids their shortcoming. Its diameter  is less than that of the hypercube. The tree-

hypercube network can emulate many interconnection topologies such as linear array, 

ring, tree, hypercubes and meshes. 

 

A Tree-hypercube network can be viewed as a recursive structure. TH (s,0) is the 

smallest tree-hypercube and consists of only one node. TH (s,d) can be constructed from 

s copies of TH (s, d-1)  by adding a new node to be the root  node of TH (s,d)  and label it 

with (0,0) then connect it to the  s TH (s,d-1)’s. Label these TH (s,d-1)  networks  by 0,1, 

….., s-1, and transform the label of each of the s nodes  (0,x)  to (1,x.i) where i=0, 1, ….., 

s-1  in binary notation. Then transform the label of each node  (l,x)  in the i-th network  to 

(l+1, i.x ( l log s)-1  x( l log s )-2 …. x0). Now, any two nodes ( l,x.r ) and (l,x.j )  become 

adjacent if r and j differ in only one bit position. As a result, all nodes at level  L  form an 

(l log s )–cube [19].  
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Another way of constructing  TH (s,d)  from TH (s,d-1) is by adding a new level to the 

bottom of  TH (s, d-1). That level consists of s
d 

 nodes labeled from 0 to  s
d   

 - 1  in binary 

and connected in (d  log s)-cube  structure. To establish interconnections between level d-

1  and level d, we make every node (d-1, x) at level d-1  to be adjacent to s nodes in the 

new  level d. These s nodes  are (d, x.a), where a= 0,1, …, s-1  in binary notation.  

 

This recursive structure is helpful in routing as well as in partitioning. It is also useful 

when extending TH (s,d ) to TH (s,d+1) by adding a new level using the second method 

above with a fraction of the cost. As we mentioned earlier, s is a power of 2, and in 

practice s is preferably 2 or 4  because TH (2,d) and TH (4,d) satisfies all the conditions 

for practical parallel computer systems [19]. 

 

 Hex-Cell Network 

 

A hex-cell network [24] with depth d is denoted by HC (d) and can be constructed by 

using units of hexagon cells, each of six nodes. A hex-cell network with depth d has d 

levels numbered from 1 to d, where, level 1 represents the innermost level corresponding 

to one hexagon cell. Level 2 corresponds to the six hexagon cells surrounding the 

hexagon at level 1. Level 3 corresponds to the 12 hexagon cells surrounding the six 

hexagons at level 2, as shown in Figure 2.8 [24]. The levels of the HC(d) network are 

labeled from 1 to d. Each level i has Ni nodes, representing processing elements and 

interconnected in a ring structure. Addressing nodes in HC is shown in Figure 2.9 [24]. 
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Figure 2.8:  (a) HC (one level)   (b) HC (two levels)     (c) HC (three levels) 

 

 

Figure 2.9: Addressing nodes in HC. 

 

In a hex-cell network, the number of nodes at level I is : Ni  = 6(2i -1). 

The total number of nodes in a hex-cell network  HC(d) is : N = 6d
2
. 

The number of links in HC(d)  is L =  9d
2 

 -3d. 

The bisection of  HC(d) is 2d. 

 

The proposed architecture of hex-cells has some of the interesting characteristics of 

hypercubes, binary trees, and linear arrays [24]. The degree and total number of links of 

the HC is less than those of the hypercube. In a hypercube, the node degree of each node 

is a logarithmic function of the total number of nodes, which is a drawback of the 

topology. Consequently, the hypercube topology is not a good candidate for 

interconnection networks for massive parallel computers due to limitations concerning 

integrated circuit technology and port numbers. The hex-cell topology is suitable for 

massive parallel computers, since it has a fixed degree which is 3. The diameter of hex-

cell is less than that of the linear array and ring, and greater than that of the binary tree 

and hypercube [24].  
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Table 2.1 shows a comparison of parameters for different  topologies including hex-cell  

[24]. 

Topology 

Name 

Maximum 

Node 

Degree 

Diameter Number 

of Links 

Bisection 

Bandwidth 

Remarks on 

network size 

Hex-Cell 3 4√(N/6)-1 3N/2 -

3√(N/6) 

2√(N/6) N is the 

number of 

nodes 

Hypercube log2N log2N log2N 

(N/2) 

N/2 N is the 

number of 

nodes 

 

Binary Tree 3 2(log2N -1) N-1 1 N is the 

number of   

nodes, 

Linear Array 2 N-1 N-1 1 N nodes 

Ring 2 N/2 N 2 N nodes 

2D-Torus 4 2(r/2) 2N N/2 r × r torus 

where r = √N 

Cube-

Connected 

Cycles 

3 2k-1+[k/2] 3N/2 N/(2k) N= k × 2
k
 

nodes with a 

cycle length k 

≥ 3 

3D Hexagonal 6 1.16 √N 3N -

8.66√N 

2.32 √N N is the 

number of 

nodes 

 

 

Table 2.1:  Comparison of parameters for different topologies. 

 

 

The degree of the HC is constant when d > 1 and less than the degree of hypercube 

and falls in between of linear array and 2d-torus as shown in Figure 2.10. Constant 

node degree facilitates modularity in building blocks for scalable systems [24]. The 

diameter of HC is less than that of the linear array and ring, and greater than that of 

the binary tree and hypercube as illustrated in Figure 2.11. The total number of links 

for HC is less than hypercube but greater than binary tree as shown in Figure 2.12. 

The proposed topology has the ability to efficiently simulate programs written for 

architectures such as linear arrays, rings and meshes. And can be used in wide range 

network applications such as mobile systems, and Ad-Hoc mobile networks [24]. 
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Figure 2.10: Degree of HC against the network size 

 

 
 

Figure 2.11: Diameter of HC against network size. 

 
Figure 2.12:  The number of links of HC against network size 
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 2.2  Tree-Hypercube and Hypercubes Comparison  

 

As we mentioned earlier, a tree-hypercube network combines the advantages of both 

trees and hypercubes and avoids their shortcoming [19]. Its diameter  is less than that of 

the hypercube. The tree-hypercube network can emulate many interconnection topologies 

such as linear arrays, rings, trees, hypercubes, and meshes. In this section we present a 

comparison between tree-hypercube and hypercube topology. 

Here, we introduce some criteria used to characterize the cost and performance of tree- 

hypercubes, and compare them with hypercubes; these criteria include degree, diameter, 

and average distance.  

 

Degree  

 

 For  a  TH with s=2 the degree of the TH is d+2 but for a hypercube with almost the 

same number of nodes the degree is d+1. Also for s=4 it is 2d+3, but for a hypercube 

with almost the same number of nodes the degree is 2d+1. The degree of a TH is larger 

than that of a hypercube by 1 and 2 for the cases when s=2 and s=4, respectively [19]. 

 

Diameter  

The diameter of TH(s,d) is  d* log s, the diameter of tree-hypercube is always smaller 

than the diameter of the hypercube [19].  

 

Average Distance 

The average  distance V2 of TH (2,d) is:  

  2 ( (d+1)  4
d  

- d2
d+1 

-1)  / (2
d+1 

 -1)², where  d/2 <=  v2 <  d+1 /2. 

 

And the average distance V4 of TH(4,d) is:  

 d- 1/15 +8/(15(4
d+1 

-1)) -  ( d+1)/(4
d+1

 – 1)
2
,  for d > 1, d-( 1/15) <  V4 < d.  

When s=4, the average distance of tree-hypercube is always smaller than the average 

distance of the hypercube of almost the same number of node. When s=2,  the average 

distance of tree-hypercube is smaller than that of  hypercube for values d ≤ 9, and they 

are equal for d > 9 [19]. 
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 2.3  Topology Embeddings 

 

 

Embedding a guest graph G = (V, E) into a host graph G' =  (V', E') is a mapping of 

each vertex in the set V into a vertex (or a set of vertices) in set V' and each edge in the 

set E into an edge (or a set of edges) in E'. When mapping graph G = (V, E) into G' = (V', 

E'), the following must be taken into consideration. First, one or more edge in E can be 

mapped into a single edge in E'. The maximum number of edges mapped into any edge in 

E' is called the congestion of mapping. Second, an edge in E may be mapped into 

multiple contiguous edges in E'. The maximum number of links in E' that any edge in E is 

mapped into is called the dilation of mapping. This is significant because traffic on the 

corresponding communication link in G must traverse more than one link in G’, possibly 

contributing to the congestion on the network. Third, the sets V and V' may contain 

different numbers of vertices. A node in V may correspond to more than one node in V' 

and vice versa. The ratio of the number of nodes in V' to that in V is called the expansion 

of mapping. If there is a good mapping of a graph G into G', then G' can simulate the 

behavior of G with less overhead [12]. 

 

 

2.3.1 Binary Reflected Gray Code (RGC) 

  

The embedding of linear arrays into hypercubes discussed in [12], is based on mapping 

nodes of  the linear array to the  nodes of a hypercube, using the binary reflected gray 

code method, as presented below.  A linear array  (or a ring ) composed  of 2
d
 nodes  

(labeled  0 through 2
d
 –1) can be embedded into  a d-dimensional hypercube by mapping 

node i of the linear array onto node G(i,d) of the hypercube. The function G(i,x) is 

defined as follows: 

 

G (0,1) = 0 

G (1,1) = 1 

G(i, x+1) =  {   G(i, x),                                       i < 2
x
 

                         2
x
  + G(2

x+1
 -1–i,x),              i >= 2

x
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The function G is called the Binary Reflected Gray Code (BRGC). The entry G(i,d) 

denotes the i 
th

 entry in the sequence of  Gray codes of d bits. Gray codes of d+1 bits  are 

derived from a table of Gray Codes  of d bits by reflecting the table and prefixing the 

reflected entries with  a 1 and the original entries with  a 0. This process is illustrated in 

Figure 2.13. A careful look at  the Gray Code table reveals that the two adjoining entries  

G(i, d) and G(i,d+1)  differ from each other  at only one bit position. 

  

As an example on using the Binary Reflected Gray Code, we present the embedding of 

linear arrays or rings into a hypercubes. Since node i in the linear array is mapped  to 

node G(i, D), and node i +1 is mapped to G(i+1, d), there is a direct link in the  

hypercube  that corresponds  to each direct link in the linear array. Recall that two nodes  

whose labels differ at only one bit  position have a direct link in a hypercube. Therefore, 

the mapping specified by function G  has a dilation of one and a congestion of one. 

Figure 2.14 illustrates the embedding of eight-node ring into a three-dimensional 

hypercube.  

 

1-bit Gray code     2-bit Gray cod       3-bit Gray code            3-D hypercube         8-processor ring  

 

       0                     0 0                   0 0 0                          0                        0  

        

       1                     0 1                   0 0 1                          1                         1 

      

                              1 1                   0 1 1                          3                         2 

         

                             1  0                   0 1 0                          2                        3 

 

                                                     1 1 0                          6                         4 

 

                                                    1 1 1                            7                        5 

                                                     

                                                    1 0 1                            5                        6 

                                             

                                                   1 0 0                             4                        7 

 

  

 

Figure 2.13: A three-bit reflected Gray Code ring. 
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Figure 2.14: The embedding of eight-node ring into a three-dimensional hypercube 
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Chapter Three 

 

Related Work 

 

 In this chapter, we discuss some of the work that are related to our research, the 

embedding of a hex-cell into a tree-hypercube. These related work include embedding of 

a ring into a tree-hypercube, embedding of a linear array into a tree-hypercube, and other 

embeddings. 

 

3.1 Embedding Topologies into Hypercubes  

 

            In this section, we present some embeddings of different  topologies into the 

hypercube networks, these different topologies include arbitrary binary trees, balanced 

binary trees, ring, and  mapping of meshes on star graphs. 

 

            In [17] embeddings in hypercubes, stated that one important aspect of efficient 

use of a hypercube computer to solve a given problem is the assignment of subtasks to 

processors in such a way that the communication overhead is low. The subtasks and their 

inter-communication requirements can be modeled by a graph, and the assignment of 

subtasks to processors viewed as an embedding of the task graph into the graph of the 

hypercube network. We survey the known results concerning such embeddings, including 

expansion/dilation tradeoffs for general graphs, embeddings of meshes and trees, 

packings of multiple copies of a graph, the complexity of finding good embeddings, and 

critical graphs which are minimal with respect to some property. 

 

             In [14] the embedding of hierarchical hypercube networks into the hypercube 

was presented. And states that the embedding of one interconnection network into 

another is a very important issue in the design and analysis of parallel algorithms. 

Through such embeddings, the algorithms originally developed for one architecture can 

be directly mapped to another architecture. This paper describes a new embedding 

method, based on matrix transformations, for optimally embedding hierarchical 

hypercube networks (HHNs) into the hypercube (binary n-cube). Thus, this embedding 

method has practical importance in enhancing the capabilities and extending the 
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usefulness of the hypercube, since hierarchical hypercube networks have proven to be 

very cost-effective for a wide range of applications. 

 

          On  mapping n-dimensional meshes on a star graph of degree n an algorithm 

developed in [22], the mapping has expansion 1 and dilation 3. This shows that an n-

degree star graph can efficiently simulate an n-dimensional mesh. The mapping in this 

research is based on performing a sequence of exchanges along each dimension i of the 

mesh. On the other hand, embedding binary trees into hypercubes [9], states that 

hypercubes are known to be able to simulate other structures such as grids and binary 

trees. In this paper, an embedding of arbitrary binary trees into a hypercube with 

expansion 1 and dilation no more than 2 is proposed, and embeddings with expansion 2 

and dilation 1. 

             On embedding star network  into hypercubes [6]. The star interconnection 

network has recently been suggested as an alternative to the hypercube. As hypercubes 

are often viewed as universal and capable of simulating other architectures efficiently, we 

investigate embeddings of star network into hypercubes. Our embeddings exhibit a 

marked trade off between dilation and expansion. We also show that the embedding of Sn 

into its optimum hypercube requires dilation Ω (log2 n). 

 

             The embedding of arbitrary binary tree into its optimal hypercube have been 

studied in [15]. A d-dimensional  hypercube is a very popular model of parallel 

computing, and the execution of many algorithms can be represented by binary trees, 

making desirable fast simulations of binary trees on hypercubes. This paper presents a 

simple embedding of an arbitrary binary tree into its optimal hypercube with dilation 8 

and constant congestion. The novelty of the method used here is based on the use of an 

intermediate quadtree data structure, which also permits the embedding to be efficiently 

computed on the hypercube itself. The embedding of   r-ary m cubes into hypercubes is 

presented in [13], using matrix transformations as an alternate to reflected gray code, 

which achieves the same result. This new method has  a nice property that makes it 

suitable to be used in divide-and-conquer  algorithms. Thus, it constitutes a useful tool for 

the design of parallel algorithms for the hypercube. The method of matrix transformation 
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is based on, folding  the hypercube  recursively,  so that the final layout contains  the r-

ary m-cube. 

 

            Embedding incomplete binary trees into incomplete hypercubes [16]. It has been 

proved that an incomplete binary tree cannot be embedded into an incomplete hypercube 

with dilation 1 and expansion 1. By applying some properties of in order traversal, the 

authors present an embedding scheme with dilation 2, edge-congestion 2 and expansion 

ratio (N + 1)/N, where N is the number of nodes in an incomplete binary tree. With this 

embedding scheme, a method is developed that can be used to simulate a binary tree on 

an incomplete hypercube effectively. Under the distributed environment, the mapping 

addresses of neighboring nodes in an incomplete binary tree can be identified in constant 

time without repeating the mapping work. Furthermore, experimental results show that 

this scheme is much better than the corresponding best known dilation 1 embedding 

scheme in terms of hardware costs and implementation. Even in total time costs 

(addressing time, computation time and transmission time), this approach is quite 

competitive. 

           

            On embedding balanced binary trees into hypercubes [2] states that in the context 

of parallel computing, the problem of embedding binary trees that represent 

communication structures arises. Whereas much research has focused on arbitrary trees, 

here the researcher concentrates on the subclass of balanced binary trees. The motivation 

for embedding into hypercube is that hypercube multiprocessor systems are very 

prominent type of parallel machines, because of their recursive structure and the fact that 

they contain structures like rings, 2-D-meshes, and higher dimensional meshes make 

them suitable for a large variety of problems. Many parallel algorithms use 

communication structures which can be represented by binary trees. In order to run these 

algorithms on a hypercube multiprocessor system, their communication graphs need to be 

embedded in the corresponding hypercube. 
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         On the embedding of rings into faulty twisted hypercubes [1], stated that the 

hypercube is emerging as one of the most effective and popular network architectures for 

large scale parallel machines. Hypercube based machines are becoming more popular due 

to many of their attractive features in parallel computing. An attractive version of the 

hypercube is the twisted hypercube. It preserves many properties of the hypercube and 

most importantly reduces the diameter by a factor of two. In this paper an optimal 

embeddings of rings into faulty twisted hypercubes with up to 2
n-3

 faulty processes was 

presented.  

            In distributed fault-tolerant embedding of several topologies into hypercubes, [28] 

proposed a distributed fault tolerant embedding based on  the faulty link model, for 

embedding  several topologies into hypercubes, with faulty  links and /or faulty nodes. 

Since embedding has great importance in the applications  of  parallel computing, every 

parallel application has its intrinsic  communication pattern. The communication pattern 

graph is mapped into a topology of multiprocessor structure so that the application can be 

executed. To increase the reliability of parallel applications, fault-tolerant embedding is 

necessary. In this research, embedding of rings  and toruses is studied  and proposed. An 

optimal embedding of a honeycomb network (honeycomb mesh and honeycomb torus) of 

size n into a hypercube is presented in [5], with expansion ratio of 4/3 = 1.33 when n is a 

power of two. When n is not a power of two, the expansion is 16/3 = 5.33, which we 

conjecture to be near optimal. For a honeycomb mesh, the dilation of the embedding is 1. 

A honeycomb network, built recursively using hexagon tessellation, is a multiprocessor 

interconnection network that is better than the planar mesh with the same number of 

nodes in terms of degree, diameter, number of links, and bisection width. 

             In [26] Cycles embedding in hypercubes with node failures. The hypercube has 

been widely used as the interconnection network in parallel computers. The n-

dimensional hypercube Qn is a graph having 2
n
 vertices each labeled with a distinct n-bit 

binary strings. Two vertices are linked by an edge if and only if their addresses differ 

exactly in the one bit position. Let fv denote the number of faulty vertices in Qn. For n≥3,  

this paper,  proofs  that every fault-free edge and fault-free vertex of Qn lies on a fault 
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free cycle of every even length from 4 to 2
n
−2fv inclusive even if fv≤n−2. These results 

are optimal. 

           In [11] the embedding of cycles in twisted cubes was studied. It has been proven 

in the literature that, for any integer l, 4≤l≤2
 n 

, a cycle of length l can be embedded with 

dilation 1 in an n-dimensional twisted cube, n≥3. In this paper the researcher  obtained  a 

stronger result of embedding of cycles with edge-pancyclic. And  proven that, for any 

integer l, 4≤l≤2
 n 

, and a given edge (x,y) in an n-dimensional twisted cube, n≥3, a cycle C 

of length l can be embedded with dilation 1 in the n-dimensional twisted cube such that 

(x,y) is in C in the twisted cube. Based on the proof of the edge-pancyclicity of twisted 

cubes, further provided an O(llog  l+n 
2
+nl) algorithm to find a cycle C of length l that 

contains (u,v) in TQ n for any (u,v) Є E(TQ n ) and any integer l with 4≤l≤2
 n 

. 

 

3.2 Embedding Topologies into Tree-Hypercube Networks 

             Here, we introduce the mapping of  Linear Array network into tree-hypercube 

[21], and its extension which is the mapping of  a ring into a tree-hypercube [3]. The 

embedding of  Linear Array network into tree-hypercube is presented in [21]. This 

research shows that graph embedding exists when adjacent  processors in the guest 

network are mapped to reasonably close processors in the host network (i.e. small 

dilation), and when the paths between adjacent processors in the guest network are 

chosen in such way   that the congestion of each host node  and across each host edge is 

moderately small ( i.e. small congestion ). An approach for embedding linear array into 

tree-hypercube is proposed in that paper. Arrays are one of the most natural (data or 

process) structures for many applications. Linear array of 2
d+1

-1 processors (where 

d=0,1,2,,3,…,n) can be embedded into a tree-hypercube TH (s,d) by mapping processor 

G onto processor G’(L,X) of the tree-hypercube by two steps: In the first step, the 

mapping is performed as a hypercube (at each level of the tree-hypercube, because each 

level i in the tree-hypercube has s
i
 nodes representing processing elements as a 

hypercube) nodes that are represented in BRGC order. The BRGC embedding has the 

property that any two adjacent numbers are mapped to neighboring nodes that can 

communicate directly through a link. Therefore, it uses only one link to route a message 
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from any node to its destination node. An embedding of a linear array into each level of 

tree-hypercube is a mapping of its linear array elements to hypercube nodes such that 

each linear array element is mapped to a distinct node. In the second step of mapping, the 

mapping is performed as tree nodes [21].  

             An algorithm for mapping a ring into tree-hypercube has been proposed in [3]. In 

that paper, the authors revealed that TH (s,d) has the ability to implement algorithms that 

use the communication pattern of linear array ring. They also showed that the tree-

hypercube which combines the advantages of both trees and hypercubes, can emulate the 

topology of a ring, and also other topologies such as linear arrays, trees, and meshes. The 

algorithm for mapping Ring topology into tree-hypercube network includes: first, 

mapping a linear array at each level of tree-hypercube networks TH(s, d), in order to 

obtain the decimal address for each node at each level k in TH(s, d), using BRGC, then 

finds the start node in the last level. An example that explains the procedure of mapping a 

ring with 2
d+1

-1 nodes into a TH (2, 3) is shown in Figure  3.1 [3]. 

   

Figure 3.1: Mapping a  ring with 2
d+1

-1 nodes into a TH (2,  

 

            The following related work includes, the embedding of binary trees into 

hypercubes, embedding of combinational circuits in hypercubes, and the embedding of             
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fault-free cycles in crossed cubes with conditional link faults. In [8], embedding of binary 

trees into hypercubes is described, the method   is based on an iterative embedding of 

binary trees into their graphs, and presents a class of binary trees, that allow a dilation 

two embedding into their optimal hypercubes. Then, concludes that there exist an 

embedding for an arbitrary binary tree.  

          In [29] the embedding torus in hexagonal honeycomb torus, states that a  number 

of parallel algorithms admit a static torus-structured task graph. Hexagonal honeycomb 

torus (HHT) networks are regarded as promising candidates for interconnection 

networks. In order to efficiently execute a torus-structured parallel algorithm on an HHT, 

it is essential to map the tasks to processors so that the communication overhead is 

minimized. The study proves that a (3n, In) torus can be embedded into an nth-order 

HHT with dilation 3, congestion 4, expansion 1 and load factor 1. Consequently, a 

parallel algorithm with a (3n, 1n) torus task graph can be executed on an nth-order HHT 

efficiently. 

         An embedding of combinational circuits in hypercubes was considered in [23], such 

that the nodes of the scheme go into vertices of the hypercube and bundles of arcs go into 

similar bundles or the so-called transition trees of the hypercube having no common 

internal vertices. This embedding was considered since that in the recent years, it has 

become popular to realize Boolean functions by combinational circuits. In many cases, 

the further use of the scheme constructed requires its geometric realization, i.e., a certain 

embedding in one or another specific geometric structure. The role of such structure is 

often played by the unit n-dimensional cube [23]. In [25], the embedding  of  fault-free 

cycles in crossed cubes with conditional link faults, the researcher states that the crossed 

cube, which is a variation of the hypercube, possesses some properties that are superior to 

those of the hypercube. It is  shown that with the assumption of each node incident with 

at least two fault-free links, an n-dimensional crossed cube with up to 2n-5 link faults can 

embed, with dilation one, fault-free cycles of lengths ranging from 4 to 2n. The 

assumption is meaningful, for its occurrence probability is very close to 1, and the result 

is optimal with respect to the number of link faults tolerated.  
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3.3 Tree-Hypercube Partitioning and the Embedding of Rings and Linear Arrays   

          Network partitionability is an important feature of networks underlying parallel 

machines, that support multitasking to serve several users or to run multiple tasks of the 

same algorithm simultaneously. To run multiple tasks in parallel, where each task can 

itself be parallel, the machine is partitioned into independent parts. To support the 

communication of each part, the network has to be partitioned into independent 

subnetworks. One important property of partionability is to have the partitions have the 

same topology as the original network [18].  

To be able to partition tree-hypercube networks, extending the definition of TH is needed 

by allowing any h levels to be a tree-hypercube. The notation of TH's was modified to 

indicate the top and bottom level s of the h levels. The tree-hypercube is denoted by TH 

(t, d, s), the graph consisting of the levels t, t+1,... d of the TH(s, d) [18]. The structure of 

tree-hypercubes allows for vertical partitioning, and the flexibility of having any 

successive levels to be a TH allows for horizontal partitioning. Horizontal partitioning 

consists of splitting the TH (t, d, s) at level i and getting a TH (t, i, s) and a TH (i+1, d, s). 

Figure 3.2 shows an example of horizontal partitioning. 

 

Figure 3.2: Horizontal Partitioning TH (0, 3, 2) into TH( 0,1, 2) and TH(2, 3, 2). 
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While studying the embedding of linear array and ring into Tree-Hypercube, we have 

found that we can map the linear array, and ring just at each level of the tree-hypercube; 

using the horizontal partitioning presented previously. This gives the tree-hypercube a 

good advantage so that it can simulate other topologies not just by mapping nodes of the 

guest topology on the tree-hypercube from the root node to the leaves.  

 

But mapping can be performed at each level of the Tree-Hypercube, by performing 

another horizontal partitioning on the partitioned tree-hypercube. Figure 3.3 illustrates 

examples of this embedding. The embedding in Figure 3.4 is based on the binary 

reflected gray code (BRGC), in which each node is connected with the other only if it 

differs with it  at 1 bit position (binary address of the node). The same corresponds for 

embedding the ring into Tree-Hypercube, by connecting  the last node with the start node. 

As shown in Figure 3.4. 

 

 

  

 

Figure  3.3: Embedding of both, four nodes and eight nodes Linear Array into               

                   TH(0, 1, 2),  and TH(2, 3, 2). 
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Figure 3.4: Embedding of four nodes and eight nodes ring into TH(0, 1, 2) and TH(2, 3, 

2).  

 

 

We can also use a whole part of the partition to map a linear array or ring on both tree 

edges and hypercube edges of the tree-hypercube, as illustrated in the following Figure. 

Figure 3.5: Mapping of  12 nodes linear array onto partitioned tree-hypercube TH(2,3,2) 
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Chapter Four 

 

Embedding Hex-Cells into Tree-Hypercubes Networks 

 

 

 Hex-Cell is a new interconnection topology, which is suitable for large parallel 

computers, and can connect massive number of  nodes with 3 links per node [24]. It has 

the ability to efficiently simulate programs written for architectures such as linear arrays, 

rings, and meshes. The hex-cell topology can easily embed these structures into it. 

 

Hex-Cell can be embedded into tree-hypercube by mapping nodes of the hex-cell into 

nodes of the tree-hypercube, and edges  of the hex-cell  onto edges of the tree-hypercube;  

without having additional number of edges (i.e. dilation of one) and  with lower 

expansion and congestion as possible. Since the smaller dilation of mapping, the shorter 

communication delay that the host graph (tree-hypercube) simulates the guest graph (hex-

cell), and the smaller the expansion of mapping, the more efficient the processor 

utilization that the host graph (Tree-Hypercube) simulates the guest graph (hex-cell) [10]. 

In the next section we present the algorithm for mapping hex-cells into tree-hypercube 

TH (2,d). 

 

 

  

4.1 The Proposed  Algorithm for Embedding Hex-Cells into Tree-Hypercube   

      TH(2,d). 

  

We have designed an algorithm for mapping hex-cells of n nodes into tree-hypercube 

TH(2,d); such that every hex-cell with six nodes and six edges is mapped onto nodes and 

edges of the tree-hypercube TH(2,d) where d >= 2. The  mapping has dilation one, 

congestion one, and expansion 1.1.  
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Algorithm 4.1 for embedding hex-cells into tree-hypercube TH(2,d), where d >= 2.    

 

int   d,     //   depth of Tree-Hypercube 

if  ( d >= 2 ) 

{             

      For   i = 1   to   (d - 1)           // each level of the tree-hypercube           

              For   j = 1   to   2
i
   step 2       // each node at that level of the tree-hypercube. 

 

        Node (i ,   j-1) in TH = Node 1 in HC.  

        Node (i ,   j) in TH = Node 2 in HC. 

                   Node (i+1, 2*(j-1) + 3) in TH = Node 3 in HC  

                   Node (i+1, 2*(j-1) +2) in TH= Node 4 in HC.   

        Node (i+1, 2*(j-1)) in TH =  Node 5 in HC. 

        Node (i+1, 2*(j-1) + 1) in TH = Node 6 in HC. 

                   Connect node 1 with node 6 through a link. 

Next j  

   Next i 

 } 

 

4.2 Examples on The Embedding Algorithm 4.1, and Discussion. 

 

Example 4.1; embedding  1 Hex-Cell (Figure 4.2) into Tree-Hypercube TH(2,2); since  

d=2, with respect to the algorithm nodes of the Hex-Cell will be mapped as the following, 

Figure 4.1 illustrates the example: 

 

node (1,0) in TH = Node 1 in HC  

node (1,1) in TH = Node 2 in HC 

node (2,3) in TH = Node 3 in HC  

node (2,2) in TH = Node 4 in HC  

node (2,0) in TH = Node 5 in HC  

node (2,1) in TH = Node 6 in HC 

Connect Node 1 with node 6 through a link. 
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Figure 4.1: Embedding One  Hex-Cell into Tree-Hypercube  TH( 2, 2). 

 

 

 

 

 

 

 

 

 

 

 

 

                                      

                                        Figure 4.2:   1 Hex-Cell. 

 

Example 4.2; embedding 3 Hex-Cells (Figure 4.4) into Tree-Hypercube TH(2,3); since 

d=3,  with respect to the algorithm nodes of the Hex-Cell will be mapped as the 

following, Figure 4.3 illustrates the example: 

 At First Iteration ( i = 1): 

Node (1,0) in TH = Node 1 in HC  

Node (1,1) in TH = Node 2 in HC 

Node (2,3) in TH = Node 3 in HC  

Node (2,2) in TH = Node 4 in HC  

Node (2,0) in TH = Node 5 in HC  

Node (2,1) in TH = Node 6 in HC  

Connect Node 1 with node 6 through a link. 

At Second Iteration ( i = 2): 

Node (2,0) in TH = Node 1 in HC  

Node (2,1) in TH = Node 2 in HC 

Node (3,3) in TH = Node 3 in HC  

Node (3,2) in TH = Node 4 in HC 
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Node (3,0)  in TH = Node 5 in HC 

Node (3,1) in HC = Node 6 in HC 

Connect Node 1 with node 6 through a link. 

 

Node (2,2) in TH = Node 1 in HC 

Node (2,3) in TH = Node 2 in HC  

Node (3,7) in TH = Node 3 in HC 

Node (3,6) in TH = Node 4 in HC 

Node (3,4) in TH = Node 5 in HC  

Node (3,5) in TH = Node 6 in HC 

Connect Node 1 with node 6 through a link. 

 
                

               Figure 4.3 :  Embedding Three Hex-Cells into Tree-Hypercube TH ( 2,3 ).  

 

 

 

 

 

 

 

 

 

 

 

 

 

                                             

     Figure 4.4: 3 Hex-Cells. 
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Example 4.3 ; embedding of seven hex-cells (Figure 4.6) into Tree-Hypercube TH(2,4); 

since d=4, with respect to the algorithm nodes of the Hex-Cell will be mapped as the 

following, Figure 4.5 illustrates the example: 

 

At First Iteration ( i = 1): 

Node (1,0) in TH = Node 1 in HC  

Node (1,1) in TH = Node 2 in HC 

Node (2,3) in TH = Node 3 in HC  

Node (2,2) in TH = Node 4 in HC  

Node (2,0) in TH = Node 5 in HC  

Node (2,1) in TH = Node 6 in HC  

Connect Node 1 with node 6 through a link. 

 

At Second Iteration ( i = 2): 

Node (2,0) in TH = Node 1 in HC  

Node (2,1) in TH = Node 2 in HC 

Node (3,3) in TH = Node 3 in HC  

Node (3,2) in TH = Node 4 in HC 

Node (3,0)  in TH = Node 5 in HC 

Node (3,1) in HC = Node 6 in HC 

Connect Node 1 with node 6 through a link. 

 

Node (2,2) in TH = Node 1 in HC 

Node (2,3) in TH = Node 2 in HC  

Node (3,7) in TH = Node 3 in HC 

Node (3,6) in TH = Node 4 in HC 

Node (3,4) in TH = Node 5 in HC  

Node (3,5) in TH = Node 6 in HC 

Connect Node 1 with node 6 through a link. 

 

At  Third Iteration (i = 3) 

Node (3,0) in TH = Node 1 in HC 

Node (3,1) in TH = Node 2 in HC 

Node (4,3) in TH = Node 3 in HC 

Node (4,2) in TH = Node 4 in HC 

Node (4,0) in TH = Node 5 in HC 

Node (4,1) in TH = Node 6 in HC 

Connect Node 1 with node 6 through a link. 

 

Node (3,2) in TH = Node 1 in HC 

Node (3,3) in TH = Node 2 in HC 

Node (4,7) in TH = Node 3 in HC 

Node (4,6) in TH = Node 4 in HC 

Node (4,4) in TH = Node 5 in HC 

Node (4,5) in TH = Node 6 in HC 
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Connect Node 1 with node 6 through a link. 

 

Node (3,4) in TH = Node 1 in HC 

Node (3,5) in TH = Node 2 in HC 

Node (4,11) in TH = Node 3 in HC 

Node (4,10) in TH = Node 4 in HC 

Node (4,8) in TH = Node 5 in HC 

Node (4,9) in TH = Node 6 in HC 

Connect Node 1 with node 6 through a link. 

 

Node (3,6) in TH = Node 1 in HC 

Node (3,7) in TH = Node 2 in HC 

Node (4,15) in TH = Node 3 in HC 

Node (4,14) in TH = Node 4 in HC 

Node (4,12) in TH = Node 5 in HC 

Node (4,11) in TH = Node 6 in HC 

Connect Node 1 with node 6 through a link. 

 
               Figure 4.5: Embedding of seven Hex-Cells into Tree-Hypercube TH( 2,4 ). 
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                                  Figure 4.6: Seven Hex-Cells 

 

Example 4.4 ; embedding of fifteen hex-cells (Figure 4.8) into Tree-Hypercube TH(2,5); 

since d=5, with respect to the algorithm nodes of the Hex-Cell will be mapped as the 

following, Figure 4.7 illustrates the example: 

 

At First Iteration ( i = 1): 

Node (1,0) in TH = Node 1 in HC  

Node (1,1) in TH = Node 2 in HC 

Node (2,3) in TH = Node 3 in HC  

Node (2,2) in TH = Node 4 in HC  

Node (2,0) in TH = Node 5 in HC  

Node (2,1) in TH = Node 6 in HC  

Connect Node 1 with node 6 through a link. 

 

At Second Iteration ( i = 2): 

Node (2,0) in TH = Node 1 in HC  

Node (2,1) in TH = Node 2 in HC 

Node (3,3) in TH = Node 3 in HC  

Node (3,2) in TH = Node 4 in HC 

Node (3,0)  in TH = Node 5 in HC 
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Node (3,1) in HC = Node 6 in HC 

Connect Node 1 with node 6 through a link. 

 

Node (2,2) in TH = Node 1 in HC 

Node (2,3) in TH = Node 2 in HC  

Node (3,7) in TH = Node 3 in HC 

Node (3,6) in TH = Node 4 in HC 

Node (3,4) in TH = Node 5 in HC  

Node (3,5) in TH = Node 6 in HC 

Connect Node 1 with node 6 through a link. 

 

At  Third Iteration (i = 3) 

Node (3,0) in TH = Node 1 in HC 

Node (3,1) in TH = Node 2 in HC 

Node (4,3) in TH = Node 3 in HC 

Node (4,2) in TH = Node 4 in HC 

Node (4,0) in TH = Node 5 in HC 

Node (4,1) in TH = Node 6 in HC 

Connect Node 1 with node 6 through a link. 

 

Node (3,2) in TH = Node 1 in HC 

Node (3,3) in TH = Node 2 in HC 

Node (4,7) in TH = Node 3 in HC 

Node (4,6) in TH = Node 4 in HC 

Node (4,4) in TH = Node 5 in HC 

Node (4,5) in TH = Node 6 in HC 

Connect Node 1 with node 6 through a link. 

 

Node (3,4) in TH = Node 1 in HC 

Node (3,5) in TH = Node 2 in HC 

Node (4,11) in TH = Node 3 in HC 

Node (4,10) in TH = Node 4 in HC 

Node (4,8) in TH = Node 5 in HC 

Node (4,9) in TH = Node 6 in HC 

Connect Node 1 with node 6 through a link. 

 

Node (3,6) in TH = Node 1 in HC 

Node (3,7) in TH = Node 2 in HC 

Node (4,15) in TH = Node 3 in HC 

Node (4,14) in TH = Node 4 in HC 

Node (4,12) in TH = Node 5 in HC 

Node (4,11) in TH = Node 6 in HC 

Connect Node 1 with node 6 through a link. 
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At  Fourth Iteration (i = 4) 

Node (4,0) in TH = Node 1 in HC 

Node (4,1) in TH = Node 2 in HC 

Node (5,3) in TH = Node 3 in HC 

Node (5,2) in TH = Node 4 in HC 

Node (5,0) in TH = Node 5 in HC 

Node (5,1) in TH = Node 6 in HC 

Connect Node 1 with node 6 through a link. 

 

Node (4,2) in TH = Node 1 in HC 

Node (4,3) in TH = Node 2 in HC 

Node (5,7) in TH = Node 3 in HC 

Node (5,6) in TH = Node 4 in HC 

Node (5,4) in TH = Node 5 in HC 

Node (5,5) in TH = Node 6 in HC 

Connect Node 1 with node 6 through a link. 

 

Node (4,4) in TH = Node 1 in HC 

Node (4,5) in TH = Node 2 in HC 

Node (5,11) in TH = Node 3 in HC 

Node (5,10) in TH = Node 4 in HC 

Node (5,8) in TH = Node 5 in HC 

Node (5,9) in TH = Node 6 in HC 

Connect Node 1 with node 6 through a link. 

 

Node (4,6) in TH = Node 1 in HC 

Node (4,7) in TH = Node 2 in HC 

Node (5,15) in TH = Node 3 in HC 

Node (5,14) in TH = Node 4 in HC 

Node (5,12) in TH = Node 5 in HC 

Node (5,13) in TH = Node 6 in HC 

Connect Node 1 with node 6 through a link. 

 

Node (4,8) in TH = Node 1 in HC 

Node (4,9) in TH = Node 2 in HC 

Node (5,19) in TH = Node 3 in HC 

Node (5,18) in TH = Node 4 in HC 

Node (5,16) in TH = Node 5 in HC 

Node (5,17) in TH = Node 6 in HC 

Connect Node 1 with node 6 through a link. 
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Node (4,10) in TH = Node 1 in HC 

Node (4,11) in TH = Node 2 in HC 

Node (5,23) in TH = Node 3 in HC 

Node (5,22) in TH = Node 4 in HC 

Node (5,20) in TH = Node 5 in HC 

Node (5,21) in TH = Node 6 in HC 

Connect Node 1 with node 6 through a link. 

 

Node (4,12) in TH = Node 1 in HC 

Node (4,13) in TH = Node 2 in HC 

Node (5,27) in TH = Node 3 in HC 

Node (5,26) in TH = Node 4 in HC 

Node (5,24) in TH = Node 5 in HC 

Node (5,25) in TH = Node 6 in HC 

Connect Node 1 with node 6 through a link. 

 

Node (4,14) in TH = Node 1 in HC 

Node (4,15) in TH = Node 2 in HC 

Node (5,31) in TH = Node 3 in HC 

Node (5,30) in TH = Node 4 in HC 

Node (5,28) in TH = Node 5 in HC 

Node (5,29) in TH = Node 6 in HC 

Connect Node 1 with node 6 through a link. 
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            Figure 4.7: Embedding of fifteen Hex-Cells into Tree-Hypercube TH( 2,5 ) 
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            Figure 4.8: Embedding of fifteen Hex-Cells into Tree-Hypercube TH(2,5) 

 

 

Note: 

  

In algorithm 4.1 an embedding of irregular shape of hex-cells into tree-hypercube 

TH(2,d) where d >= 2 is performed. Embedding of  regular shape of  hex-cells into tree-

hypercube can't be performed, requiring the structure of the tree-hypercube. And  so as 

not to have additional number of links and not to increase the cost.       
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4.3 The Proposed Algorithm for Embedding Hex-cells HC(i) ), where  i = 1, 2 into  

      Tree-Hypercube Network TH(2,d), where d = 2i.   

 

We have also designed an algorithm for embedding hex-cells HC(i), where  i = 1, 2 into 

tree-hypercube TH(2,d), where d = 2i ; without  having  additional number of edges when 

mapping edges of the hex-cells ( i.e. dilation one and congestion one), with expansion 1.1 

when mapping nodes  of  the  hex-cell HC (1) into distinct nodes of the tree-hypercube 

TH(2,2). Also expansion 1.3 when mapping HC(2) into TH(2,4). The first part of the 

proposed algorithm performs mapping of HC(1) into TH(2,2). The second part performs 

mapping of HC(2) into TH(2,4). Mapping nodes of hex-cell into nodes of tree-hypercube 

is done by making a  mathematical relation between the addresses of hex-cell nodes and 

the addresses of tree-hypercube nodes (i.e. node (i, j-1) in TH =  node (i, 3*j mod 5) in 

HC). 

Algorithm 4.2 for embedding hex-cells HC(i) ), where  i = 1, 2 into tree-hypercube 

network TH(2,d), where d = 2i:   

int   d,    //   depth of Tree-Hypercube 

If ( d= 2)  

{       //  Mapping HC (1) into TH (2,2)  

 node (1,0) in TH = node (1,1) in HC  

 node (1,1) in TH = node (1,2) in HC 

 node (2,3) in TH = node (1,3) in HC 

 node (2,2) in TH = node ( 2,3) in HC  

 node (2,0) in TH = node (2,2) in HC  

 node (2,1)  in TH = node (2,1) in HC 

Connect Node (1,0) with node (2,1) through a link. 

 

}      // end of  the if  statement 

 

If ( d=4) 

{     

       Map (d);     //  Mapping Function  

 node (4,3) in TH = node (3,4) in HC  

 node (4,11) in TH = node (3,5) in HC  

 node (4,10) in TH = node (3,6) in HC  

 node (4,14) in TH = node (4,5) in HC  

 node (4,6) in TH = node (4,4) in HC  

 node (4,2) in TH = node (4,3) in HC 
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 Connect Node (4,3) with node (4,2) through a link. 

 

}     //  end of  the if  statement 

 

 Map (d)      //  Mapping Function  

 {                 //  Mapping   HC(2) into TH (2,4)   

int  i,j,           

 node (1,0) in TH = node (1,1) in HC  

 node (1,1) in TH = node (1,2) in HC 

 node (2,3) in TH = node (1,3) in HC 

 node (2,2) in TH = node ( 2,4) in HC  

 node (2,0) in TH = node (2,3) in HC  

 node (2,1)  in TH = node (2,2) in HC 

Connect Node (1,0) with node (2,1) through a link. 

 

// each level of the tree-hypercube. For   i = 2   to   (d - 2)  

           For   j = 1   to   2
i
   step 2      // each node at that level of the tree-hypercube.  

 

                   node (i,   j-1) in TH =  node (i, 3*j mod 5) in HC     

                   node (i,   j) in TH = node (2*j mod 5, 2*j
2
 mod 15) in HC 

                   node (i+1, 2*(j-1) + 3) in TH = node ( 2*j mod 5, j
2
 mod 5) in HC  

                   node (i+1, 2*(j-1) +2) in TH = node ( 2*i – j, j
3
 mod 22) in HC  

        node (i+1, 2*(j-1)) in TH = node ( 3*j mod 7, (i*j) mod 9) in HC 

        node (i+1, 2*(j-1) + 1) in TH = node (  3*j mod 7, j +2) in HC               

                   Connect node  (i+1, 2*(j-1) + 1) with node (i,   j-1) through a link. 

Next j  

Next i 

 

For   i = 3   to   (d - 1)         // each level of the tree-hypercube. 

    For   j = 1   to   2
i-1

  + 1   step 4    // each node at that level of the tree-hypercube.  

             

        node (i,   j-1) in TH = node ( (( 3*j +i) mod 7 ) /2, 2*j mod 4) in HC 

        node (i,   j) in TH =  node (  (( 3*j +i) mod 7 ) /2, 3*j mod 10) in HC  

                   node (i+1, 2*(j-1) + 3) in TH = node ( i, ( (i-1)*(j+1) ) mod 7) in HC  
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                   node (i+1, 2*(j-1) +2)  in TH = node ( (i+ j)mod 5, (i* j) mod 9) in HC 

        node (i+1, 2*(j-1)) in TH = node ( (i+ j)mod 5, 2*j
2
 mod 43) in HC 

        node (i+1, 2*(j-1) + 1) in TH = node ( (i+ j)mod 6, j
2
 mod 18 ) in HC 

                   Connect node (i,   j-1)  with node (i+1, 2*(j-1) + 1)  through a link. 

Next j  

Next i 

 

Return ; 

 

}      //   end  of  Mapping Function.  

 

 

4.4 Examples on the Embedding Algorithm 4.2, and Discussion 

 

Example 4.5; mapping  hex-cell HC(1)  (Figure 4.9) into tree-hypercube TH(2,2); since  

d=2,  with respect to the algorithm nodes of the hex-cell will be mapped as the following, 

Figure 4.10 illustrates the example: 

 

 node (1,0) in TH = node (1,1) in HC  

 node (1,1) in TH = node (1,2) in HC 

 node (2,3) in TH = node (1,3) in HC 

 node (2,2) in TH = node ( 2,3) in HC  

 node (2,0) in TH = node (2,2) in HC  

 node (2,1)  in TH = node (2,1) in HC 

Connect Node (1,0) with node (2,1) through a link. 

 

 

 

  
                Figure 4.9:   HC (1). 
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2, 3  
2, 1 

  

2, 2 
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Figure 4.10: Mapping of HC (1) into  TH( 2, 2).  

 

Example 4.6; mapping of  hex-cell  HC(2) (Figure 4.11) into tree-hypercube TH(2,4); 

then  d=4, with respect to the algorithm nodes of the hex-cell will be mapped as the 

following, Figure 4.12  illustrates the example. 

    
 node (1,0) in TH = node (1,1) in HC  

 node (1,1) in TH = node (1,2) in HC 

 node (2,3) in TH = node (1,3) in HC 

 node (2,2) in TH = node ( 2,4) in HC  

 node (2,0) in TH = node (2,3) in HC  

 node (2,1)  in TH = node (2,2) in HC 

Connect Node (1,0) with node (2,1) through a link. 

 

 i = 2 ; j = 1  

 node (2,0) in TH = node (2,3) in HC  

 node (2,1) in TH = node (2,2) in HC 

 node (3,3) in TH = node (2,1) in HC 

 node (3,2) in TH = node (3,1) in HC  

 node (3,0) in TH = node (3,2) in HC  

 node (3,1) in TH = node (3,3) in HC  

Connect Node (2,0) with node (3,1) through a link. 

 

i = 2 ;   j = 3  

node (2,2) in TH = node (2,4) in HC  

node (2,3) in TH = node (1,3) in HC  

node (3,7) in TH = node (1,4) in HC  

node (3,6) in TH = node (1,5) in HC  

node (3,4) in TH = node (2,6) in HC  

node (3,5) in TH = node (2,5) in HC 

Connect Node (2,2) with node (3,5) through a link. 

1,001 1,000 

2,001 2,000 2,010 
2,011 

0,000 

1,1 1, 2  

1, 3  

2, 3  

2, 2 2, 1 
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 i=3; j=1;  

 node (3,0) in TH = node (3,2) in HC  

 node (3,1) in TH = node (3,3) in HC  

 node (4,3) in TH = node (3,4) in HC  

 node (4,2) in TH = node (4,3) in HC  

 node (4,0) in TH = node (4,2) in HC  

 node (4,1) in TH = node (4,1) in HC 

 Connect Node (3,0) with node (4,1) through a link. 

 

 i=3; j=5; 

 node (3,4) in TH = node (2,6) in HC  

 node (3,5) in TH = node (2,5) in HC  

 node (4,11) in TH = node (3,5) in HC  

 node (4,10) in TH = node (3,6) in HC  

 node (4,8) in TH = node (3,7) in HC  

 node (4,9) in TH = node (2,7) in HC 

 Connect Node (3,4) with node (4,9) through a link. 

 node (4,3) in TH = node (3,4) in HC  

 node (4,11) in TH = node (3,5) in HC  

 node (4,10) in TH = node (3,6) in HC  

 node (4,14) in TH = node (4,5) in HC  

 node (4,6) in TH = node (4,4) in HC  

 node (4,2) in TH = node (4,3) in HC 

 Connect Node (4,3) with node (4,2) through a link. 

 

 
                                   

                                   Figure 4.11:  HC (2). 
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Figure 4.12: Mapping of  Hex-Cells  HC (2) into Tree-Hypercube TH( 2,4 ) 

 

 

 

In Example 4.5, a  mapping of six nodes of  HC(1) into TH(2,2)  containing 7  nodes 

was performed. Here, the mapping  is said to have a dilation one, since each edge in 

the hex-cell is mapped into only  a single edge in the tree-hypercube, congestion one, 

since there is no more than one edge in the guest graph (HC (1)) mapped into any 

edge in the host graph (TH (2,2)). Also the expansion is 1.1, since the ratio of the 

maximum number of nodes in both graphs (hex-cell and tree-hypercube) is 7/6 = 1.1. 
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In Example 4.6, a mapping of HC (2) containing of 24 nodes into TH (2,4) consisting 

of  31 nodes, was performed. Here, the mapping  is said to have a dilation one, since 

each edge in the hex-cell is mapped into only  a single edge in the tree-hypercube, 

and congestion one, since there is no more than one edge in the guest graph (HC(2)) 

mapped into any edge in the host graph (TH (2,4)). Also the expansion is 1.3 since 

the ratio of the maximum number of nodes in both graphs (hex-cell and tree-

hypercube) is 31/24 = 1.3. In both examples, when mapping distinct nodes of the hex-

cells into distinct nodes in the tree-hypercube, a mapping of edges connecting these 

distinct nodes is performed.  

 

4.5 A note to the cases HC(i), where i > 2 

In the following table we list the total number of nodes in HC(i), TH(2,2i), and the 

number of unused nodes in the embedding of hex-cell into tree-hypercube. 

 

i Total number of nodes in HC(i) Total number of nodes in TH(2,2i) Number of 

unused nodes 

in embedding  

1 6 7 1 

2 24 31 7 

3 54 127 73 

4 96 511 415 

5 150 2047 1897 

Table 4.1: Number of Unused nodes in embedding hex-cells into tree-hypercube. 

 

From the above table we notice that the number of unused nodes increases massively, 

this leads to the idea of using other architectures such as (Client Servers), or 

embedding of hex-cells into other topologies such as meshes, and stars.  
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4.6 Implementation and Application 

4.6.1 Routing Mechanism 

 

          The most fundamental function of interconnection network is communication, 

or data routing. Routing is the process of sending messages from source nodes to 

other nodes in the network [20]. 

 

                 Mapping hex-cells into tree-hypercube has a benefit in communication or data 

routing between nodes of hex-cells. Since the maximum shortest path (diameter) 

between any two processing nodes in a hex-cell is 4√(N/6) – 1, where N is the total 

number of nodes in the hex-cell, we can compute the total number of nodes N in a 

hex-cell by the equation N= 6*d
2
  [24]. So, HC (1) has 6 nodes, and the maximum 

shortest path between any two nodes in HC(1) =  3. On the other hand in the tree-

hypercube, the diameter is computed by the equation d*log s, where d and s are the 

depth and degree of the tree-hypercube, respectively. The total number of nodes in 

TH (s, d) is computed by the equation N = ( s
d+1 

-1 ) / ( s-1) [19]. The TH (2, 2) 

which has 7 nodes and  its diameter = 2. So we can say that the diameter after 

embedding minimized one edge. HC(2) has 24 nodes, and the maximum shortest path 

between any two nodes = 7,  but in TH (2, 4) which has 31 nodes and its diameter = 

4. So here the diameter after embedding minimized 3 edges. 

  

            According to the above calculations of diameter for both hex-cell and tree-

hypercube, we can see that the diameter of the tree-hypercube is less than that of the 

hex-cell. So by mapping nodes and edges of hex-cell onto nodes and edges of tree-

hypercube, nodes of the hex-cell can communicate with other nodes with lower 

diameter. This increases the performance of the system. As an example, if node (1,1) 

in HC(1) sends a message to node (2,3) in the same HC(1), it needs to traverse along 

a paths which consist of three edges (1,1) -  (2,1) – (2,2) – (2,3) as shown in Figure 

4.13. But after mapping HC(1) into TH(2,2), node 1,1 which is mapped to node (1, 

000) in TH (2,2) can send a message to node (2,3) which is mapped to node (2, 010) 
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in TH(2,2) by traversing a path that consists of  only two edges (1,000) - (2,000) -

(2,010) which is (1,1) - (2.2)  - (2,3). Figure 4.14 illustrates this example.  

 

                          

Figure 4.13: The  path from node (1,1) to node (2,3) before mapping. 

 

 
 

Figure 4.14: The path  from node (1,1) to node (2,3) after mapping.  

 

Another example, if node 1,2 in HC(2) sends a message to node 4,2 in the same HC(2), 

the shortest path that it would traverse consists of seven edges (1,2) -(1,3) - (2,4)  - (2,3) - 

(3,3) - (3,2) - (4,1) - (4,2), as shown in  Figure 4.15. But after mapping HC(2) into 

TH(2,4), node (1,2)  which is mapped to node (1,0001) in TH(2,4) can send a message to 

node (4,2) which is mapped to node (4,0000) by traversing a path that consists of only 

four edges (1,0001) - (2,0010) - (3,0100) - (4,1000)- (4,0000) which is  (1.2)  - (2,4) -  

(2,6) -(3,7) - (4,2), as shown in Figure 4.16.  
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1,2 

 

               Figure 4.15: The path  from node (1,2)  to node (4,2)  before mapping. 

 

 
 

Figure 4.16: The path from node (1,2) to node 4,2, after mapping. 
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4.6.2 Application Program 

 

           We have developed an application program based on the routing algorithm of the 

hex-cell [24], and the routing algorithm of the tree-hypercube [19]. The programming 

language that we have used is C# programming language. The program  shows a 

comparison of the shortest path between any source and destination nodes in hex-cell and 

tree-hypercube graphs, before and after embedding. The shortest path between any two 

nodes in a hex-cell before embedding consists of  up to 7 edges, but after embedding a 

hex-cell into a tree-hypercube, the shortest path between any two nodes consists of  up to 

4 edges, this means that the shortest path have been minimized about 3 edges, this 

increases the performance of the parallel system. An interface of the application program 

is shown in  Figures 4.17, 4.18, and 4.19.  

          In Figure 4.17 a message shows the path ((1,1)- (2,1)- (2,2)) between node (1,1) 

and node (2,2) in hex-cell before embedding, this path contains two edges. On the other 

hand Figure 4.18 shows a message of the path between  same nodes ((1,1) and (2,2)) but 

after embedding, here the path is  ((1,1)- (2,2)) which contain only one edge. 

 

Figure 4.17: A message shows the shortest path between  node (1.1) and node (2.2)  in 

HC(1) before embedding. 
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Figure 4.18: A message shows the shortest path between node (1.1) and node (2.2), after 

embedding HC(1) into TH(2,2). 
 

In Figure 4.19 the interface shows a message of the path between node (1,3) and node 

(4,4) before embedding ( (1,3)-(2,4)-(2,5)-(3,5)-(3,4)-(4,3)-(4,4)) and after embedding 

((1,3)-(1,4)-(4,5)-(4,4)). We can see here that the path after embedding minimized three 

edges.    

 
 

 
 

Figure 4.19: A message shows the shortest path between node (1.3) and node (4.4), after 

embedding HC(2) into TH(4,4), and before embedding. 
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Chapter Five 

 

Contribution  and Conclusion 

 

 

 

5.1 Contribution   
 

The problem of mapping interconnection topologies into tree-hypercube network has not 

received much attention from researchers. The embedding of linear array and ring into 

tree-hypercube have been well studied in literature, and also other embeddings into 

hypercube such as binary trees and star graphs. However, there has been no work 

reported so far on hex-cells embedding. In our thesis, We have designed an algorithm for 

embedding hex-cells of n nodes into tree-hypercube TH(2,d) where d >= 2. The  mapping 

has dilation one, congestion one, and expansion 1.1. In the algorithm an embedding of 

irregular shape of  hex-cells into tree-hypercube TH(2,d) where d >= 2 is performed. 

Embedding of  regular shape of  hex-cells into tree-hypercube can't be performed, 

requiring the structure of the tree-hypercube. And  so as not to have additional number of 

links and not to increase the cost. We have also  designed an algorithm for mapping hex-

cells HC(i), where  i = 1, 2  into tree-hypercube  TH(2,d), where d = 2i. 

 

We have developed an application program based on the routing algorithm of the hex-

cell, and the routing algorithm of the Tree-Hypercube, the program  shows a comparison 

of the shortest path between any source and destination nodes in hex-cell and tree-

hypercube graphs, before and after embedding. The shortest path between any two nodes 

in hex-cell before embedding consists of  up to 7 edges, but after embedding hex-cell into 

Tree-Hypercube, the shortest path between any two nodes consists of  up to 4  edges, this 

means that the shortest path have minimized about 3 edges, this increases the 

performance of the parallel system. 

 

We have also suggested a new scheme for embedding linear arrays and rings, that have 

been studied in literature onto tree-hypercube. The scheme is based on the partitionability  

property of the tree-hypercube, in order to map linear arrays and rings at each level of the 
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tree-hypercube. Also, we can use a whole partition of the tree-hypercube to map  linear 

arrays and rings on both  tree edges, and  hypercube edges of the tree-hypercube. 

  

5.2 Conclusion and Future Work 

As a result the embedding algorithm 4.1 performs an embedding of irregular shape of  

hex-cells into tree-hypercube TH(2,d) where d >= 2 is performed. Embedding of  regular 

shape of  hex-cells into tree-hypercube can't be performed, requiring the structure of the 

tree-hypercube. And  so as not to have additional number of links and not to increase the 

cost. The embedding of hex-cells  into tree-hypercube has  dilation 1, congestion 1, and 

expansion 1.1. In algorithm 4.2, the embedding  of hex-cells  into tree-hypercube has  

dilation 1, congestion 1, and expansion 1.1 when mapping  HC(1); and  dilation 1, 

congestion 1, and  expansion 1.3 when mapping HC(2). The expansion increased because 

the  number of nodes in the host graph (tree-hypercube) increased, and it is larger than 

the number of nodes in the guest graph (hex-cell).   

 

For future work, we suggest embedding of hex-cells into other topologies, such as 

meshes and binary trees, and with lower dilation and expansion as possible. Furthermore, 

we will consider the embedding of hex-cell with respect to their depth, not depending on 

the structure of the host topology. In future work, in order to embed the regular shape of 

hex-cells, we suggest the embedding of hex-cells into hierarchal tree-hypercube, and also 

by  using the required additional number of links.   

  

Communication is unavoidable in parallel computing applications, and the 

communication patterns are intrinsically associated with the applications themselves. 

Therefore, the embedding of communication pattern graphs into the topologies of 

multiprocessor structure is of great importance. In some cases, a 100-percent fault 

tolerant embedding is possible. That is, there are no faulty nodes or links in the mapping 

of communication pattern graph on the host multiprocessor topology. For future work, we 

suggest to design an algorithm for a fault-tolerant embedding of hex-cell topology into 

tree-hypercube, and this algorithm should be based on the existence of faulty links and/or 

faulty nodes.     
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                     Appendix A 

Code of the Routing Application 
 

using System; 

using System.Collections.Generic; 

using System.ComponentModel; 

using System.Data; 

using System.Drawing; 

using System.Linq; 

using System.Text; 

using System.Windows.Forms; 

 

namespace SimNetworkApp 

{ 

public partial class frmMain : Form 

{ 

public frmMain() 

{ 

InitializeComponent(); 

} 

 

private void btnExit_Click(object sender, EventArgs e) 

{ 

Application.Exit(); 

} 

 

private void btnHecx_Click(object sender, EventArgs e) 

{ 

Form01 frm = new Form01(); 

frm.ShowDialog(); 

} 

 

private void btnSmallTree_Click(object sender, EventArgs e) 

{ 

Form02 frm = new Form02(); 

frm.ShowDialog(); 

 

} 

 

private void label1_Click(object sender, EventArgs e) 

{ 

 

} 

 

private void label2_Click(object sender, EventArgs e) 

{ 

 

} 

 

private void frmMain_Load(object sender, EventArgs e) 

{ 

 

} 

} 

} 
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using System; 

using System.Collections.Generic; 

using System.ComponentModel; 

using System.Data; 

using System.Drawing; 

using System.Linq; 

using System.Text; 

using System.Windows.Forms; 

 

namespace SimNetworkApp 

{ 

public partial class Form01 : Form 

{ 

public Form01() 

{ 

InitializeComponent(); 

} 

 

private void Form01_Load(object sender, EventArgs e) 

{ 

dataSet2.Paths.AddPathsRow("1,1", "1,000"); 

dataSet2.Paths.AddPathsRow("1, 2", "1,001"); 

dataSet2.Paths.AddPathsRow("2, 2", "2,000"); 

dataSet2.Paths.AddPathsRow("2, 1", "2,001"); 

dataSet2.Paths.AddPathsRow("2, 3", "2,010"); 

dataSet2.Paths.AddPathsRow("1, 3", "2,011"); 

 

} 

 

private void btnRun1_Click(object sender, EventArgs e) 

{ 

 

if (comboBox1.SelectedIndex == comboBox2.SelectedIndex) 

{ 

MessageBox.Show("you can't send message to the same node !!!"); 

return; 

} 

tree cls = new tree(); 

 

cls.Ls = 

Convert.ToInt32(comboBox1.SelectedValue.ToString().Substring(0, 1)); 

cls.Ld = 

Convert.ToInt32(comboBox2.SelectedValue.ToString().Substring(0, 1)); 

 

cls.S = 2; 

 

 

string x = comboBox1.SelectedValue.ToString().Substring(2, 

comboBox1.SelectedValue.ToString().Length - 2); 

string y = comboBox2.SelectedValue.ToString().Substring(2, 

comboBox2.SelectedValue.ToString().Length - 2); 

 

cls.sor = comboBox1.SelectedValue.ToString().Substring(2, 

comboBox1.SelectedValue.ToString().Length - 2); 

 

string aa = comboBox2.SelectedValue.ToString().Substring(2, 

comboBox2.SelectedValue.ToString().Length - 2).ToString(); 
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string[] a1 = new string[3]; 

 

a1[2] = aa.Substring(0, 1); 

a1[1] = aa.Substring(1, 1); 

a1[0] = aa.Substring(2, 1); 

 

for (int i = 0; i < a1.Length; i++) 

{ 

cls.des += a1[i]; //001 textBox2.Text.Substring(2, textBox2.Text.Length 

- 2); 

} 

string[] msg = cls.Route_th(x, y).Split('|'); 

 

string m ="1:  " + 

dataSet2.Paths.Rows[comboBox1.SelectedIndex]["path1"].ToString() +  "  

==>  " + comboBox1.SelectedValue.ToString() ; 

 

// MessageBox.Show(m); 

for (int i = 0; i < msg.Length; i++) 

{ 

for (int j = 0; j < dataSet2.Paths.Rows.Count ; j++) 

{ 

if (msg[i].Equals(dataSet2.Paths.Rows[j]["path2"].ToString())) 

{ 

m += "\n" + Convert.ToInt32(i + 1) + ":  " + 

dataSet2.Paths.Rows[j]["path1"].ToString() + "  ==>  " + 

dataSet2.Paths.Rows[j]["path2"].ToString(); 

break; 

} 

} 

 

} 

 

 

 

MessageBox.Show(m); 

} 

 

private void btnRun_Click(object sender, EventArgs e) 

{ 

 

if (comboBox1.SelectedIndex == comboBox2.SelectedIndex) 

{ 

MessageBox.Show("you can't send message to the same node !!!"); 

return; 

} 

 

clsCells cls = new clsCells(); 

 

string m = null ; 

 

int index= comboBox1.SelectedIndex; 

string[] val1 = 

dataSet2.Paths.Rows[index]["path1"].ToString().Split(','); 

 

index= comboBox2.SelectedIndex; 
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string[] val2 = 

dataSet2.Paths.Rows[index]["path1"].ToString().Split(','); 

 

int Xs = Convert.ToInt32( val1[0]); 

int Ys = Convert.ToInt32(val1[1]); 

 

 

int Xd = Convert.ToInt32( val2[0]); 

int Yd = Convert.ToInt32( val2[1]); 

 

 

m += Xs + "," + Ys; 

if (Xs < Xd) 

{ 

m += cls.moveDown(Xs, Ys,Xd, Yd, 1); 

} 

else if (Xs > Xd) 

{ 

m += cls.moveUp(Xs, Ys, Xd, Yd, 1); 

} 

else 

{ 

m += cls.moveHorizontal(Xs, Ys, Xd, Yd, 1); 

} 

 

 

MessageBox.Show(m); 

} 

} 

} 
 

 
using System; 

using System.Collections.Generic; 

using System.ComponentModel; 

using System.Data; 

using System.Drawing; 

using System.Linq; 

using System.Text; 

using System.Windows.Forms; 

 

namespace SimNetworkApp 

{ 

public partial class Form02 : Form 

{ 

public Form02() 

{ 

InitializeComponent(); 

} 

 

private void Form02_Load(object sender, EventArgs e) 

{ 

dataSet2.Paths.AddPathsRow("1,1", "1,0000"); 

dataSet2.Paths.AddPathsRow("1,2", "1,0001"); 

dataSet2.Paths.AddPathsRow("2,3", "2,0000"); 

dataSet2.Paths.AddPathsRow("2,2", "2,0001"); 
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dataSet2.Paths.AddPathsRow("2,4", "2,0010"); 

dataSet2.Paths.AddPathsRow("1,3", "2,0011"); 

dataSet2.Paths.AddPathsRow("3,2", "3,0000"); 

 

dataSet2.Paths.AddPathsRow("3,3", "3,0001"); 

dataSet2.Paths.AddPathsRow("3,1", "3,0010"); 

dataSet2.Paths.AddPathsRow("2,1", "3,0011"); 

dataSet2.Paths.AddPathsRow("2,6", "3,0100"); 

dataSet2.Paths.AddPathsRow("2,5", "3,0101"); 

dataSet2.Paths.AddPathsRow("1,5", "3,0110"); 

 

 

dataSet2.Paths.AddPathsRow("1,4", "3,0111"); 

dataSet2.Paths.AddPathsRow("4,2", "4,0000"); 

dataSet2.Paths.AddPathsRow("4,1", "4,0001"); 

dataSet2.Paths.AddPathsRow("4,3", "4,0010"); 

dataSet2.Paths.AddPathsRow("3,4", "4,0011"); 

dataSet2.Paths.AddPathsRow("4,4", "4,0110"); 

 

 

dataSet2.Paths.AddPathsRow("3,7", "4,1000"); 

dataSet2.Paths.AddPathsRow("2,7", "4,1001"); 

dataSet2.Paths.AddPathsRow("3,6", "4,1010"); 

dataSet2.Paths.AddPathsRow("3,5", "4,1011"); 

dataSet2.Paths.AddPathsRow("4,5", "4,1110"); 

 

 

} 

 

private void btnRun_Click(object sender, EventArgs e) 

{ 

 

if (comboBox1.SelectedIndex == comboBox2.SelectedIndex) 

{ 

MessageBox.Show("you can't send message to the same node !!!"); 

return; 

} 

clsCells cls = new clsCells(); 

 

string m = null; 

 

int index = comboBox1.SelectedIndex; 

string[] val1 = 

dataSet2.Paths.Rows[index]["path1"].ToString().Split(','); 

 

index = comboBox2.SelectedIndex; 

string[] val2 = 

dataSet2.Paths.Rows[index]["path1"].ToString().Split(','); 

 

int Xs = Convert.ToInt32(val1[0]); 

int Ys = Convert.ToInt32(val1[1]); 

 

 

int Xd = Convert.ToInt32(val2[0]); 

int Yd = Convert.ToInt32(val2[1]); 
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m += Xs + "," + Ys; 

if (Xs < Xd) 

{ 

m += cls.moveDown(Xs, Ys, Xd, Yd, 2); 

} 

else if (Xs > Xd) 

{ 

m += cls.moveUp(Xs, Ys, Xd, Yd, 2); 

} 

else if (Xs == Xd) 

{ 

m += cls.moveHorizontal(Xs, Ys, Xd, Yd, 2); 

} 

 

 

MessageBox.Show(m); 

} 

 

private void btnRun1_Click(object sender, EventArgs e) 

{ 

 

if (comboBox1.SelectedIndex == comboBox2.SelectedIndex) 

{ 

MessageBox.Show("you can't send message to the same node !!!"); 

return; 

} 

tree cls = new tree(); 

 

cls.Ls = 

Convert.ToInt32(comboBox1.SelectedValue.ToString().Substring(0, 1)); 

cls.Ld = 

Convert.ToInt32(comboBox2.SelectedValue.ToString().Substring(0, 1)); 

 

cls.S = 2; 

 

 

string x = comboBox1.SelectedValue.ToString().Substring(2, 

comboBox1.SelectedValue.ToString().Length - 2); 

string y = comboBox2.SelectedValue.ToString().Substring(2, 

comboBox2.SelectedValue.ToString().Length - 2); 

 

//cls.sor = comboBox1.SelectedValue.ToString().Substring(2, 

comboBox1.SelectedValue.ToString().Length - 2); 

 

string aa = comboBox2.SelectedValue.ToString().Substring(2, 

comboBox2.SelectedValue.ToString().Length - 2).ToString(); 

string[] a1 = new string[4]; 

 

a1[3] = aa.Substring(0, 1); 

a1[2] = aa.Substring(1, 1); 

a1[1] = aa.Substring(2, 1); 

a1[0] = aa.Substring(3, 1); 

 

for (int i = 0; i < a1.Length; i++) 

{ 

cls.des += a1[i]; //001 textBox2.Text.Substring(2, textBox2.Text.Length 

- 2); 
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} 

 

//================================================ 

string aa2 = comboBox1.SelectedValue.ToString().Substring(2, 

comboBox1.SelectedValue.ToString().Length - 2).ToString(); 

string[] a2 = new string[4]; 

 

a2[3] = aa2.Substring(0, 1); 

a2[2] = aa2.Substring(1, 1); 

a2[1] = aa2.Substring(2, 1); 

a2[0] = aa2.Substring(3, 1); 

 

for (int i = 0; i < a1.Length; i++) 

{ 

cls.sor += a2[i]; //001 textBox2.Text.Substring(2, textBox2.Text.Length 

- 2); 

} 

//============================================================= 

 

 

string[] msg = cls.Route_th(x, y).Split('|'); 

 

string m = "Run in TH after embedding\n\n1:  " + 

dataSet2.Paths.Rows[comboBox1.SelectedIndex]["path1"].ToString() + "  

==>  " + comboBox1.SelectedValue.ToString(); 

 

// MessageBox.Show(m); 

for (int i = 0; i < msg.Length; i++) 

{ 

for (int j = 0; j < dataSet2.Paths.Rows.Count; j++) 

{ 

if (msg[i].Equals(dataSet2.Paths.Rows[j]["path2"].ToString())) 

{ 

m += "\n" + Convert.ToInt32(i + 1) + ":  " + 

dataSet2.Paths.Rows[j]["path1"].ToString() + "  ==>  " + 

dataSet2.Paths.Rows[j]["path2"].ToString(); 

break; 

} 

} 

 

} 

//====================================================== 

clsCells cls1 = new clsCells(); 

m += "\n\nRun in HC before embedding\n"; 

 

int index = comboBox1.SelectedIndex; 

string[] val1 = 

dataSet2.Paths.Rows[index]["path1"].ToString().Split(','); 

 

index = comboBox2.SelectedIndex; 

string[] val2 = 

dataSet2.Paths.Rows[index]["path1"].ToString().Split(','); 

 

int Xs = Convert.ToInt32(val1[0]); 

int Ys = Convert.ToInt32(val1[1]); 
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int Xd = Convert.ToInt32(val2[0]); 

int Yd = Convert.ToInt32(val2[1]); 

 

 

m += Xs + "," + Ys; 

if (Xs < Xd) 

{ 

m += cls1.moveDown(Xs, Ys, Xd, Yd, 2); 

} 

else if (Xs > Xd) 

{ 

m += cls1.moveUp(Xs, Ys, Xd, Yd, 2); 

} 

else if (Xs == Xd) 

{ 

m += cls1.moveHorizontal(Xs, Ys, Xd, Yd, 2); 

} 

 

 

 

MessageBox.Show(m); 

} 

 

private void btnRunAll_Click(object sender, EventArgs e) 

{ 

ShowMessage msgbox = new ShowMessage(); 

string m = null; 

for (int mm = 0; mm < comboBox1.Items.Count; mm++) 

{ 

for (int n = 0; n < comboBox2.Items.Count; n++) 

{ 

if (mm == n) 

{ 

// MessageBox.Show("you can't send message to the same node !!!"); 

 

} 

else 

{ 

 

 

 

tree cls = new tree(); 

 

cls.Ls = 

Convert.ToInt32(dataSet2.Paths.Rows[mm]["path2"].ToString().Substring(0

, 1)); 

cls.Ld = 

Convert.ToInt32(dataSet2.Paths.Rows[n]["path2"].ToString().Substring(0, 

1)); 

 

cls.S = 2; 

 

 

string x = dataSet2.Paths.Rows[mm]["path2"].ToString().Substring(2, 

dataSet2.Paths.Rows[mm]["path2"].ToString().Length - 2); 

string y = dataSet2.Paths.Rows[n]["path2"].ToString().Substring(2, 

dataSet2.Paths.Rows[n]["path2"].ToString().Length - 2); 
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//cls.sor = comboBox1.SelectedValue.ToString().Substring(2, 

comboBox1.SelectedValue.ToString().Length - 2); 

 

string aa = dataSet2.Paths.Rows[n]["path2"].ToString().Substring(2, 

dataSet2.Paths.Rows[n]["path2"].ToString().Length - 2).ToString(); 

string[] a1 = new string[4]; 

 

a1[3] = aa.Substring(0, 1); 

a1[2] = aa.Substring(1, 1); 

a1[1] = aa.Substring(2, 1); 

a1[0] = aa.Substring(3, 1); 

 

for (int i = 0; i < a1.Length; i++) 

{ 

cls.des += a1[i]; //001 textBox2.Text.Substring(2, textBox2.Text.Length 

- 2); 

} 

 

//================================================ 

string aa2 = dataSet2.Paths.Rows[mm]["path2"].ToString().Substring(2, 

dataSet2.Paths.Rows[mm]["path2"].ToString().Length - 2).ToString(); 

string[] a2 = new string[4]; 

 

a2[3] = aa2.Substring(0, 1); 

a2[2] = aa2.Substring(1, 1); 

a2[1] = aa2.Substring(2, 1); 

a2[0] = aa2.Substring(3, 1); 

 

for (int i = 0; i < a1.Length; i++) 

{ 

cls.sor += a2[i]; //001 textBox2.Text.Substring(2, textBox2.Text.Length 

- 2); 

} 

//============================================================= 

 

 

string[] msg = cls.Route_th(x, y).Split('|'); 

 

m += "1:  " + dataSet2.Paths.Rows[mm]["path1"].ToString() + "  ==>  " + 

dataSet2.Paths.Rows[mm]["path2"].ToString(); 

 

// MessageBox.Show(m); 

for (int i = 0; i < msg.Length; i++) 

{ 

for (int j = 0; j < dataSet2.Paths.Rows.Count; j++) 

{ 

if (msg[i].Equals(dataSet2.Paths.Rows[j]["path2"].ToString())) 

{ 

m += "\n" + Convert.ToInt32(i + 1) + ":  " + 

dataSet2.Paths.Rows[j]["path1"].ToString() + "  ==>  " + 

dataSet2.Paths.Rows[j]["path2"].ToString(); 

break; 

} 

} 

 

} 
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m += "\n\n\n"; 

msgbox.richTextBox1.Text += m; 

 

 

//====================================================== 

 

clsCells cls1 = new clsCells(); 

 

 

int index = mm; 

string[] val1 = 

dataSet2.Paths.Rows[index]["path1"].ToString().Split(','); 

 

index = n; 

string[] val2 = 

dataSet2.Paths.Rows[index]["path1"].ToString().Split(','); 

 

int Xs = Convert.ToInt32(val1[0]); 

int Ys = Convert.ToInt32(val1[1]); 

 

 

int Xd = Convert.ToInt32(val2[0]); 

int Yd = Convert.ToInt32(val2[1]); 

 

 

m += Xs + "," + Ys; 

if (Xs < Xd) 

{ 

m += cls1.moveDown(Xs, Ys, Xd, Yd, 2); 

} 

else if (Xs > Xd) 

{ 

m += cls1.moveUp(Xs, Ys, Xd, Yd, 2); 

} 

else if (Xs == Xd) 

{ 

m += cls1.moveHorizontal(Xs, Ys, Xd, Yd, 2); 

} 

m += "\n====================================================\n"; 

 

 

} 

} 

 

 

} 

msgbox.richTextBox1.Text = m; 

msgbox.ShowDialog(); 

} 

} 

} 

 

 

 


