
 I

Middle East University for Graduate Studies

Faculty of Information Technology

Computer Science Department

Embedding Hex-Cells into Tree-Hypercube Networks

By

Awad Ibrahim Qatawneh

Supervised by

Prof. Dr. Ali Meligy

A Thesis Submitted to the Faculty of Graduate Studies

in Partial Fulfillment of

the Requirements for The Degree of

Master of Science

in Computer Science

December, 2008

 II

In the name of Allah,

The Most Beneficent,

The Most Merciful.

Read: In the Name of Your Lord

Who Created, Created Man from a Clot

Read: And Your Lord is

The Most Bounteous.

Who Taught by the Pen.

Taught Man that which

He did not know

Qur'an , Sura 96

 III

Committee Decision

This Thesis ((Embedding Hex-Cells into Tree-Hypercube Networks))
was successfully defended and approved on December 13 th 2008.

 Examination Committee Signature

PPrrooff.. DDrr.. AAllii MMeelliiggyy

PPrrooffeessssoorr,, DDeeppaarrttmmeenntt ooff CCoommppuutteerr SScciieennccee
((MMiiddddllee EEaasstt UUnniivveerrssiittyy ffoorr GGrraadduuaattee SSttuuddiieess))

DDrr.. EEmmaadd AAbbuueellrruubb
AAssssoocciiaattee PPrrooffeessssoorr,, DDeeppaarrttmmeenntt ooff CCoommppuutteerr SScciieennccee

((ZZaarrqqaa PPrriivvaattee UUnniivveerrssiittyy))

DDrr.. JJiihhaadd AAll--SSaaddii

AAssssoocciiaattee PPrrooffeessssoorr,, DDeeppaarrttmmeenntt ooff CCoommppuutteerr SScciieennccee
((AArraabb OOppeenn UUnniivveerrssiittyy))

DDrr.. NNiiddaall SShhiillbbaayyeehh

AAssssoocciiaattee PPrrooffeessssoorr,, DDeeppaarrttmmeenntt ooff CCoommppuutteerr SScciieennccee
((MMiiddddllee EEaasstt UUnniivveerrssiittyy ffoorr GGrraadduuaattee SSttuuddiieess))

 IV

������ ��	�
��� �	
�� ���� �����

����� �����

����������	 ���
��	��� ��� ������ �����	 ���	���� ����	 ����	 ����� ��� � !

"����� #� $�� /�&��� ��� '�(��	 �� ��)�&�	 �� ����*��	 �� ����+��� "�,����.

 �������:

 !�
����:

MMiiddddllee EEaasstt UUnniivveerrssiittyy ffoorr GGrraadduuaattee SSttuuddiieess

AAuutthhoorriizzaattiioonn FFoorrmm

I, Awad Ibrahim Awad Qatawneh authorize The Middle East University

for Graduate Studies to supply copies of my Thesis/Dissertation to

libraries or establishments or individuals on request.

Signature:

Date :

 V

Dedication

Dedicated to my beloved mother and father, who brought me up from

childhood educated me, and gave me the courage to confront the

challenges of life…….

To my brothers and sisters, Mohammed, Kamal, Islam , and Aya ……..

To all my friends and colleagues ………

 I dedicate this work

Awad Qatawneh

 VI

Acknowledgments

Prior to acknowledgments, I must glorify Allah the Almighty who gave

me courage and patience to carry out this work successfully.

I would like to express my great thanks to my advisor, Prof. Dr. Ali

Meligy. He was always receptive to the ideas that I came up with, and

provided me great knowledge and continuous encouragements.

I would like to express my great thanks to my parents, brothers , and

sisters .

Awad Qatawneh

 VII

Table of contents

Dedication I

Acknowledgments II

Table of Contents III

List of Figures IV

List of Tables VI

List of Abbreviations VII

Abstract in English VIII

Abstract in Arabic IX

Chapter One Introduction 1

1.1 Terminologies 2

1.2 Statement of the problem 4

1.3 Goals 5

1.4 Significance 5

Chapter Two Network Topologies 6

2.1 Interconnection Networks Overview 6

2.2 Tree-Hypercube and Hypercubes Comparison 16

2.3 Topology Embeddings

2.3.1Binary Reflected Gray Code (RGC)

17

17

Chapter Three Related Work 20

3.1 Embedding Topologies into Hypercubes 20

3.2 Embedding Topologies into Tree-hypercube Networks 24

3.3 Tree-Hypercube partitioning and the Embedding of Rings and

 Linear Arrays

27

Chapter Four Embedding Hex-Cells into Tree-Hypercube Networks 30

4.1 The Proposed Algorithm for Embedding Hex-Cells into Tree-

 Hypercube TH(2,d)

30

4.2 Examples on The Embedding Algorithm 4.1, and Discussion 31

4.3 The Proposed Algorithm for Embedding Hex-Cells HC(i), where i = 1,

 2 into Tree-Hypercube Network TH(2,d), where d = 2i.

42

4.4 Examples on the Embedding Algorithm 4.2, and Discussion 44

4.5 A note to the cases HC(i), where i > 2 48

4.6 Implementation and Application

 4.6.1 Routing mechanism

 4.6.2 Application Program

49

49

52

Chapter Five Contribution and Conclusion

5.1 Contribution

5.2 Conclusion and Future Work

54

54

55

 References 56

Appendix A 59

 VIII

List of Figures

Figure No. Figure Name Page No.
Figure 2.1 A completely connected network 7
Figure 2.2 A star connected network of nine nodes 7

Figure 2.3 (a) Linear Array with no wraparound links 7

Figure 2.3 (b) Linear Array with wraparound links 7

Figure 2.4 Two Dimensional Mesh 8

Figure 2.5 Construction of hypercubes from hypercubes of

lower dimensions
9

Figure 2.6 Tree -Hypercube TH (2, 2) 10

Figure 2.7 Tree -Hypercube TH (2, 3) 11

Figure 2.8 (a) HC (one level) 13

Figure 2.8 (b) HC (two levels) 13

Figure 2.8 (c) HC (three levels) 13

Figure 2.9 Addressing nodes in HC 13

Figure 2.10 Degree of HC against the network size

15

Figure 2.11 Diameter of HC against network size.

15

Figure 2.12 The number of links of HC against network size

15

Figure 2.13 A three bit reflected gray code ring 18

Figure 2.14 Embedding of Ring into a three dimensional

hypercube
19

Figure 3.1 Mapping a ring with 2
d+1 -

1 nodes into a TH (2,

3)
24

Figure 3.2 Horizontal Partitioning TH (0, 3, 2) into

TH(0,1,2) and TH(2, 3, 2).

26

Figure 3.3 Embedding of both, four nodes and eight nodes

Linear Array into TH(0, 1, 2), and TH(2, 3, 2).

27

Figure 3.4 Embedding of four nodes and eight nodes ring

into TH(0, 1, 2) and TH(2, 3, 2).

28

Figure 3.5 Mapping of 12 nodes linear array onto

partitioned tree-hypercube TH(2,3,2).

28

 IX

Figure No. Figure Name Page No.

Figure 4.1 Embedding One Hex-Cell into Tree-Hypercube TH(2, 2).

32

Figure 4.2 One Hex-Cell. 32

Figure 4.3 Embedding Three Hex-Cells into Tree-Hypercube TH (2,3). 33

Figure 4.4 Three Hex-Cells. 33

Figure 4.5 Embedding of seven Hex-Cells into Tree-Hypercube TH(2,4). 35

Figure 4.6 Seven Hex-Cells

36

Figure 4.7 Embedding of fifteen Hex-Cells into Tree-Hypercube TH(2,5). 40

Figure 4.8 Embedding of fifteen Hex-Cells into Tree-Hypercube TH(2,5) 41

Figure 4.9 HC (1). 44

Figure 4.10 Mapping of HC (1) into TH(2, 2). 45

Figure 4.11 HC (2) 46

Figure 4.12 Mapping of Hex-Cells HC (2) into Tree-Hypercube TH(2,4) 47

Figure 4.13 The path from node (1,1) to node (2,3) before mapping. 50

Figure 4.14 The path from node (1,1) to node (2,3) after mapping 50

Figure 4.15 The path from node (1,2) to node (4,2) before mapping. 51

Figure 4.16 The path from node (1,2) to node 4,2, after mapping 51

Figure 4.17 A message shows the shortest path between node (1.1) and node

(2.2) in HC(1) before embedding.

52

Figure 4.18 A message shows the shortest path between node (1.1) and node

(2.2), after embedding HC(1) into TH(2,2).

53

Figure 4.19 A message shows the shortest path between node (1.3) and node

(4.4), after embedding HC(2) into TH(4,4), and before

embedding.

53

 X

List of Tables

Table No. Table Name Page No.
Table 2.1 Comparison of parameters for different topologies 14

Table 4.1 Number of Unused nodes in embedding hex-cells into tree-

hypercube.

48

 XI

List of Abbreviations

BRGC Binary Reflected Gray Code.

HC Hex-Cell Network .

TH Tree-hypercube Network.

 XII

Abstract

Graph embedding or graph mapping is an important aspect for interconnection

networks used for communication between processors in parallel systems. Some

parallel algorithms use communication structures which can be represented by hex-

cells. In order to run these algorithms on a tree-hypercube multiprocessor system,

without changing the current topology and the running application, their

communication graphs need to be embedded into tree- hypercube.

In this thesis, we have designed an algorithm for embedding hex-cells of n nodes into

tree-hypercube TH(2,d) where d >= 2. The embedding has dilation one, congestion

one, and expansion 1.1. In the algorithm an embedding of irregular shape of hex-cells

into tree-hypercube TH(2,d) where d >= 2 is performed. We have also designed an

algorithm for embedding hex-cells HC(i), where i= 1,2 into tree-hypercube TH (2, d),

where d = 2i.

As a result the embedding of Hex-cells into Tree-Hypercube in algorithm 4.1 has

dilation one, congestion one, and expansion 1.1, and an embedding of irregular shape

of hex-cells into tree-hypercube TH(2,d) where d >= 2 is performed. In algorithm

4.2 the embedding has dilation 1, congestion 1 and expansion 1.1 when mapping

HC(1); and dilation 1, congestion 1 expansion 1.3 when mapping HC(2).

 XIII

 ا�����

ت ا����
ل ا
��	 ������م ����
 �����

� �����
�ا���� ا�

ت ا����
ل أ��� ا��� !�� 	�

ت ا"�#$
)'��$ د"% ا

ت +�	 ا
��*(ا�,

'�

ن
ت ���- ا��

دل ا��
�از)�� ������م �$اآ��1 . ��از)�� ���
�ارز"��
ت ا�
و6�75 ا���5
ر أن ا

9)�
 ا
���ا#�� �
�7 ����
ت ا!���
�ارز"��
ت "�- ا
'�� 6�75 ن*�("��از)�� . ا���
ل وا�
"�- أج� �����- ه�;: ا

 �($,�

ت ا���
�ق ا �����م ا?
��9
ل،

ت آ���ذج �'��

��� وا
��$ا"%
C
 "�� ��5م ����D$ �$اآ��1 ا����
ل ا

،
��75 �

'?
��7'�
تا
 �($,�

ت ا���

�
 . � �� "- د",�

)�����)�� ،�

#$
9)�
 ا
���ا#�� +	 ه;: ا�
�ق خ�ارز"���
��"% ا�?
 �($,��

ت ا����

ت +�	 ا�,

'�
 ل ن "�- ا

ت�'��
5
"� ا
����د . 2 >= و�'��D�" I$ د ��2رج G���� �F"اره
 ا ،%"��

+� إ
�6 أن 5�ا"� ا��L
� = 1 ،

5 "

م ��ارز"��� ���(
��O ���7$ ا
����*(+�	 . 1.1 = ، وا
��N(1= ا�زد�

� ��7!���
��P أن ��7�5 ا
�"% ا

 ا
��ا#�� (9�

� .ا
#$

، +	 ه;: اN(، أ	ن
�!
9)�
 ا
���ا#�� ذات ا
�'�� ا�ول وا�
 ��(�����(خ�ارز"���
��"% ا

ت ا
�,$)� 2، 1= ن���
�ق ا +	 ا?
 ���� Gت، و��رج
�'��

 . ن2= و�'��D�" I$ د �F" 2اره

 ه�	 أن ���
�ص� إ�

R% ا
��	 ��(ا���
5
"� ا
����د إن ا ،%"��
1 =5�ا"� ا �"

م ، 5�� = ، وا
����N(1= ا�زد

9)�
 ا
���ا#�� وذ
�S ����1 �$آ��1 . 1.1�
�ارز"��� ���(
��O ���7$ ا
����*(+�	 ا�

� ��7!���
وأن ��7�5 ا
�"% ا

��
�ق ا��?
 �($,���

ت ا�����

تا���' .�+
���L
5
"�� ا
�����د � ،%"���

م، 5
"�� 1 = إ
��6 أن 5�ا"�� ا��� ، 1= ا�زد

)�N�
9)�
 ا
���ا#�� ذات ا
�'�� اTول
�"% 1.1 =وا�
1 =5
"� ا
����د .ا �"

م ، 5�� = ، وا
���N(1= ا�زد

1.3%"�

ن	 !

 ا
��ا#�� ذات ا
�'� ا(9�
 . ا

 1

Chapter One

Introduction

 Parallel computing is a form of computing in which many instructions are carried

out simultaneously [12]. Parallel computing operates on the principle that large

problems can almost always be divided into smaller ones, which may be carried out

concurrently ("in parallel"). Parallel computing exists in several different forms: bit-

level parallelism, instruction level parallelism, data parallelism, and task parallelism. It

has been used for many years, mainly in high performance computing, but interest in it

has become greater in recent years due to physical constraints preventing frequency

scaling. Parallel computing has recently become the dominant paradigm in computer

architecture, mainly in the form of multi core processors [4].

Interconnection networks provide mechanisms for data transfer between processing

nodes or between processors and memory modules; they are classified as static and

dynamic. Static interconnection networks consist of point–to-point communication links

among processing nodes, they are also referred to as direct networks. Dynamic networks

on the other hand, are built using switches and communication links. Communication

links are connected to one another dynamically by the switches to establish paths among

processing nodes and memory banks. Dynamic networks are also referred to as indirect

networks.

One of the primary design considerations for a massive multiprocessor system is the

topology of the interconnection network used for communication between processors.

Some of the important interconnection networks which have been studied so far are

hypercube, meshes, trees, mesh-of-trees [27], tree-hypercube [19], hex-cell [24], and

pyramids. tree-hypercube is one of the popular general purpose networks due to its small

degree, short diameter, symmetry, optimal fault-tolerant properties, embedding of other

networks, and their ability of implementing fast algorithms [19].

 2

One of the important properties of any general interconnection network is that it should

be able to embed other interconnection networks with low overheads. This attribute

makes it a good candidate for a topology underlying a general-purpose parallel machine

[7]. The problem of mapping other interconnection topologies into tree-hypercube

network has not received much attention from researchers.

Topology embedding is an important aspect in parallel computing for performing

mapping techniques between network topologies. Such that each processing element

(node or vertex) and edge in the a graph G = (V,E) that represents the guest topology is

mapped into nodes and edges of graph G' = (V',E') which represents the host graph.

This mapping has two advantages; the first one is that it reduces the amount of time

processes spend interacting with each other, and the second is that it reduces the total

amount of time some processes are idle while the others are engaged in performing some

tasks. This improves the performance of communication between processing nodes, and

gets over the problem of congesting communication. Another main advantage for

embedding, is that if a graph G is mapped into G', then G' can simulate the behavior of G

with less overhead [12] of executing tasks in parallel.

In our research, we will discuss the problem of embedding hex-cell static networks into

tree-hypercube network. In this thesis, we have designed an algorithm for embedding

hex-cells of n nodes into tree-hypercube TH(2,d) where d >= 2. We have also designed

an algorithm for embedding hex-cells HC (i), where i = 1, 2 into tree-hypercube TH (2,

d), where d = 2i, with dilation and congestion one, and expansion 1.1 for mapping HC(1),

and expansion 1.3 for mapping HC(2), depending on the structure and depth of the tree-

hypercube.

1.1 Terminologies:

Here, we introduce various criteria used to characterize the cost and performance of static

interconnection networks [12]. We use these criteria to evaluate static networks, the

embedding of such network topologies introduced in chapter two.

 3

Degree

The degree of an interconnection network is defined as the maximum number of nodes at

any node in the network. A desirable feature in an interconnection network is that the

number of ports would not grow at the same rate as the number of processors. Therefore,

it is useful to have a network with relatively few ports per node, since this will affect the

expandability of the network [19].

Diameter

The diameter of an interconnection network is the maximum distance between any two

nodes in the network, measured in terms of number of edges. The diameter is an

important measure of the power of the interconnection network. It is useful to make this

parameter as low as possible, since it will not only reduce the traveling time for

messages, but also minimizes message density in the links of the network.

Average Distance

The average distance of an interconnection network is the average value of all distances

between pairs of nodes in the network. One important measure of the power of a an

interconnection network is the average distance between all nodes. It is very important to

keep this parameter as low as possible, since it will reduce the traveling time for

messages and provides more uniform message density in all links [19].

Bisection Width

The bisection width of a network, is defined as the minimum number of edges that must

be removed to partition the network into two equal halves [19].

Bisection Bandwidth

The bisection bandwidth of a network is defined as the minimum volume of

communication allowed between any two halves of a network [19].

 4

Cost

The number of edges in the network, the smaller the better [19].

Congestion of Mapping

 The maximum number of edges in E that are mapped onto any edge in E' is called the

congestion of mapping [12].

 Dilation of Mapping

 The maximum number of edges in E' that any edge in E is mapped into is called the

dilation of mapping.

Expansion of Mapping

 The ratio of the number of nodes V' in the guest graph G' = (V', E') to nodes V in

host graph G = (V, E).

1.2 Statement of the problem

There are some static interconnection networks which have been studied in the literature,

such as hypercube, tree hypercube, tree, star, and ring. In particular, we are concerned

with hex-cell interconnection network topology and tree-hypercube network. We study

the problem of embedding hex-cell networks into tree-hypercube networks.

A good mapping is said to exist when adjacent processors in the guest network are

mapped to reasonably close processors in the host network (i.e. small dilation) and when

the paths between adjacent processors in the guest network are chosen in such a way that

the congestion at each host node and across each host edge is moderately small (i.e. small

congestion).

 5

1.3 Goals

• Exploring and introducing the problem of embedding hex-cell networks into tree-

hypercube networks.

• Developing a new mapping algorithm which allows the embedding hex-cell into

tree-hypercube networks. We consider some embedding parameters such as

congestion of mapping, dilation, and expansion.

• Developing an application to show the advantage of embedding of hex-cells into

tree-hypercube networks.

1.4 Significance

Mapping interconnection topologies into tree-hypercube networks improves the

performance of parallel systems by minimizing the overhead of executing tasks in

parallel; we consider embedding hex-cell networks into tree-hypercube networks.

The need for processor embedding or mapping comes from the need of a programmer

to run an application on other topologies. In our case the programmer needs to run a

hex-cell application on a tree-hypercube interconnection topology, without changing

the application and the current interconnection topology (hex-cell). So we need to

map the hex-cell into tree-hypercube networks, which means that the tree-hypercube

can simulate hex-cell topology.

 6

Chapter Two

Network Topologies

A wide variety of network topologies have been used in interconnection networks.

These topologies try to trade off cost and scalability with performance. While pure

topologies have attractive mathematical properties, in practice interconnection

networks tend to be a combination or modification of the pure topologies discussed in

this section.

2.1 Interconnection Networks Overview

In this subsection we introduce some interconnection networks that have been studied

in literature, such as bus-based networks, completely-connected network, star, linear

arrays, meshes, hypercubes, tree-hypercubes, and hex-cells.

Bus-Based Networks

A bus-based network is the simplest network consisting of a shared medium that is

common to all the nodes. A bus has the desirable property that the cost of the

network scales linearly as the number of nodes p. This cost is typically associated

with bus interfaces. Furthermore, the distance between any two nodes in the network

is constant (O (1)). Buses are also ideal for broadcasting information among nodes.

Since the transmission medium is shared, there is little overhead associated with

broadcast compared to point-to-point message transfer [12].

 Completely-Connected Networks

In a completely-connected network, each node has a direct communication link to

every other node in the network. Figure 2.1 illustrates a completely-connected

network of eight nodes. This network is ideal in the sense that a node can send a

message to another node in a single step, since a communication link exists between

each two nodes [12].

 7

Star- Connected Networks

In a star-connected network, one processor acts as the central processor. Every other

processor has a communication link connecting it to this processor. Figure 2.2 shows

a star-connected network of nine processors. Communication between any pair of

processors is routed through the central processor, just as the shared bus forms the

medium for all communication in a bus-based network. The central processor is the

bottleneck in the star topology [12].

Figure 2.1: A completely connected network Figure 2.2: A star connected network.

Linear Arrays and Meshes

A linear array is a static network in which each node (except the two nodes at the

ends) has two neighbors, one each to its left and right. A simple extension of the

linear array (Figure 2.3-a) is the ring (Figure 2.3-b). The ring has a wraparound

connection between the extremities of the linear array. In this case, each node has two

neighbors.

Figure 2.3: linear arrays: (a) with no wraparound links, (b) with wraparound links.

 8

A two-dimensional mesh illustrated in Figure 2.4 is an extension of the linear array to

two-dimensions. Each dimension has √ p nodes with a node identified by a two-tuple

(i, j). Every node (except those on the periphery) is connected to four other nodes

whose indices differ in any dimension by one. A 2-D mesh has the property that it can

be laid out in 2-D space, making it attractive from a wiring standpoint. Furthermore, a

variety of regularly structured computations map very naturally to a 2-D mesh. For

this reason, 2-D meshes were often used as in parallel machines [12].

Figure 2.4: Two-dimensional mesh.

 Hypercubes

 The hypercube topology is an interconnection topology and known to be able to simulate

other structures such as linear arrays and rings. The construction of a hypercube is

illustrated in Figure 2.5. A zero-dimensional hypercube consist of 2
0
, i.e, one node. A

one-dimensional hypercube is constructed from two zero-dimensional hypercube by

connecting them. A two dimensional hypercube of four nodes is constructed from two

one-dimensional hypercubes by connecting corresponding nodes. In general, a d-

dimensional hypercube is constructed recursively by connecting corresponding nodes of

two (d-1) dimensional hypercubes, Figure 2.5 illustrates this for up to 16 nodes in a 4-D

hypercube [12].

 9

Figure 2.5: Recursive construction of hypercubes from hypercubes of lower

dimensions

It is useful to derive a numbering scheme for nodes in a hypercube. A simple

numbering scheme can be derived from the construction of a hypercube as illustrated

in Figure 2.5. If we have a numbering of two subcubes of dimension d-1, we can

derive a numbering scheme for the cube of dimension d by prefixing the labels of

one of the subcubes with “ 0” and the labels of the other subcubes with a “1”. This

numbering scheme has the useful property that the minimum distance between two

nodes is given by the number of bits that are different in two labels. For example,

nodes labeled 0110 and 0101 are two edges apart, since they differ at two bit

positions. This property is useful for deriving a number of parallel algorithms for the

hypercube architecture.

 10

 Tree- Hypercube Networks

Here, we define a tree-hypercube [19] and describe a recursive construction

mechanism. A tree-hypercube network TH (s, d) is constructed by taking a full tree of

degree s, where s is a power of 2 and depth d. Levels of the tree are numbered 0, 1,

…, d. Each level k has s
k
 nodes representing processing elements and labeled from 0

to s
k
-1 in binary code and interconnected as a hypercube. Thus, nodes at level k

constitute (k log s)-cube. Each node in a tree-hypercube is identified by a pair (l, x),

where l denotes the level number and x is the cube address. The total number of

nodes in TH (s, d) is N = (s
d+1

-1)/(s-1). Figures 2.6 and 2.7 display two tree-

hypercube TH (2, 2) and TH (2, 3), respectively.

 Figure 2.6: Tree-Hypercube TH (2, 2)

2, 11 2, 10 2, 00 2, 01

 0, 00

1, 00
1, 01

 11

Figure 2.7: Tree-Hypercube TH (2, 3)

 A Tree-Hypercube network combines the advantages of both trees and hypercubes and

avoids their shortcoming. Its diameter is less than that of the hypercube. The tree-

hypercube network can emulate many interconnection topologies such as linear array,

ring, tree, hypercubes and meshes.

A Tree-hypercube network can be viewed as a recursive structure. TH (s,0) is the

smallest tree-hypercube and consists of only one node. TH (s,d) can be constructed from

s copies of TH (s, d-1) by adding a new node to be the root node of TH (s,d) and label it

with (0,0) then connect it to the s TH (s,d-1)’s. Label these TH (s,d-1) networks by 0,1,

….., s-1, and transform the label of each of the s nodes (0,x) to (1,x.i) where i=0, 1, …..,

s-1 in binary notation. Then transform the label of each node (l,x) in the i-th network to

(l+1, i.x (l log s)-1 x(l log s)-2 …. x0). Now, any two nodes (l,x.r) and (l,x.j) become

adjacent if r and j differ in only one bit position. As a result, all nodes at level L form an

(l log s)–cube [19].

3,111
3,110 3,101 3,100

0,000

1,000 1,001

3,011 3,010 3,001
3,000

2,011 2,010 2,000 2,001

 12

Another way of constructing TH (s,d) from TH (s,d-1) is by adding a new level to the

bottom of TH (s, d-1). That level consists of s
d

 nodes labeled from 0 to s
d

 - 1 in binary

and connected in (d log s)-cube structure. To establish interconnections between level d-

1 and level d, we make every node (d-1, x) at level d-1 to be adjacent to s nodes in the

new level d. These s nodes are (d, x.a), where a= 0,1, …, s-1 in binary notation.

This recursive structure is helpful in routing as well as in partitioning. It is also useful

when extending TH (s,d) to TH (s,d+1) by adding a new level using the second method

above with a fraction of the cost. As we mentioned earlier, s is a power of 2, and in

practice s is preferably 2 or 4 because TH (2,d) and TH (4,d) satisfies all the conditions

for practical parallel computer systems [19].

 Hex-Cell Network

A hex-cell network [24] with depth d is denoted by HC (d) and can be constructed by

using units of hexagon cells, each of six nodes. A hex-cell network with depth d has d

levels numbered from 1 to d, where, level 1 represents the innermost level corresponding

to one hexagon cell. Level 2 corresponds to the six hexagon cells surrounding the

hexagon at level 1. Level 3 corresponds to the 12 hexagon cells surrounding the six

hexagons at level 2, as shown in Figure 2.8 [24]. The levels of the HC(d) network are

labeled from 1 to d. Each level i has Ni nodes, representing processing elements and

interconnected in a ring structure. Addressing nodes in HC is shown in Figure 2.9 [24].

 13

Figure 2.8: (a) HC (one level) (b) HC (two levels) (c) HC (three levels)

Figure 2.9: Addressing nodes in HC.

In a hex-cell network, the number of nodes at level I is : Ni = 6(2i -1).

The total number of nodes in a hex-cell network HC(d) is : N = 6d
2
.

The number of links in HC(d) is L = 9d
2

 -3d.

The bisection of HC(d) is 2d.

The proposed architecture of hex-cells has some of the interesting characteristics of

hypercubes, binary trees, and linear arrays [24]. The degree and total number of links of

the HC is less than those of the hypercube. In a hypercube, the node degree of each node

is a logarithmic function of the total number of nodes, which is a drawback of the

topology. Consequently, the hypercube topology is not a good candidate for

interconnection networks for massive parallel computers due to limitations concerning

integrated circuit technology and port numbers. The hex-cell topology is suitable for

massive parallel computers, since it has a fixed degree which is 3. The diameter of hex-

cell is less than that of the linear array and ring, and greater than that of the binary tree

and hypercube [24].

 14

Table 2.1 shows a comparison of parameters for different topologies including hex-cell

[24].

Topology

Name

Maximum

Node

Degree

Diameter Number

of Links

Bisection

Bandwidth

Remarks on

network size

Hex-Cell 3 4√(N/6)-1 3N/2 -

3√(N/6)

2√(N/6) N is the

number of

nodes

Hypercube log2N log2N log2N

(N/2)

N/2 N is the

number of

nodes

Binary Tree 3 2(log2N -1) N-1 1 N is the

number of

nodes,

Linear Array 2 N-1 N-1 1 N nodes

Ring 2 N/2 N 2 N nodes

2D-Torus 4 2(r/2) 2N N/2 r × r torus

where r = √N

Cube-

Connected

Cycles

3 2k-1+[k/2] 3N/2 N/(2k) N= k × 2
k

nodes with a

cycle length k

≥ 3

3D Hexagonal 6 1.16 √N 3N -

8.66√N

2.32 √N N is the

number of

nodes

Table 2.1: Comparison of parameters for different topologies.

The degree of the HC is constant when d > 1 and less than the degree of hypercube

and falls in between of linear array and 2d-torus as shown in Figure 2.10. Constant

node degree facilitates modularity in building blocks for scalable systems [24]. The

diameter of HC is less than that of the linear array and ring, and greater than that of

the binary tree and hypercube as illustrated in Figure 2.11. The total number of links

for HC is less than hypercube but greater than binary tree as shown in Figure 2.12.

The proposed topology has the ability to efficiently simulate programs written for

architectures such as linear arrays, rings and meshes. And can be used in wide range

network applications such as mobile systems, and Ad-Hoc mobile networks [24].

 15

Figure 2.10: Degree of HC against the network size

Figure 2.11: Diameter of HC against network size.

Figure 2.12: The number of links of HC against network size

 16

 2.2 Tree-Hypercube and Hypercubes Comparison

As we mentioned earlier, a tree-hypercube network combines the advantages of both

trees and hypercubes and avoids their shortcoming [19]. Its diameter is less than that of

the hypercube. The tree-hypercube network can emulate many interconnection topologies

such as linear arrays, rings, trees, hypercubes, and meshes. In this section we present a

comparison between tree-hypercube and hypercube topology.

Here, we introduce some criteria used to characterize the cost and performance of tree-

hypercubes, and compare them with hypercubes; these criteria include degree, diameter,

and average distance.

Degree

 For a TH with s=2 the degree of the TH is d+2 but for a hypercube with almost the

same number of nodes the degree is d+1. Also for s=4 it is 2d+3, but for a hypercube

with almost the same number of nodes the degree is 2d+1. The degree of a TH is larger

than that of a hypercube by 1 and 2 for the cases when s=2 and s=4, respectively [19].

Diameter

The diameter of TH(s,d) is d* log s, the diameter of tree-hypercube is always smaller

than the diameter of the hypercube [19].

Average Distance

The average distance V2 of TH (2,d) is:

 2 ((d+1) 4
d

- d2
d+1

-1) / (2
d+1

 -1)², where d/2 <= v2 < d+1 /2.

And the average distance V4 of TH(4,d) is:

 d- 1/15 +8/(15(4
d+1

-1)) - (d+1)/(4
d+1

 – 1)
2
, for d > 1, d-(1/15) < V4 < d.

When s=4, the average distance of tree-hypercube is always smaller than the average

distance of the hypercube of almost the same number of node. When s=2, the average

distance of tree-hypercube is smaller than that of hypercube for values d ≤ 9, and they

are equal for d > 9 [19].

 17

 2.3 Topology Embeddings

Embedding a guest graph G = (V, E) into a host graph G' = (V', E') is a mapping of

each vertex in the set V into a vertex (or a set of vertices) in set V' and each edge in the

set E into an edge (or a set of edges) in E'. When mapping graph G = (V, E) into G' = (V',

E'), the following must be taken into consideration. First, one or more edge in E can be

mapped into a single edge in E'. The maximum number of edges mapped into any edge in

E' is called the congestion of mapping. Second, an edge in E may be mapped into

multiple contiguous edges in E'. The maximum number of links in E' that any edge in E is

mapped into is called the dilation of mapping. This is significant because traffic on the

corresponding communication link in G must traverse more than one link in G’, possibly

contributing to the congestion on the network. Third, the sets V and V' may contain

different numbers of vertices. A node in V may correspond to more than one node in V'

and vice versa. The ratio of the number of nodes in V' to that in V is called the expansion

of mapping. If there is a good mapping of a graph G into G', then G' can simulate the

behavior of G with less overhead [12].

2.3.1 Binary Reflected Gray Code (RGC)

The embedding of linear arrays into hypercubes discussed in [12], is based on mapping

nodes of the linear array to the nodes of a hypercube, using the binary reflected gray

code method, as presented below. A linear array (or a ring) composed of 2
d
 nodes

(labeled 0 through 2
d
 –1) can be embedded into a d-dimensional hypercube by mapping

node i of the linear array onto node G(i,d) of the hypercube. The function G(i,x) is

defined as follows:

G (0,1) = 0

G (1,1) = 1

G(i, x+1) = { G(i, x), i < 2
x

 2
x
 + G(2

x+1
 -1–i,x), i >= 2

x

 18

The function G is called the Binary Reflected Gray Code (BRGC). The entry G(i,d)

denotes the i
th

 entry in the sequence of Gray codes of d bits. Gray codes of d+1 bits are

derived from a table of Gray Codes of d bits by reflecting the table and prefixing the

reflected entries with a 1 and the original entries with a 0. This process is illustrated in

Figure 2.13. A careful look at the Gray Code table reveals that the two adjoining entries

G(i, d) and G(i,d+1) differ from each other at only one bit position.

As an example on using the Binary Reflected Gray Code, we present the embedding of

linear arrays or rings into a hypercubes. Since node i in the linear array is mapped to

node G(i, D), and node i +1 is mapped to G(i+1, d), there is a direct link in the

hypercube that corresponds to each direct link in the linear array. Recall that two nodes

whose labels differ at only one bit position have a direct link in a hypercube. Therefore,

the mapping specified by function G has a dilation of one and a congestion of one.

Figure 2.14 illustrates the embedding of eight-node ring into a three-dimensional

hypercube.

1-bit Gray code 2-bit Gray cod 3-bit Gray code 3-D hypercube 8-processor ring

 0 0 0 0 0 0 0 0

 1 0 1 0 0 1 1 1

 1 1 0 1 1 3 2

 1 0 0 1 0 2 3

 1 1 0 6 4

 1 1 1 7 5

 1 0 1 5 6

 1 0 0 4 7

Figure 2.13: A three-bit reflected Gray Code ring.

 19

Figure 2.14: The embedding of eight-node ring into a three-dimensional hypercube

000 001

010 011

100 101

110 111

 20

Chapter Three

Related Work

 In this chapter, we discuss some of the work that are related to our research, the

embedding of a hex-cell into a tree-hypercube. These related work include embedding of

a ring into a tree-hypercube, embedding of a linear array into a tree-hypercube, and other

embeddings.

3.1 Embedding Topologies into Hypercubes

 In this section, we present some embeddings of different topologies into the

hypercube networks, these different topologies include arbitrary binary trees, balanced

binary trees, ring, and mapping of meshes on star graphs.

 In [17] embeddings in hypercubes, stated that one important aspect of efficient

use of a hypercube computer to solve a given problem is the assignment of subtasks to

processors in such a way that the communication overhead is low. The subtasks and their

inter-communication requirements can be modeled by a graph, and the assignment of

subtasks to processors viewed as an embedding of the task graph into the graph of the

hypercube network. We survey the known results concerning such embeddings, including

expansion/dilation tradeoffs for general graphs, embeddings of meshes and trees,

packings of multiple copies of a graph, the complexity of finding good embeddings, and

critical graphs which are minimal with respect to some property.

 In [14] the embedding of hierarchical hypercube networks into the hypercube

was presented. And states that the embedding of one interconnection network into

another is a very important issue in the design and analysis of parallel algorithms.

Through such embeddings, the algorithms originally developed for one architecture can

be directly mapped to another architecture. This paper describes a new embedding

method, based on matrix transformations, for optimally embedding hierarchical

hypercube networks (HHNs) into the hypercube (binary n-cube). Thus, this embedding

method has practical importance in enhancing the capabilities and extending the

 21

usefulness of the hypercube, since hierarchical hypercube networks have proven to be

very cost-effective for a wide range of applications.

 On mapping n-dimensional meshes on a star graph of degree n an algorithm

developed in [22], the mapping has expansion 1 and dilation 3. This shows that an n-

degree star graph can efficiently simulate an n-dimensional mesh. The mapping in this

research is based on performing a sequence of exchanges along each dimension i of the

mesh. On the other hand, embedding binary trees into hypercubes [9], states that

hypercubes are known to be able to simulate other structures such as grids and binary

trees. In this paper, an embedding of arbitrary binary trees into a hypercube with

expansion 1 and dilation no more than 2 is proposed, and embeddings with expansion 2

and dilation 1.

 On embedding star network into hypercubes [6]. The star interconnection

network has recently been suggested as an alternative to the hypercube. As hypercubes

are often viewed as universal and capable of simulating other architectures efficiently, we

investigate embeddings of star network into hypercubes. Our embeddings exhibit a

marked trade off between dilation and expansion. We also show that the embedding of Sn

into its optimum hypercube requires dilation Ω (log2 n).

 The embedding of arbitrary binary tree into its optimal hypercube have been

studied in [15]. A d-dimensional hypercube is a very popular model of parallel

computing, and the execution of many algorithms can be represented by binary trees,

making desirable fast simulations of binary trees on hypercubes. This paper presents a

simple embedding of an arbitrary binary tree into its optimal hypercube with dilation 8

and constant congestion. The novelty of the method used here is based on the use of an

intermediate quadtree data structure, which also permits the embedding to be efficiently

computed on the hypercube itself. The embedding of r-ary m cubes into hypercubes is

presented in [13], using matrix transformations as an alternate to reflected gray code,

which achieves the same result. This new method has a nice property that makes it

suitable to be used in divide-and-conquer algorithms. Thus, it constitutes a useful tool for

the design of parallel algorithms for the hypercube. The method of matrix transformation

 22

is based on, folding the hypercube recursively, so that the final layout contains the r-

ary m-cube.

 Embedding incomplete binary trees into incomplete hypercubes [16]. It has been

proved that an incomplete binary tree cannot be embedded into an incomplete hypercube

with dilation 1 and expansion 1. By applying some properties of in order traversal, the

authors present an embedding scheme with dilation 2, edge-congestion 2 and expansion

ratio (N + 1)/N, where N is the number of nodes in an incomplete binary tree. With this

embedding scheme, a method is developed that can be used to simulate a binary tree on

an incomplete hypercube effectively. Under the distributed environment, the mapping

addresses of neighboring nodes in an incomplete binary tree can be identified in constant

time without repeating the mapping work. Furthermore, experimental results show that

this scheme is much better than the corresponding best known dilation 1 embedding

scheme in terms of hardware costs and implementation. Even in total time costs

(addressing time, computation time and transmission time), this approach is quite

competitive.

 On embedding balanced binary trees into hypercubes [2] states that in the context

of parallel computing, the problem of embedding binary trees that represent

communication structures arises. Whereas much research has focused on arbitrary trees,

here the researcher concentrates on the subclass of balanced binary trees. The motivation

for embedding into hypercube is that hypercube multiprocessor systems are very

prominent type of parallel machines, because of their recursive structure and the fact that

they contain structures like rings, 2-D-meshes, and higher dimensional meshes make

them suitable for a large variety of problems. Many parallel algorithms use

communication structures which can be represented by binary trees. In order to run these

algorithms on a hypercube multiprocessor system, their communication graphs need to be

embedded in the corresponding hypercube.

 23

 On the embedding of rings into faulty twisted hypercubes [1], stated that the

hypercube is emerging as one of the most effective and popular network architectures for

large scale parallel machines. Hypercube based machines are becoming more popular due

to many of their attractive features in parallel computing. An attractive version of the

hypercube is the twisted hypercube. It preserves many properties of the hypercube and

most importantly reduces the diameter by a factor of two. In this paper an optimal

embeddings of rings into faulty twisted hypercubes with up to 2
n-3

 faulty processes was

presented.

 In distributed fault-tolerant embedding of several topologies into hypercubes, [28]

proposed a distributed fault tolerant embedding based on the faulty link model, for

embedding several topologies into hypercubes, with faulty links and /or faulty nodes.

Since embedding has great importance in the applications of parallel computing, every

parallel application has its intrinsic communication pattern. The communication pattern

graph is mapped into a topology of multiprocessor structure so that the application can be

executed. To increase the reliability of parallel applications, fault-tolerant embedding is

necessary. In this research, embedding of rings and toruses is studied and proposed. An

optimal embedding of a honeycomb network (honeycomb mesh and honeycomb torus) of

size n into a hypercube is presented in [5], with expansion ratio of 4/3 = 1.33 when n is a

power of two. When n is not a power of two, the expansion is 16/3 = 5.33, which we

conjecture to be near optimal. For a honeycomb mesh, the dilation of the embedding is 1.

A honeycomb network, built recursively using hexagon tessellation, is a multiprocessor

interconnection network that is better than the planar mesh with the same number of

nodes in terms of degree, diameter, number of links, and bisection width.

 In [26] Cycles embedding in hypercubes with node failures. The hypercube has

been widely used as the interconnection network in parallel computers. The n-

dimensional hypercube Qn is a graph having 2
n
 vertices each labeled with a distinct n-bit

binary strings. Two vertices are linked by an edge if and only if their addresses differ

exactly in the one bit position. Let fv denote the number of faulty vertices in Qn. For n≥3,

this paper, proofs that every fault-free edge and fault-free vertex of Qn lies on a fault

 24

free cycle of every even length from 4 to 2
n
−2fv inclusive even if fv≤n−2. These results

are optimal.

 In [11] the embedding of cycles in twisted cubes was studied. It has been proven

in the literature that, for any integer l, 4≤l≤2
 n

, a cycle of length l can be embedded with

dilation 1 in an n-dimensional twisted cube, n≥3. In this paper the researcher obtained a

stronger result of embedding of cycles with edge-pancyclic. And proven that, for any

integer l, 4≤l≤2
 n

, and a given edge (x,y) in an n-dimensional twisted cube, n≥3, a cycle C

of length l can be embedded with dilation 1 in the n-dimensional twisted cube such that

(x,y) is in C in the twisted cube. Based on the proof of the edge-pancyclicity of twisted

cubes, further provided an O(llog l+n
2
+nl) algorithm to find a cycle C of length l that

contains (u,v) in TQ n for any (u,v) Є E(TQ n) and any integer l with 4≤l≤2
 n

.

3.2 Embedding Topologies into Tree-Hypercube Networks

 Here, we introduce the mapping of Linear Array network into tree-hypercube

[21], and its extension which is the mapping of a ring into a tree-hypercube [3]. The

embedding of Linear Array network into tree-hypercube is presented in [21]. This

research shows that graph embedding exists when adjacent processors in the guest

network are mapped to reasonably close processors in the host network (i.e. small

dilation), and when the paths between adjacent processors in the guest network are

chosen in such way that the congestion of each host node and across each host edge is

moderately small (i.e. small congestion). An approach for embedding linear array into

tree-hypercube is proposed in that paper. Arrays are one of the most natural (data or

process) structures for many applications. Linear array of 2
d+1

-1 processors (where

d=0,1,2,,3,…,n) can be embedded into a tree-hypercube TH (s,d) by mapping processor

G onto processor G’(L,X) of the tree-hypercube by two steps: In the first step, the

mapping is performed as a hypercube (at each level of the tree-hypercube, because each

level i in the tree-hypercube has s
i
 nodes representing processing elements as a

hypercube) nodes that are represented in BRGC order. The BRGC embedding has the

property that any two adjacent numbers are mapped to neighboring nodes that can

communicate directly through a link. Therefore, it uses only one link to route a message

 25

from any node to its destination node. An embedding of a linear array into each level of

tree-hypercube is a mapping of its linear array elements to hypercube nodes such that

each linear array element is mapped to a distinct node. In the second step of mapping, the

mapping is performed as tree nodes [21].

 An algorithm for mapping a ring into tree-hypercube has been proposed in [3]. In

that paper, the authors revealed that TH (s,d) has the ability to implement algorithms that

use the communication pattern of linear array ring. They also showed that the tree-

hypercube which combines the advantages of both trees and hypercubes, can emulate the

topology of a ring, and also other topologies such as linear arrays, trees, and meshes. The

algorithm for mapping Ring topology into tree-hypercube network includes: first,

mapping a linear array at each level of tree-hypercube networks TH(s, d), in order to

obtain the decimal address for each node at each level k in TH(s, d), using BRGC, then

finds the start node in the last level. An example that explains the procedure of mapping a

ring with 2
d+1

-1 nodes into a TH (2, 3) is shown in Figure 3.1 [3].

Figure 3.1: Mapping a ring with 2
d+1

-1 nodes into a TH (2,

 The following related work includes, the embedding of binary trees into

hypercubes, embedding of combinational circuits in hypercubes, and the embedding of

3,111
Start node

3,110 3,101 3,100

0,000

1, 000 1, 001

 3,011 3,010 3,001 3,000

2,011 2,010 2,000 2,001

0

0 1

0 1

0 1 3 2 7 6 4 5

3 2

 26

fault-free cycles in crossed cubes with conditional link faults. In [8], embedding of binary

trees into hypercubes is described, the method is based on an iterative embedding of

binary trees into their graphs, and presents a class of binary trees, that allow a dilation

two embedding into their optimal hypercubes. Then, concludes that there exist an

embedding for an arbitrary binary tree.

 In [29] the embedding torus in hexagonal honeycomb torus, states that a number

of parallel algorithms admit a static torus-structured task graph. Hexagonal honeycomb

torus (HHT) networks are regarded as promising candidates for interconnection

networks. In order to efficiently execute a torus-structured parallel algorithm on an HHT,

it is essential to map the tasks to processors so that the communication overhead is

minimized. The study proves that a (3n, In) torus can be embedded into an nth-order

HHT with dilation 3, congestion 4, expansion 1 and load factor 1. Consequently, a

parallel algorithm with a (3n, 1n) torus task graph can be executed on an nth-order HHT

efficiently.

 An embedding of combinational circuits in hypercubes was considered in [23], such

that the nodes of the scheme go into vertices of the hypercube and bundles of arcs go into

similar bundles or the so-called transition trees of the hypercube having no common

internal vertices. This embedding was considered since that in the recent years, it has

become popular to realize Boolean functions by combinational circuits. In many cases,

the further use of the scheme constructed requires its geometric realization, i.e., a certain

embedding in one or another specific geometric structure. The role of such structure is

often played by the unit n-dimensional cube [23]. In [25], the embedding of fault-free

cycles in crossed cubes with conditional link faults, the researcher states that the crossed

cube, which is a variation of the hypercube, possesses some properties that are superior to

those of the hypercube. It is shown that with the assumption of each node incident with

at least two fault-free links, an n-dimensional crossed cube with up to 2n-5 link faults can

embed, with dilation one, fault-free cycles of lengths ranging from 4 to 2n. The

assumption is meaningful, for its occurrence probability is very close to 1, and the result

is optimal with respect to the number of link faults tolerated.

 27

3.3 Tree-Hypercube Partitioning and the Embedding of Rings and Linear Arrays

 Network partitionability is an important feature of networks underlying parallel

machines, that support multitasking to serve several users or to run multiple tasks of the

same algorithm simultaneously. To run multiple tasks in parallel, where each task can

itself be parallel, the machine is partitioned into independent parts. To support the

communication of each part, the network has to be partitioned into independent

subnetworks. One important property of partionability is to have the partitions have the

same topology as the original network [18].

To be able to partition tree-hypercube networks, extending the definition of TH is needed

by allowing any h levels to be a tree-hypercube. The notation of TH's was modified to

indicate the top and bottom level s of the h levels. The tree-hypercube is denoted by TH

(t, d, s), the graph consisting of the levels t, t+1,... d of the TH(s, d) [18]. The structure of

tree-hypercubes allows for vertical partitioning, and the flexibility of having any

successive levels to be a TH allows for horizontal partitioning. Horizontal partitioning

consists of splitting the TH (t, d, s) at level i and getting a TH (t, i, s) and a TH (i+1, d, s).

Figure 3.2 shows an example of horizontal partitioning.

Figure 3.2: Horizontal Partitioning TH (0, 3, 2) into TH(0,1, 2) and TH(2, 3, 2).

3,111
3,110 3,101 3,100

0,000

1,000 1,001

3,011 3,010 3,001
3,000

2,011 2,010 2,000 2,001

 28

While studying the embedding of linear array and ring into Tree-Hypercube, we have

found that we can map the linear array, and ring just at each level of the tree-hypercube;

using the horizontal partitioning presented previously. This gives the tree-hypercube a

good advantage so that it can simulate other topologies not just by mapping nodes of the

guest topology on the tree-hypercube from the root node to the leaves.

But mapping can be performed at each level of the Tree-Hypercube, by performing

another horizontal partitioning on the partitioned tree-hypercube. Figure 3.3 illustrates

examples of this embedding. The embedding in Figure 3.4 is based on the binary

reflected gray code (BRGC), in which each node is connected with the other only if it

differs with it at 1 bit position (binary address of the node). The same corresponds for

embedding the ring into Tree-Hypercube, by connecting the last node with the start node.

As shown in Figure 3.4.

Figure 3.3: Embedding of both, four nodes and eight nodes Linear Array into

 TH(0, 1, 2), and TH(2, 3, 2).

1,001 1,000

2,001 2,000 2,010
2,011

3,001

3,010
3,011

3,100

3,101
3,110

3,000

0,000

3,111

 29

Figure 3.4: Embedding of four nodes and eight nodes ring into TH(0, 1, 2) and TH(2, 3,

2).

We can also use a whole part of the partition to map a linear array or ring on both tree

edges and hypercube edges of the tree-hypercube, as illustrated in the following Figure.

Figure 3.5: Mapping of 12 nodes linear array onto partitioned tree-hypercube TH(2,3,2)

1,001 1,000

2,001
2,010

LAST
NODE

2,011

3,001

3,010
3,011

3,100

LAST
NODE

3,101
3,110

0,000

Connecting the last

 node with the star t

node

0,000

1,001 1,000

2,001 2,000 2,010
2,011

3,001

3,010
3,011

3,100

3,101
3,110

0,000

3,000

Connecting the last

 node with the star t

3,000

3,111

3, 111

 30

Chapter Four

Embedding Hex-Cells into Tree-Hypercubes Networks

 Hex-Cell is a new interconnection topology, which is suitable for large parallel

computers, and can connect massive number of nodes with 3 links per node [24]. It has

the ability to efficiently simulate programs written for architectures such as linear arrays,

rings, and meshes. The hex-cell topology can easily embed these structures into it.

Hex-Cell can be embedded into tree-hypercube by mapping nodes of the hex-cell into

nodes of the tree-hypercube, and edges of the hex-cell onto edges of the tree-hypercube;

without having additional number of edges (i.e. dilation of one) and with lower

expansion and congestion as possible. Since the smaller dilation of mapping, the shorter

communication delay that the host graph (tree-hypercube) simulates the guest graph (hex-

cell), and the smaller the expansion of mapping, the more efficient the processor

utilization that the host graph (Tree-Hypercube) simulates the guest graph (hex-cell) [10].

In the next section we present the algorithm for mapping hex-cells into tree-hypercube

TH (2,d).

4.1 The Proposed Algorithm for Embedding Hex-Cells into Tree-Hypercube

 TH(2,d).

We have designed an algorithm for mapping hex-cells of n nodes into tree-hypercube

TH(2,d); such that every hex-cell with six nodes and six edges is mapped onto nodes and

edges of the tree-hypercube TH(2,d) where d >= 2. The mapping has dilation one,

congestion one, and expansion 1.1.

 31

Algorithm 4.1 for embedding hex-cells into tree-hypercube TH(2,d), where d >= 2.

int d, // depth of Tree-Hypercube

if (d >= 2)

{

 For i = 1 to (d - 1) // each level of the tree-hypercube

 For j = 1 to 2
i
 step 2 // each node at that level of the tree-hypercube.

 Node (i , j-1) in TH = Node 1 in HC.

 Node (i , j) in TH = Node 2 in HC.

 Node (i+1, 2*(j-1) + 3) in TH = Node 3 in HC

 Node (i+1, 2*(j-1) +2) in TH= Node 4 in HC.

 Node (i+1, 2*(j-1)) in TH = Node 5 in HC.

 Node (i+1, 2*(j-1) + 1) in TH = Node 6 in HC.

 Connect node 1 with node 6 through a link.

Next j

 Next i

 }

4.2 Examples on The Embedding Algorithm 4.1, and Discussion.

Example 4.1; embedding 1 Hex-Cell (Figure 4.2) into Tree-Hypercube TH(2,2); since

d=2, with respect to the algorithm nodes of the Hex-Cell will be mapped as the following,

Figure 4.1 illustrates the example:

node (1,0) in TH = Node 1 in HC

node (1,1) in TH = Node 2 in HC

node (2,3) in TH = Node 3 in HC

node (2,2) in TH = Node 4 in HC

node (2,0) in TH = Node 5 in HC

node (2,1) in TH = Node 6 in HC

Connect Node 1 with node 6 through a link.

 32

Figure 4.1: Embedding One Hex-Cell into Tree-Hypercube TH(2, 2).

 Figure 4.2: 1 Hex-Cell.

Example 4.2; embedding 3 Hex-Cells (Figure 4.4) into Tree-Hypercube TH(2,3); since

d=3, with respect to the algorithm nodes of the Hex-Cell will be mapped as the

following, Figure 4.3 illustrates the example:

 At First Iteration (i = 1):

Node (1,0) in TH = Node 1 in HC

Node (1,1) in TH = Node 2 in HC

Node (2,3) in TH = Node 3 in HC

Node (2,2) in TH = Node 4 in HC

Node (2,0) in TH = Node 5 in HC

Node (2,1) in TH = Node 6 in HC

Connect Node 1 with node 6 through a link.

At Second Iteration (i = 2):

Node (2,0) in TH = Node 1 in HC

Node (2,1) in TH = Node 2 in HC

Node (3,3) in TH = Node 3 in HC

Node (3,2) in TH = Node 4 in HC

1,001 1,000

2,001 2,000 2,010
2,011

1,001

2,011

2,010

2,000

2,001

1,000

 33

Node (3,0) in TH = Node 5 in HC

Node (3,1) in HC = Node 6 in HC

Connect Node 1 with node 6 through a link.

Node (2,2) in TH = Node 1 in HC

Node (2,3) in TH = Node 2 in HC

Node (3,7) in TH = Node 3 in HC

Node (3,6) in TH = Node 4 in HC

Node (3,4) in TH = Node 5 in HC

Node (3,5) in TH = Node 6 in HC

Connect Node 1 with node 6 through a link.

 Figure 4.3 : Embedding Three Hex-Cells into Tree-Hypercube TH (2,3).

 Figure 4.4: 3 Hex-Cells.

0,000

1,001 1,000

2,001 2,000 2,010
2,011

3,001

3,010
3,011

3,100

3,101
3,110

3,000 3,,111

1,000

2,011

2,010

2,000

2,001

3,011

3,010

3,000

3,001

3,110

3,100

3,101

1,001 3,111

 34

Example 4.3 ; embedding of seven hex-cells (Figure 4.6) into Tree-Hypercube TH(2,4);

since d=4, with respect to the algorithm nodes of the Hex-Cell will be mapped as the

following, Figure 4.5 illustrates the example:

At First Iteration (i = 1):

Node (1,0) in TH = Node 1 in HC

Node (1,1) in TH = Node 2 in HC

Node (2,3) in TH = Node 3 in HC

Node (2,2) in TH = Node 4 in HC

Node (2,0) in TH = Node 5 in HC

Node (2,1) in TH = Node 6 in HC

Connect Node 1 with node 6 through a link.

At Second Iteration (i = 2):

Node (2,0) in TH = Node 1 in HC

Node (2,1) in TH = Node 2 in HC

Node (3,3) in TH = Node 3 in HC

Node (3,2) in TH = Node 4 in HC

Node (3,0) in TH = Node 5 in HC

Node (3,1) in HC = Node 6 in HC

Connect Node 1 with node 6 through a link.

Node (2,2) in TH = Node 1 in HC

Node (2,3) in TH = Node 2 in HC

Node (3,7) in TH = Node 3 in HC

Node (3,6) in TH = Node 4 in HC

Node (3,4) in TH = Node 5 in HC

Node (3,5) in TH = Node 6 in HC

Connect Node 1 with node 6 through a link.

At Third Iteration (i = 3)

Node (3,0) in TH = Node 1 in HC

Node (3,1) in TH = Node 2 in HC

Node (4,3) in TH = Node 3 in HC

Node (4,2) in TH = Node 4 in HC

Node (4,0) in TH = Node 5 in HC

Node (4,1) in TH = Node 6 in HC

Connect Node 1 with node 6 through a link.

Node (3,2) in TH = Node 1 in HC

Node (3,3) in TH = Node 2 in HC

Node (4,7) in TH = Node 3 in HC

Node (4,6) in TH = Node 4 in HC

Node (4,4) in TH = Node 5 in HC

Node (4,5) in TH = Node 6 in HC

 35

Connect Node 1 with node 6 through a link.

Node (3,4) in TH = Node 1 in HC

Node (3,5) in TH = Node 2 in HC

Node (4,11) in TH = Node 3 in HC

Node (4,10) in TH = Node 4 in HC

Node (4,8) in TH = Node 5 in HC

Node (4,9) in TH = Node 6 in HC

Connect Node 1 with node 6 through a link.

Node (3,6) in TH = Node 1 in HC

Node (3,7) in TH = Node 2 in HC

Node (4,15) in TH = Node 3 in HC

Node (4,14) in TH = Node 4 in HC

Node (4,12) in TH = Node 5 in HC

Node (4,11) in TH = Node 6 in HC

Connect Node 1 with node 6 through a link.

 Figure 4.5: Embedding of seven Hex-Cells into Tree-Hypercube TH(2,4).

0,0000

1,0001 1,0000

2,0001 2,0000
2,0010 2,0011

3,0001

3,0010
3,0011

3,0100

3,0101
3,0110

3,0000

3,,0111

4,1110

4, 1101

4,1100
4, 0000

4, 0001

4, 0010

4, 0011

4, 0100

4, 0101

4, 0110

4, 0111 4,1111

4, 1000

4, 1001

4, 1010

4, 1011

 36

 Figure 4.6: Seven Hex-Cells

Example 4.4 ; embedding of fifteen hex-cells (Figure 4.8) into Tree-Hypercube TH(2,5);

since d=5, with respect to the algorithm nodes of the Hex-Cell will be mapped as the

following, Figure 4.7 illustrates the example:

At First Iteration (i = 1):

Node (1,0) in TH = Node 1 in HC

Node (1,1) in TH = Node 2 in HC

Node (2,3) in TH = Node 3 in HC

Node (2,2) in TH = Node 4 in HC

Node (2,0) in TH = Node 5 in HC

Node (2,1) in TH = Node 6 in HC

Connect Node 1 with node 6 through a link.

At Second Iteration (i = 2):

Node (2,0) in TH = Node 1 in HC

Node (2,1) in TH = Node 2 in HC

Node (3,3) in TH = Node 3 in HC

Node (3,2) in TH = Node 4 in HC

Node (3,0) in TH = Node 5 in HC

1,0000

1, 0001

2,0011

3,0111

3,0110

2,0001

2,0000

2,0010

3,0101

3,0100

4,1001

3,0000

3,0001

4,0011
4,1011

4,1010

4,0001

4,0000

4,0010

4,1000
3,0010

3,0011

4,0111

4,0101

4,1100

4,1110

4,0110

4,0100

4,1110

 37

Node (3,1) in HC = Node 6 in HC

Connect Node 1 with node 6 through a link.

Node (2,2) in TH = Node 1 in HC

Node (2,3) in TH = Node 2 in HC

Node (3,7) in TH = Node 3 in HC

Node (3,6) in TH = Node 4 in HC

Node (3,4) in TH = Node 5 in HC

Node (3,5) in TH = Node 6 in HC

Connect Node 1 with node 6 through a link.

At Third Iteration (i = 3)

Node (3,0) in TH = Node 1 in HC

Node (3,1) in TH = Node 2 in HC

Node (4,3) in TH = Node 3 in HC

Node (4,2) in TH = Node 4 in HC

Node (4,0) in TH = Node 5 in HC

Node (4,1) in TH = Node 6 in HC

Connect Node 1 with node 6 through a link.

Node (3,2) in TH = Node 1 in HC

Node (3,3) in TH = Node 2 in HC

Node (4,7) in TH = Node 3 in HC

Node (4,6) in TH = Node 4 in HC

Node (4,4) in TH = Node 5 in HC

Node (4,5) in TH = Node 6 in HC

Connect Node 1 with node 6 through a link.

Node (3,4) in TH = Node 1 in HC

Node (3,5) in TH = Node 2 in HC

Node (4,11) in TH = Node 3 in HC

Node (4,10) in TH = Node 4 in HC

Node (4,8) in TH = Node 5 in HC

Node (4,9) in TH = Node 6 in HC

Connect Node 1 with node 6 through a link.

Node (3,6) in TH = Node 1 in HC

Node (3,7) in TH = Node 2 in HC

Node (4,15) in TH = Node 3 in HC

Node (4,14) in TH = Node 4 in HC

Node (4,12) in TH = Node 5 in HC

Node (4,11) in TH = Node 6 in HC

Connect Node 1 with node 6 through a link.

 38

At Fourth Iteration (i = 4)

Node (4,0) in TH = Node 1 in HC

Node (4,1) in TH = Node 2 in HC

Node (5,3) in TH = Node 3 in HC

Node (5,2) in TH = Node 4 in HC

Node (5,0) in TH = Node 5 in HC

Node (5,1) in TH = Node 6 in HC

Connect Node 1 with node 6 through a link.

Node (4,2) in TH = Node 1 in HC

Node (4,3) in TH = Node 2 in HC

Node (5,7) in TH = Node 3 in HC

Node (5,6) in TH = Node 4 in HC

Node (5,4) in TH = Node 5 in HC

Node (5,5) in TH = Node 6 in HC

Connect Node 1 with node 6 through a link.

Node (4,4) in TH = Node 1 in HC

Node (4,5) in TH = Node 2 in HC

Node (5,11) in TH = Node 3 in HC

Node (5,10) in TH = Node 4 in HC

Node (5,8) in TH = Node 5 in HC

Node (5,9) in TH = Node 6 in HC

Connect Node 1 with node 6 through a link.

Node (4,6) in TH = Node 1 in HC

Node (4,7) in TH = Node 2 in HC

Node (5,15) in TH = Node 3 in HC

Node (5,14) in TH = Node 4 in HC

Node (5,12) in TH = Node 5 in HC

Node (5,13) in TH = Node 6 in HC

Connect Node 1 with node 6 through a link.

Node (4,8) in TH = Node 1 in HC

Node (4,9) in TH = Node 2 in HC

Node (5,19) in TH = Node 3 in HC

Node (5,18) in TH = Node 4 in HC

Node (5,16) in TH = Node 5 in HC

Node (5,17) in TH = Node 6 in HC

Connect Node 1 with node 6 through a link.

 39

Node (4,10) in TH = Node 1 in HC

Node (4,11) in TH = Node 2 in HC

Node (5,23) in TH = Node 3 in HC

Node (5,22) in TH = Node 4 in HC

Node (5,20) in TH = Node 5 in HC

Node (5,21) in TH = Node 6 in HC

Connect Node 1 with node 6 through a link.

Node (4,12) in TH = Node 1 in HC

Node (4,13) in TH = Node 2 in HC

Node (5,27) in TH = Node 3 in HC

Node (5,26) in TH = Node 4 in HC

Node (5,24) in TH = Node 5 in HC

Node (5,25) in TH = Node 6 in HC

Connect Node 1 with node 6 through a link.

Node (4,14) in TH = Node 1 in HC

Node (4,15) in TH = Node 2 in HC

Node (5,31) in TH = Node 3 in HC

Node (5,30) in TH = Node 4 in HC

Node (5,28) in TH = Node 5 in HC

Node (5,29) in TH = Node 6 in HC

Connect Node 1 with node 6 through a link.

 40

 Figure 4.7: Embedding of fifteen Hex-Cells into Tree-Hypercube TH(2,5)

0,0000

1,0001 1,0000

2,0001 2,0000
2,0010 2,0011

3,0001

3,0010
3,0011

3,0100

3,0101
3,0110

3,0000

3,,0111

4,1110

4, 1101

4,1100
4, 0000

4, 0001

4, 0010

4, 0011

4, 0100

4, 0101

4, 0110

4, 0111 4,1111

4, 1000

4, 1001

4, 1010

4, 1011

5, 00001

5, 00010

5, 00011

5,00100

5,00101

5,00110

5,00111

5,01000

5,00101

5,01010

5,01011 5,11101

5,11100

5,10111

5,11010

5,11001

5,11000

5,10111

5,10110

5,10101

5,10101

5,10011

5,01101

5,01110

5,01111

5,10000

5,10001

5, 00000
5,11111

5,11110

 41

 Figure 4.8: Embedding of fifteen Hex-Cells into Tree-Hypercube TH(2,5)

Note:

In algorithm 4.1 an embedding of irregular shape of hex-cells into tree-hypercube

TH(2,d) where d >= 2 is performed. Embedding of regular shape of hex-cells into tree-

hypercube can't be performed, requiring the structure of the tree-hypercube. And so as

not to have additional number of links and not to increase the cost.

1,0000

1, 0001

2,0011

3,0111

3,0110

2,0001

2,0000

2,0010

3,0101

3,0100

4,1001

3,0000

3,0001

4,0011
4,1011

4,1010

4,0001

4,0000

4,0010

4,1000
3,0010

3,0011

4,0111

4,0101

4,1100

4,1101

4,0110

4,0100

5,01111

5,01110

5,01101

5,01011

5,01010 5,00011

5,00010

5,00000

5,00001

4,1111 4,1110
5,11111

5,11110 5,11101
5,11100

5,11001

5,11000

5,11011

5,10011

5,10001

4,1011

5,10111

5,10110

5,00111

5,00110

5,00100

5,01100

5,01000

5,01001

5,11010

5,01010

5,10000

 42

4.3 The Proposed Algorithm for Embedding Hex-cells HC(i)), where i = 1, 2 into

 Tree-Hypercube Network TH(2,d), where d = 2i.

We have also designed an algorithm for embedding hex-cells HC(i), where i = 1, 2 into

tree-hypercube TH(2,d), where d = 2i ; without having additional number of edges when

mapping edges of the hex-cells (i.e. dilation one and congestion one), with expansion 1.1

when mapping nodes of the hex-cell HC (1) into distinct nodes of the tree-hypercube

TH(2,2). Also expansion 1.3 when mapping HC(2) into TH(2,4). The first part of the

proposed algorithm performs mapping of HC(1) into TH(2,2). The second part performs

mapping of HC(2) into TH(2,4). Mapping nodes of hex-cell into nodes of tree-hypercube

is done by making a mathematical relation between the addresses of hex-cell nodes and

the addresses of tree-hypercube nodes (i.e. node (i, j-1) in TH = node (i, 3*j mod 5) in

HC).

Algorithm 4.2 for embedding hex-cells HC(i)), where i = 1, 2 into tree-hypercube

network TH(2,d), where d = 2i:

int d, // depth of Tree-Hypercube

If (d= 2)

{ // Mapping HC (1) into TH (2,2)

 node (1,0) in TH = node (1,1) in HC

 node (1,1) in TH = node (1,2) in HC

 node (2,3) in TH = node (1,3) in HC

 node (2,2) in TH = node (2,3) in HC

 node (2,0) in TH = node (2,2) in HC

 node (2,1) in TH = node (2,1) in HC

Connect Node (1,0) with node (2,1) through a link.

} // end of the if statement

If (d=4)

{

 Map (d); // Mapping Function

 node (4,3) in TH = node (3,4) in HC

 node (4,11) in TH = node (3,5) in HC

 node (4,10) in TH = node (3,6) in HC

 node (4,14) in TH = node (4,5) in HC

 node (4,6) in TH = node (4,4) in HC

 node (4,2) in TH = node (4,3) in HC

 43

 Connect Node (4,3) with node (4,2) through a link.

} // end of the if statement

 Map (d) // Mapping Function

 { // Mapping HC(2) into TH (2,4)

int i,j,

 node (1,0) in TH = node (1,1) in HC

 node (1,1) in TH = node (1,2) in HC

 node (2,3) in TH = node (1,3) in HC

 node (2,2) in TH = node (2,4) in HC

 node (2,0) in TH = node (2,3) in HC

 node (2,1) in TH = node (2,2) in HC

Connect Node (1,0) with node (2,1) through a link.

// each level of the tree-hypercube. For i = 2 to (d - 2)

 For j = 1 to 2
i
 step 2 // each node at that level of the tree-hypercube.

 node (i, j-1) in TH = node (i, 3*j mod 5) in HC

 node (i, j) in TH = node (2*j mod 5, 2*j
2
 mod 15) in HC

 node (i+1, 2*(j-1) + 3) in TH = node (2*j mod 5, j
2
 mod 5) in HC

 node (i+1, 2*(j-1) +2) in TH = node (2*i – j, j
3
 mod 22) in HC

 node (i+1, 2*(j-1)) in TH = node (3*j mod 7, (i*j) mod 9) in HC

 node (i+1, 2*(j-1) + 1) in TH = node (3*j mod 7, j +2) in HC

 Connect node (i+1, 2*(j-1) + 1) with node (i, j-1) through a link.

Next j

Next i

For i = 3 to (d - 1) // each level of the tree-hypercube.

 For j = 1 to 2
i-1

 + 1 step 4 // each node at that level of the tree-hypercube.

 node (i, j-1) in TH = node (((3*j +i) mod 7) /2, 2*j mod 4) in HC

 node (i, j) in TH = node (((3*j +i) mod 7) /2, 3*j mod 10) in HC

 node (i+1, 2*(j-1) + 3) in TH = node (i, ((i-1)*(j+1)) mod 7) in HC

 44

 node (i+1, 2*(j-1) +2) in TH = node ((i+ j)mod 5, (i* j) mod 9) in HC

 node (i+1, 2*(j-1)) in TH = node ((i+ j)mod 5, 2*j
2
 mod 43) in HC

 node (i+1, 2*(j-1) + 1) in TH = node ((i+ j)mod 6, j
2
 mod 18) in HC

 Connect node (i, j-1) with node (i+1, 2*(j-1) + 1) through a link.

Next j

Next i

Return ;

} // end of Mapping Function.

4.4 Examples on the Embedding Algorithm 4.2, and Discussion

Example 4.5; mapping hex-cell HC(1) (Figure 4.9) into tree-hypercube TH(2,2); since

d=2, with respect to the algorithm nodes of the hex-cell will be mapped as the following,

Figure 4.10 illustrates the example:

 node (1,0) in TH = node (1,1) in HC

 node (1,1) in TH = node (1,2) in HC

 node (2,3) in TH = node (1,3) in HC

 node (2,2) in TH = node (2,3) in HC

 node (2,0) in TH = node (2,2) in HC

 node (2,1) in TH = node (2,1) in HC

Connect Node (1,0) with node (2,1) through a link.

 Figure 4.9: HC (1).

1,1
1, 3

2, 3
2, 1

2, 2

1, 2

 45

Figure 4.10: Mapping of HC (1) into TH(2, 2).

Example 4.6; mapping of hex-cell HC(2) (Figure 4.11) into tree-hypercube TH(2,4);

then d=4, with respect to the algorithm nodes of the hex-cell will be mapped as the

following, Figure 4.12 illustrates the example.

 node (1,0) in TH = node (1,1) in HC

 node (1,1) in TH = node (1,2) in HC

 node (2,3) in TH = node (1,3) in HC

 node (2,2) in TH = node (2,4) in HC

 node (2,0) in TH = node (2,3) in HC

 node (2,1) in TH = node (2,2) in HC

Connect Node (1,0) with node (2,1) through a link.

 i = 2 ; j = 1

 node (2,0) in TH = node (2,3) in HC

 node (2,1) in TH = node (2,2) in HC

 node (3,3) in TH = node (2,1) in HC

 node (3,2) in TH = node (3,1) in HC

 node (3,0) in TH = node (3,2) in HC

 node (3,1) in TH = node (3,3) in HC

Connect Node (2,0) with node (3,1) through a link.

i = 2 ; j = 3

node (2,2) in TH = node (2,4) in HC

node (2,3) in TH = node (1,3) in HC

node (3,7) in TH = node (1,4) in HC

node (3,6) in TH = node (1,5) in HC

node (3,4) in TH = node (2,6) in HC

node (3,5) in TH = node (2,5) in HC

Connect Node (2,2) with node (3,5) through a link.

1,001 1,000

2,001 2,000 2,010
2,011

0,000

1,1 1, 2

1, 3

2, 3

2, 2 2, 1

 46

 i=3; j=1;

 node (3,0) in TH = node (3,2) in HC

 node (3,1) in TH = node (3,3) in HC

 node (4,3) in TH = node (3,4) in HC

 node (4,2) in TH = node (4,3) in HC

 node (4,0) in TH = node (4,2) in HC

 node (4,1) in TH = node (4,1) in HC

 Connect Node (3,0) with node (4,1) through a link.

 i=3; j=5;

 node (3,4) in TH = node (2,6) in HC

 node (3,5) in TH = node (2,5) in HC

 node (4,11) in TH = node (3,5) in HC

 node (4,10) in TH = node (3,6) in HC

 node (4,8) in TH = node (3,7) in HC

 node (4,9) in TH = node (2,7) in HC

 Connect Node (3,4) with node (4,9) through a link.

 node (4,3) in TH = node (3,4) in HC

 node (4,11) in TH = node (3,5) in HC

 node (4,10) in TH = node (3,6) in HC

 node (4,14) in TH = node (4,5) in HC

 node (4,6) in TH = node (4,4) in HC

 node (4,2) in TH = node (4,3) in HC

 Connect Node (4,3) with node (4,2) through a link.

 Figure 4.11: HC (2).

1,1

1,2

1,3

1,4

1,5

2,1

2,2

2,3

2,4

2,5

2,6

2,7

3,1

3,2

3,3

3,4

3,5

3,6

4,1

4,2

4,3

4,4

4,5

3,7

 47

Figure 4.12: Mapping of Hex-Cells HC (2) into Tree-Hypercube TH(2,4)

In Example 4.5, a mapping of six nodes of HC(1) into TH(2,2) containing 7 nodes

was performed. Here, the mapping is said to have a dilation one, since each edge in

the hex-cell is mapped into only a single edge in the tree-hypercube, congestion one,

since there is no more than one edge in the guest graph (HC (1)) mapped into any

edge in the host graph (TH (2,2)). Also the expansion is 1.1, since the ratio of the

maximum number of nodes in both graphs (hex-cell and tree-hypercube) is 7/6 = 1.1.

0,0000

1,0001 1,0000

2,0001 2,0000
2,0010 2,0011

3,0001

3,0010
3,0011

3,0100

3,0101
3,0110

3,0000

3,,0111

4,1110

4, 1101

4,1100 4, 0000

4, 0001

4, 0010

4, 0011

4, 0100

4, 0101

4, 0110

4, 0111
4,1111

4, 1000

4, 1001

4, 1010

4, 1011

 Start node

 Last node

1,1 1,2

1,3 2, 4 2, 3
2,2

2,1
3,1 3, 2 3, 3

1, 4
1, 5 2, 6

2, 5

3, 4
4,3

4, 2

4,1

3, 6 3, 5
3, 7

2, 7
4,5 4,4

 48

In Example 4.6, a mapping of HC (2) containing of 24 nodes into TH (2,4) consisting

of 31 nodes, was performed. Here, the mapping is said to have a dilation one, since

each edge in the hex-cell is mapped into only a single edge in the tree-hypercube,

and congestion one, since there is no more than one edge in the guest graph (HC(2))

mapped into any edge in the host graph (TH (2,4)). Also the expansion is 1.3 since

the ratio of the maximum number of nodes in both graphs (hex-cell and tree-

hypercube) is 31/24 = 1.3. In both examples, when mapping distinct nodes of the hex-

cells into distinct nodes in the tree-hypercube, a mapping of edges connecting these

distinct nodes is performed.

4.5 A note to the cases HC(i), where i > 2

In the following table we list the total number of nodes in HC(i), TH(2,2i), and the

number of unused nodes in the embedding of hex-cell into tree-hypercube.

i Total number of nodes in HC(i) Total number of nodes in TH(2,2i) Number of

unused nodes

in embedding

1 6 7 1

2 24 31 7

3 54 127 73

4 96 511 415

5 150 2047 1897

Table 4.1: Number of Unused nodes in embedding hex-cells into tree-hypercube.

From the above table we notice that the number of unused nodes increases massively,

this leads to the idea of using other architectures such as (Client Servers), or

embedding of hex-cells into other topologies such as meshes, and stars.

 49

4.6 Implementation and Application

4.6.1 Routing Mechanism

 The most fundamental function of interconnection network is communication,

or data routing. Routing is the process of sending messages from source nodes to

other nodes in the network [20].

 Mapping hex-cells into tree-hypercube has a benefit in communication or data

routing between nodes of hex-cells. Since the maximum shortest path (diameter)

between any two processing nodes in a hex-cell is 4√(N/6) – 1, where N is the total

number of nodes in the hex-cell, we can compute the total number of nodes N in a

hex-cell by the equation N= 6*d
2
 [24]. So, HC (1) has 6 nodes, and the maximum

shortest path between any two nodes in HC(1) = 3. On the other hand in the tree-

hypercube, the diameter is computed by the equation d*log s, where d and s are the

depth and degree of the tree-hypercube, respectively. The total number of nodes in

TH (s, d) is computed by the equation N = (s
d+1

-1) / (s-1) [19]. The TH (2, 2)

which has 7 nodes and its diameter = 2. So we can say that the diameter after

embedding minimized one edge. HC(2) has 24 nodes, and the maximum shortest path

between any two nodes = 7, but in TH (2, 4) which has 31 nodes and its diameter =

4. So here the diameter after embedding minimized 3 edges.

 According to the above calculations of diameter for both hex-cell and tree-

hypercube, we can see that the diameter of the tree-hypercube is less than that of the

hex-cell. So by mapping nodes and edges of hex-cell onto nodes and edges of tree-

hypercube, nodes of the hex-cell can communicate with other nodes with lower

diameter. This increases the performance of the system. As an example, if node (1,1)

in HC(1) sends a message to node (2,3) in the same HC(1), it needs to traverse along

a paths which consist of three edges (1,1) - (2,1) – (2,2) – (2,3) as shown in Figure

4.13. But after mapping HC(1) into TH(2,2), node 1,1 which is mapped to node (1,

000) in TH (2,2) can send a message to node (2,3) which is mapped to node (2, 010)

 50

in TH(2,2) by traversing a path that consists of only two edges (1,000) - (2,000) -

(2,010) which is (1,1) - (2.2) - (2,3). Figure 4.14 illustrates this example.

Figure 4.13: The path from node (1,1) to node (2,3) before mapping.

Figure 4.14: The path from node (1,1) to node (2,3) after mapping.

Another example, if node 1,2 in HC(2) sends a message to node 4,2 in the same HC(2),

the shortest path that it would traverse consists of seven edges (1,2) -(1,3) - (2,4) - (2,3) -

(3,3) - (3,2) - (4,1) - (4,2), as shown in Figure 4.15. But after mapping HC(2) into

TH(2,4), node (1,2) which is mapped to node (1,0001) in TH(2,4) can send a message to

node (4,2) which is mapped to node (4,0000) by traversing a path that consists of only

four edges (1,0001) - (2,0010) - (3,0100) - (4,1000)- (4,0000) which is (1.2) - (2,4) -

(2,6) -(3,7) - (4,2), as shown in Figure 4.16.

1,1
1, 3

2, 3
2, 1

1,001 1,000

2,001 2,000 2,010
2,011

0,000

1,1 1, 2

1, 3
2, 3

2, 2 2, 1

Source

 node

Destination

 node

2, 2

Source

 node

 Destination

 node

 51

1,2

 Figure 4.15: The path from node (1,2) to node (4,2) before mapping.

Figure 4.16: The path from node (1,2) to node 4,2, after mapping.

1,1

1,2

1,3

1,4

1,5

2,1

2,2

2,3

2,4

2,5

2,6

2,7

3,1

3,2

3,3

3,4

3,5

3,6

4,1

4,2

4,3

4,4

4,5

3,7

Source

 node

Destination

 node

0,0000

1,0001 1,0000

2,0001 2,0000
2,0010 2,0011

3,0001

3,0010
3,0011

3,0100

3,0101 3,0110

3,0000

3,,0111

4,1110

4, 1101

4,1100 4, 0000

4, 0001

4, 0010

4, 0011

4, 0100

4, 0101

4, 0110

4, 0111
4,1111

4, 1000

4, 1001

4, 1010

4, 1011

 source node

1,1 1,2

1,3 2, 4 2, 3
2,2

2,1
3,1 3, 2 3, 3

1, 4
1, 5 2, 6

2, 5

3, 4
4,3

4, 2

4,1

3, 6 3, 5
3, 7

2, 7
4,5 4,4

 Destination node

 52

4.6.2 Application Program

 We have developed an application program based on the routing algorithm of the

hex-cell [24], and the routing algorithm of the tree-hypercube [19]. The programming

language that we have used is C# programming language. The program shows a

comparison of the shortest path between any source and destination nodes in hex-cell and

tree-hypercube graphs, before and after embedding. The shortest path between any two

nodes in a hex-cell before embedding consists of up to 7 edges, but after embedding a

hex-cell into a tree-hypercube, the shortest path between any two nodes consists of up to

4 edges, this means that the shortest path have been minimized about 3 edges, this

increases the performance of the parallel system. An interface of the application program

is shown in Figures 4.17, 4.18, and 4.19.

 In Figure 4.17 a message shows the path ((1,1)- (2,1)- (2,2)) between node (1,1)

and node (2,2) in hex-cell before embedding, this path contains two edges. On the other

hand Figure 4.18 shows a message of the path between same nodes ((1,1) and (2,2)) but

after embedding, here the path is ((1,1)- (2,2)) which contain only one edge.

Figure 4.17: A message shows the shortest path between node (1.1) and node (2.2) in

HC(1) before embedding.

 53

Figure 4.18: A message shows the shortest path between node (1.1) and node (2.2), after

embedding HC(1) into TH(2,2).

In Figure 4.19 the interface shows a message of the path between node (1,3) and node

(4,4) before embedding ((1,3)-(2,4)-(2,5)-(3,5)-(3,4)-(4,3)-(4,4)) and after embedding

((1,3)-(1,4)-(4,5)-(4,4)). We can see here that the path after embedding minimized three

edges.

Figure 4.19: A message shows the shortest path between node (1.3) and node (4.4), after

embedding HC(2) into TH(4,4), and before embedding.

 54

Chapter Five

Contribution and Conclusion

5.1 Contribution

The problem of mapping interconnection topologies into tree-hypercube network has not

received much attention from researchers. The embedding of linear array and ring into

tree-hypercube have been well studied in literature, and also other embeddings into

hypercube such as binary trees and star graphs. However, there has been no work

reported so far on hex-cells embedding. In our thesis, We have designed an algorithm for

embedding hex-cells of n nodes into tree-hypercube TH(2,d) where d >= 2. The mapping

has dilation one, congestion one, and expansion 1.1. In the algorithm an embedding of

irregular shape of hex-cells into tree-hypercube TH(2,d) where d >= 2 is performed.

Embedding of regular shape of hex-cells into tree-hypercube can't be performed,

requiring the structure of the tree-hypercube. And so as not to have additional number of

links and not to increase the cost. We have also designed an algorithm for mapping hex-

cells HC(i), where i = 1, 2 into tree-hypercube TH(2,d), where d = 2i.

We have developed an application program based on the routing algorithm of the hex-

cell, and the routing algorithm of the Tree-Hypercube, the program shows a comparison

of the shortest path between any source and destination nodes in hex-cell and tree-

hypercube graphs, before and after embedding. The shortest path between any two nodes

in hex-cell before embedding consists of up to 7 edges, but after embedding hex-cell into

Tree-Hypercube, the shortest path between any two nodes consists of up to 4 edges, this

means that the shortest path have minimized about 3 edges, this increases the

performance of the parallel system.

We have also suggested a new scheme for embedding linear arrays and rings, that have

been studied in literature onto tree-hypercube. The scheme is based on the partitionability

property of the tree-hypercube, in order to map linear arrays and rings at each level of the

 55

tree-hypercube. Also, we can use a whole partition of the tree-hypercube to map linear

arrays and rings on both tree edges, and hypercube edges of the tree-hypercube.

5.2 Conclusion and Future Work

As a result the embedding algorithm 4.1 performs an embedding of irregular shape of

hex-cells into tree-hypercube TH(2,d) where d >= 2 is performed. Embedding of regular

shape of hex-cells into tree-hypercube can't be performed, requiring the structure of the

tree-hypercube. And so as not to have additional number of links and not to increase the

cost. The embedding of hex-cells into tree-hypercube has dilation 1, congestion 1, and

expansion 1.1. In algorithm 4.2, the embedding of hex-cells into tree-hypercube has

dilation 1, congestion 1, and expansion 1.1 when mapping HC(1); and dilation 1,

congestion 1, and expansion 1.3 when mapping HC(2). The expansion increased because

the number of nodes in the host graph (tree-hypercube) increased, and it is larger than

the number of nodes in the guest graph (hex-cell).

For future work, we suggest embedding of hex-cells into other topologies, such as

meshes and binary trees, and with lower dilation and expansion as possible. Furthermore,

we will consider the embedding of hex-cell with respect to their depth, not depending on

the structure of the host topology. In future work, in order to embed the regular shape of

hex-cells, we suggest the embedding of hex-cells into hierarchal tree-hypercube, and also

by using the required additional number of links.

Communication is unavoidable in parallel computing applications, and the

communication patterns are intrinsically associated with the applications themselves.

Therefore, the embedding of communication pattern graphs into the topologies of

multiprocessor structure is of great importance. In some cases, a 100-percent fault

tolerant embedding is possible. That is, there are no faulty nodes or links in the mapping

of communication pattern graph on the host multiprocessor topology. For future work, we

suggest to design an algorithm for a fault-tolerant embedding of hex-cell topology into

tree-hypercube, and this algorithm should be based on the existence of faulty links and/or

faulty nodes.

 56

References

[1] Abuelrub E., and Bettayeb S., "Embedding Rings into Faulty Twisted

Hypercubes", Computing and Informatics Journal, Vol. 16, No. 4, 1997.

[2] Aderhold M. and Slack J., "Embedding Balanced Binary Trees into the

Hypercube", Journal of Information Science and Engineering, Vol. 14, No. 5, pp.

740-752, 1997.

[3] Almobaideen W., Qatawneh M., Sliet A, Salah I, and Al-Sharaeh S.,

"Efficient Mapping Scheme of Ring Topology onto Tree- Hypercubes". Journal

of Applied Sciences, Vol. 7, No. 18, pp. 2666-26770, 2007.

[4] Asanovic K., "The Landscape of Parallel Computing: A Research View",

University of California, Berkeley, Technical Report No. UCB/EECS-183, 2006.

[5] Bein D., Bein W., and Latifti S., "An Optimal Embedding of Honeycomb

Networks into Hypercubes", Parallel Processing Letters, Vol. 14, No. 3-4, pp 367 375,

2004.

[6] Bettayeb S., Girou B., and Sudborough M., "Embedding star networks into

Hypercubes Computers", IEEE Transactions, Vol. 45, No. 2, pp. 186-194, 1996.

[7] Chang H. Y. and Chen R.J., "Embedding cycles in IEH graphs", Information

Processing Letters, Vol. 64, No. 4, pp. 23-27, 1997.

[8] Chen W. K., and Stallmann M. F., "On Embedding Binary Trees into

Hypercubes", Journal of Parallel Distributed Computing, Vol. 24, No. 3, pp. 132-138,

1995.

[9] Dvorak T., "Dense Sets and Embedding Binary Trees into Hypercubes",

Discrete Applied Mathematics Journal, Vol. 155, No. 4, pp. 506-514, 2007.

[10] Fan J. and Jia X., "Embedding Meshes into Crossed Cubes", Information

Sciences Journal, Vol. 177, No. 15, pp. 3151-3160, 2007.

[11] Fan J., Jia X., and Xiaola L. "Embedding of Cycles in Twisted Cubes with

Edge-Pancyclic", Algorithmica Journal, Vol. 51, No. 3, pp. 264-282, 2007.

[12] Grama A., Gupta A., Karypis G., and Kumar V., “Introduction to Parallel

Computing”, Addison Wesley, pp. 12-72, 2003.

 57

[13] Hamdi H. and Song S. W., “Matrix Transformations: An Efficient Method for

Embedding Networks into the Hypercube”, IEEE Transactions on Parallel and

Distributed Systems, Vol. 8, No. 6, pp. 897-902, 1997.

[14] Hamdi M. and Song S. W., "Embedding Hierarchical Hypercube Networks into

the Hypercube", IEEE Transactions on Parallel and Distributed Systems, Vol. 8, No.

9, pp. 876-883, 1997.

[15] Heun V. and Mayr E. W., "Eembedding of Arbitrary Binary Tree into its Optimal

Hypercube ", Journal of Algorithms, Vol. 20, No. 4, pp. 431-445, 1996.

[16] Huang C. H., HSIAO J. Y.
,
 and LEE R C. T., "Embedding Incomplete Binary

Trees into Incomplete Hypercubes", IEE proceedings on Computers and digital

techniques, Vol. 145, No.6, pp. 377-384, 1998.

[17] Marilynn L. and Stout F., "Embeddings in Hypercubes", Mathematical and

Computational Modelling Journal, Vol. 11, No. 3, pp. 222-227, 1988.

[18] Omari M., "Tree-Hypercube: Hierarchal, Partitionable Multiprocessor

Interconnection Network", PHD Dissertation, Illinois Institute of Technology, USA,

1992.

[19] Omari, M. and Abu-Salem H., "Tree-Hypercube: A Multiprocessor

Interconnection Topology", Abhath Al-Yarmouk, Vol. 6, No. 2, pp. 9-24, 1998.

[20] Peterson L. and Dave B., "Computer Networks, A System Approach", Morgan

Kaufmann, Third Edition, 2003.

[21] Qatawneh M. “Embedding Linear Array onto Tree-Hypercube Network”,

European Journal of Scientific Research, Vol. 10, No. 2, pp. 72-77, 2005.

[22] Ranka Sanjay, Jhychun Wang and Nangkang Yeh. "Embedding Meshes on the

Star Graph", IEEE Proceeding Conference on Super Computers, Vol. 12, No.3 , pp.

476- 485, 1990.

[23] Sedelev O.,

"Realization of Boolean functions by Combinational Circuits Embedded

in the Hypercube", Moscow University Computational Mathematics and Cybernetics

Journal, Vol. 32, No. 1, pp. 44-50, 2008.

[24] Sharieh A., Qatawneh M., Almobaideen W., and Sleit A., "Hex- Cell:

Modeling, Topological Properties and Routing Algorithm", European Journal of

Scientific Research, Vol.22, No. 3, pp. 457-468, 2008.

 58

[25] Sheng J., Hung H., and Huey G., "Embedding Fault-Free Cycles in Crossed

Cubes with Conditional Link Faults", Journal of Supercomputing, Vol. 46, No. 2, pp

143-152, 2008.

[26] Tsai C., "Cycles Embedding in Hypercubes with Node Failures", Information

Processing Letters, Vol. 102, No. 6, pp. 242-246, 2007.

[27] Wang K. H and Briggs F. A., “Computer Architecture and Parallel Processing”,

Mc-Graw Hill, 1994.

[28] Wang S. C., Leu Y. R. and Keu S. Y., "Distributed Fault Tolerant Embedding

of Several Topologies into Hypercubes", Journal of Information Science and

Engineering, Vol. 20, No.4, pp. 707-732, 2004.

[29] Yang X., Tang Y., and Cao J., " Embedding Torus in Hexagonal Honeycomb

Torus", Computers and Digital Techniques Journal, Vol. 2, No. 2, pp. 86-93, 2008.

 59

 Appendix A

Code of the Routing Application

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Windows.Forms;

namespace SimNetworkApp

{

public partial class frmMain : Form

{

public frmMain()

{

InitializeComponent();

}

private void btnExit_Click(object sender, EventArgs e)

{

Application.Exit();

}

private void btnHecx_Click(object sender, EventArgs e)

{

Form01 frm = new Form01();

frm.ShowDialog();

}

private void btnSmallTree_Click(object sender, EventArgs e)

{

Form02 frm = new Form02();

frm.ShowDialog();

}

private void label1_Click(object sender, EventArgs e)

{

}

private void label2_Click(object sender, EventArgs e)

{

}

private void frmMain_Load(object sender, EventArgs e)

{

}

}

}

 60

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Windows.Forms;

namespace SimNetworkApp

{

public partial class Form01 : Form

{

public Form01()

{

InitializeComponent();

}

private void Form01_Load(object sender, EventArgs e)

{

dataSet2.Paths.AddPathsRow("1,1", "1,000");

dataSet2.Paths.AddPathsRow("1, 2", "1,001");

dataSet2.Paths.AddPathsRow("2, 2", "2,000");

dataSet2.Paths.AddPathsRow("2, 1", "2,001");

dataSet2.Paths.AddPathsRow("2, 3", "2,010");

dataSet2.Paths.AddPathsRow("1, 3", "2,011");

}

private void btnRun1_Click(object sender, EventArgs e)

{

if (comboBox1.SelectedIndex == comboBox2.SelectedIndex)

{

MessageBox.Show("you can't send message to the same node !!!");

return;

}

tree cls = new tree();

cls.Ls =

Convert.ToInt32(comboBox1.SelectedValue.ToString().Substring(0, 1));

cls.Ld =

Convert.ToInt32(comboBox2.SelectedValue.ToString().Substring(0, 1));

cls.S = 2;

string x = comboBox1.SelectedValue.ToString().Substring(2,

comboBox1.SelectedValue.ToString().Length - 2);

string y = comboBox2.SelectedValue.ToString().Substring(2,

comboBox2.SelectedValue.ToString().Length - 2);

cls.sor = comboBox1.SelectedValue.ToString().Substring(2,

comboBox1.SelectedValue.ToString().Length - 2);

string aa = comboBox2.SelectedValue.ToString().Substring(2,

comboBox2.SelectedValue.ToString().Length - 2).ToString();

 61

string[] a1 = new string[3];

a1[2] = aa.Substring(0, 1);

a1[1] = aa.Substring(1, 1);

a1[0] = aa.Substring(2, 1);

for (int i = 0; i < a1.Length; i++)

{

cls.des += a1[i]; //001 textBox2.Text.Substring(2, textBox2.Text.Length

- 2);

}

string[] msg = cls.Route_th(x, y).Split('|');

string m ="1: " +

dataSet2.Paths.Rows[comboBox1.SelectedIndex]["path1"].ToString() + "

==> " + comboBox1.SelectedValue.ToString() ;

// MessageBox.Show(m);

for (int i = 0; i < msg.Length; i++)

{

for (int j = 0; j < dataSet2.Paths.Rows.Count ; j++)

{

if (msg[i].Equals(dataSet2.Paths.Rows[j]["path2"].ToString()))

{

m += "\n" + Convert.ToInt32(i + 1) + ": " +

dataSet2.Paths.Rows[j]["path1"].ToString() + " ==> " +

dataSet2.Paths.Rows[j]["path2"].ToString();

break;

}

}

}

MessageBox.Show(m);

}

private void btnRun_Click(object sender, EventArgs e)

{

if (comboBox1.SelectedIndex == comboBox2.SelectedIndex)

{

MessageBox.Show("you can't send message to the same node !!!");

return;

}

clsCells cls = new clsCells();

string m = null ;

int index= comboBox1.SelectedIndex;

string[] val1 =

dataSet2.Paths.Rows[index]["path1"].ToString().Split(',');

index= comboBox2.SelectedIndex;

 62

string[] val2 =

dataSet2.Paths.Rows[index]["path1"].ToString().Split(',');

int Xs = Convert.ToInt32(val1[0]);

int Ys = Convert.ToInt32(val1[1]);

int Xd = Convert.ToInt32(val2[0]);

int Yd = Convert.ToInt32(val2[1]);

m += Xs + "," + Ys;

if (Xs < Xd)

{

m += cls.moveDown(Xs, Ys,Xd, Yd, 1);

}

else if (Xs > Xd)

{

m += cls.moveUp(Xs, Ys, Xd, Yd, 1);

}

else

{

m += cls.moveHorizontal(Xs, Ys, Xd, Yd, 1);

}

MessageBox.Show(m);

}

}

}

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Windows.Forms;

namespace SimNetworkApp

{

public partial class Form02 : Form

{

public Form02()

{

InitializeComponent();

}

private void Form02_Load(object sender, EventArgs e)

{

dataSet2.Paths.AddPathsRow("1,1", "1,0000");

dataSet2.Paths.AddPathsRow("1,2", "1,0001");

dataSet2.Paths.AddPathsRow("2,3", "2,0000");

dataSet2.Paths.AddPathsRow("2,2", "2,0001");

 63

dataSet2.Paths.AddPathsRow("2,4", "2,0010");

dataSet2.Paths.AddPathsRow("1,3", "2,0011");

dataSet2.Paths.AddPathsRow("3,2", "3,0000");

dataSet2.Paths.AddPathsRow("3,3", "3,0001");

dataSet2.Paths.AddPathsRow("3,1", "3,0010");

dataSet2.Paths.AddPathsRow("2,1", "3,0011");

dataSet2.Paths.AddPathsRow("2,6", "3,0100");

dataSet2.Paths.AddPathsRow("2,5", "3,0101");

dataSet2.Paths.AddPathsRow("1,5", "3,0110");

dataSet2.Paths.AddPathsRow("1,4", "3,0111");

dataSet2.Paths.AddPathsRow("4,2", "4,0000");

dataSet2.Paths.AddPathsRow("4,1", "4,0001");

dataSet2.Paths.AddPathsRow("4,3", "4,0010");

dataSet2.Paths.AddPathsRow("3,4", "4,0011");

dataSet2.Paths.AddPathsRow("4,4", "4,0110");

dataSet2.Paths.AddPathsRow("3,7", "4,1000");

dataSet2.Paths.AddPathsRow("2,7", "4,1001");

dataSet2.Paths.AddPathsRow("3,6", "4,1010");

dataSet2.Paths.AddPathsRow("3,5", "4,1011");

dataSet2.Paths.AddPathsRow("4,5", "4,1110");

}

private void btnRun_Click(object sender, EventArgs e)

{

if (comboBox1.SelectedIndex == comboBox2.SelectedIndex)

{

MessageBox.Show("you can't send message to the same node !!!");

return;

}

clsCells cls = new clsCells();

string m = null;

int index = comboBox1.SelectedIndex;

string[] val1 =

dataSet2.Paths.Rows[index]["path1"].ToString().Split(',');

index = comboBox2.SelectedIndex;

string[] val2 =

dataSet2.Paths.Rows[index]["path1"].ToString().Split(',');

int Xs = Convert.ToInt32(val1[0]);

int Ys = Convert.ToInt32(val1[1]);

int Xd = Convert.ToInt32(val2[0]);

int Yd = Convert.ToInt32(val2[1]);

 64

m += Xs + "," + Ys;

if (Xs < Xd)

{

m += cls.moveDown(Xs, Ys, Xd, Yd, 2);

}

else if (Xs > Xd)

{

m += cls.moveUp(Xs, Ys, Xd, Yd, 2);

}

else if (Xs == Xd)

{

m += cls.moveHorizontal(Xs, Ys, Xd, Yd, 2);

}

MessageBox.Show(m);

}

private void btnRun1_Click(object sender, EventArgs e)

{

if (comboBox1.SelectedIndex == comboBox2.SelectedIndex)

{

MessageBox.Show("you can't send message to the same node !!!");

return;

}

tree cls = new tree();

cls.Ls =

Convert.ToInt32(comboBox1.SelectedValue.ToString().Substring(0, 1));

cls.Ld =

Convert.ToInt32(comboBox2.SelectedValue.ToString().Substring(0, 1));

cls.S = 2;

string x = comboBox1.SelectedValue.ToString().Substring(2,

comboBox1.SelectedValue.ToString().Length - 2);

string y = comboBox2.SelectedValue.ToString().Substring(2,

comboBox2.SelectedValue.ToString().Length - 2);

//cls.sor = comboBox1.SelectedValue.ToString().Substring(2,

comboBox1.SelectedValue.ToString().Length - 2);

string aa = comboBox2.SelectedValue.ToString().Substring(2,

comboBox2.SelectedValue.ToString().Length - 2).ToString();

string[] a1 = new string[4];

a1[3] = aa.Substring(0, 1);

a1[2] = aa.Substring(1, 1);

a1[1] = aa.Substring(2, 1);

a1[0] = aa.Substring(3, 1);

for (int i = 0; i < a1.Length; i++)

{

cls.des += a1[i]; //001 textBox2.Text.Substring(2, textBox2.Text.Length

- 2);

 65

}

//==

string aa2 = comboBox1.SelectedValue.ToString().Substring(2,

comboBox1.SelectedValue.ToString().Length - 2).ToString();

string[] a2 = new string[4];

a2[3] = aa2.Substring(0, 1);

a2[2] = aa2.Substring(1, 1);

a2[1] = aa2.Substring(2, 1);

a2[0] = aa2.Substring(3, 1);

for (int i = 0; i < a1.Length; i++)

{

cls.sor += a2[i]; //001 textBox2.Text.Substring(2, textBox2.Text.Length

- 2);

}

//===

string[] msg = cls.Route_th(x, y).Split('|');

string m = "Run in TH after embedding\n\n1: " +

dataSet2.Paths.Rows[comboBox1.SelectedIndex]["path1"].ToString() + "

==> " + comboBox1.SelectedValue.ToString();

// MessageBox.Show(m);

for (int i = 0; i < msg.Length; i++)

{

for (int j = 0; j < dataSet2.Paths.Rows.Count; j++)

{

if (msg[i].Equals(dataSet2.Paths.Rows[j]["path2"].ToString()))

{

m += "\n" + Convert.ToInt32(i + 1) + ": " +

dataSet2.Paths.Rows[j]["path1"].ToString() + " ==> " +

dataSet2.Paths.Rows[j]["path2"].ToString();

break;

}

}

}

//==

clsCells cls1 = new clsCells();

m += "\n\nRun in HC before embedding\n";

int index = comboBox1.SelectedIndex;

string[] val1 =

dataSet2.Paths.Rows[index]["path1"].ToString().Split(',');

index = comboBox2.SelectedIndex;

string[] val2 =

dataSet2.Paths.Rows[index]["path1"].ToString().Split(',');

int Xs = Convert.ToInt32(val1[0]);

int Ys = Convert.ToInt32(val1[1]);

 66

int Xd = Convert.ToInt32(val2[0]);

int Yd = Convert.ToInt32(val2[1]);

m += Xs + "," + Ys;

if (Xs < Xd)

{

m += cls1.moveDown(Xs, Ys, Xd, Yd, 2);

}

else if (Xs > Xd)

{

m += cls1.moveUp(Xs, Ys, Xd, Yd, 2);

}

else if (Xs == Xd)

{

m += cls1.moveHorizontal(Xs, Ys, Xd, Yd, 2);

}

MessageBox.Show(m);

}

private void btnRunAll_Click(object sender, EventArgs e)

{

ShowMessage msgbox = new ShowMessage();

string m = null;

for (int mm = 0; mm < comboBox1.Items.Count; mm++)

{

for (int n = 0; n < comboBox2.Items.Count; n++)

{

if (mm == n)

{

// MessageBox.Show("you can't send message to the same node !!!");

}

else

{

tree cls = new tree();

cls.Ls =

Convert.ToInt32(dataSet2.Paths.Rows[mm]["path2"].ToString().Substring(0

, 1));

cls.Ld =

Convert.ToInt32(dataSet2.Paths.Rows[n]["path2"].ToString().Substring(0,

1));

cls.S = 2;

string x = dataSet2.Paths.Rows[mm]["path2"].ToString().Substring(2,

dataSet2.Paths.Rows[mm]["path2"].ToString().Length - 2);

string y = dataSet2.Paths.Rows[n]["path2"].ToString().Substring(2,

dataSet2.Paths.Rows[n]["path2"].ToString().Length - 2);

 67

//cls.sor = comboBox1.SelectedValue.ToString().Substring(2,

comboBox1.SelectedValue.ToString().Length - 2);

string aa = dataSet2.Paths.Rows[n]["path2"].ToString().Substring(2,

dataSet2.Paths.Rows[n]["path2"].ToString().Length - 2).ToString();

string[] a1 = new string[4];

a1[3] = aa.Substring(0, 1);

a1[2] = aa.Substring(1, 1);

a1[1] = aa.Substring(2, 1);

a1[0] = aa.Substring(3, 1);

for (int i = 0; i < a1.Length; i++)

{

cls.des += a1[i]; //001 textBox2.Text.Substring(2, textBox2.Text.Length

- 2);

}

//==

string aa2 = dataSet2.Paths.Rows[mm]["path2"].ToString().Substring(2,

dataSet2.Paths.Rows[mm]["path2"].ToString().Length - 2).ToString();

string[] a2 = new string[4];

a2[3] = aa2.Substring(0, 1);

a2[2] = aa2.Substring(1, 1);

a2[1] = aa2.Substring(2, 1);

a2[0] = aa2.Substring(3, 1);

for (int i = 0; i < a1.Length; i++)

{

cls.sor += a2[i]; //001 textBox2.Text.Substring(2, textBox2.Text.Length

- 2);

}

//===

string[] msg = cls.Route_th(x, y).Split('|');

m += "1: " + dataSet2.Paths.Rows[mm]["path1"].ToString() + " ==> " +

dataSet2.Paths.Rows[mm]["path2"].ToString();

// MessageBox.Show(m);

for (int i = 0; i < msg.Length; i++)

{

for (int j = 0; j < dataSet2.Paths.Rows.Count; j++)

{

if (msg[i].Equals(dataSet2.Paths.Rows[j]["path2"].ToString()))

{

m += "\n" + Convert.ToInt32(i + 1) + ": " +

dataSet2.Paths.Rows[j]["path1"].ToString() + " ==> " +

dataSet2.Paths.Rows[j]["path2"].ToString();

break;

}

}

}

 68

m += "\n\n\n";

msgbox.richTextBox1.Text += m;

//==

clsCells cls1 = new clsCells();

int index = mm;

string[] val1 =

dataSet2.Paths.Rows[index]["path1"].ToString().Split(',');

index = n;

string[] val2 =

dataSet2.Paths.Rows[index]["path1"].ToString().Split(',');

int Xs = Convert.ToInt32(val1[0]);

int Ys = Convert.ToInt32(val1[1]);

int Xd = Convert.ToInt32(val2[0]);

int Yd = Convert.ToInt32(val2[1]);

m += Xs + "," + Ys;

if (Xs < Xd)

{

m += cls1.moveDown(Xs, Ys, Xd, Yd, 2);

}

else if (Xs > Xd)

{

m += cls1.moveUp(Xs, Ys, Xd, Yd, 2);

}

else if (Xs == Xd)

{

m += cls1.moveHorizontal(Xs, Ys, Xd, Yd, 2);

}

m += "\n==\n";

}

}

}

msgbox.richTextBox1.Text = m;

msgbox.ShowDialog();

}

}

}

