A Comparative Study of Indexing
Techniquesfor Relational Database

Management Systems

By

Huda Ayesh Mashaan Alrashidi

A Thesis
Submitted in Partial Fulfillment of the
Requirementsfor the Master Degree
in Computer Information Systems

Super visor

Dr.Hazim A. Farhan

Department of Computer Information Systems
Faculty of Information Technology
Middle East University

Amman - Jordan

March, 2011

s s)

O et 2y s 3 das oW (3 5utl) Al (gl | sand) lafie (ke (saa U
Lealla e al @) g gl o clasall il

Authorization Statement

| , Huda Ayesh Mashaan AlRashidi, authorize Middle East University to
supply hardcopies and electronic copies of my thesis to libraries,

establishments, or bodies and institutions concerned with research and

scientific studies upon request, according to the university regulations,

Signature; -

|];1[-.' = =

Middle East University
Examination Committee Decision

Thisisto certify that the Thesis entitled "A Comparative Study of
Indexing Techniques for Relational Database Management
Systems " was successfully defended and approved on 20 March
2011.

Examination Committee Members Signature
Prof. Mushah M. Aqel % 5t R

Department of Computer Information Svstems

Middle East University (MEL!)

— Fo—— |
Supervisor: Dr. Hazim A. Farhan — T e
Department of Computer Science
Middle East University (MEL)
Dr. Shakir M. Al-Farraji S H‘\&“ oo

Faculty of Information Technology

University of Petra

DECLARATION

| do declare that the present research work has been carried out by me
under the supervision of Dr. Hazim A. Farhan, and this work has not been
submitted elsewhere for any other degree, fellowship or any other similar

title.

slgnature

PDate

DEDICATION

| dedicate this thesis to my husband, who supported me, and my
family, my friends; they were the light in my path and without

them nothing of this would have been possible.

ACKNOWLEDGEMENTS

My foremost thank goes to my supervisor Dr Hazim Farhan. Without him,
this thesis would not have been possible. | appreciate his vast knowledge
his insights, suggestions and guidance that helped to shape my research

skills.

| would like to thank Prof. Musbah Aqgel and Dr. Hussein Owaied for their
advice and help when | started my graduate studies. | want to express my

gratitude to all those who gave me the possibility to complete thisthesis.

| would like to extend special thanks to my husband Mubarek AlRashidi
and my mother for their constant unconditional love and encouragement. It
has always been my dream to be able to return their favors for everything
that they have given to me. | aso thank my sisters, for their genuine love
and support. | also would like to thank Eng Imad Saleh for his technical

support.

VI

List of Tables

Table 1.1: Summary of indexing typesin Oracleand MS SQL Server...................c..... 14
Table 3.1 100K 0N OFaClE... ...ttt it e e e e e e et e e e e e aeeaae e 39
Table 3.2 1000K 0N OFaCIE. vt e e e e e et e e e e eae e 41
Table 3.35000K 0N OFaCle.u i e e e e e e et e e e e e e 44
Table 3.4 MS SQL Server 0N 100Kcuieiie e e e e e e e e ee e 46
Table 3.5: MS-SQL Server 0N 1000Koiiiirieiei i e e e e e e e ae e e 48
Table 3.6: MS-SQL Server 0N 5000Kottt e e e e e aee e 50

Table3.7-A: A summary of the best indexing techniques with different datasizes

M S SO SO VN ... e et e e e e e s 52
Table 3.8: Select Performance using Composite Key in Oracle 1000K...............ccc....... 57
Table 3.9: Select Performance using Composite Key in MS SQL Server 1000K 58
Table 3.10: Insert on MS SQL Server and Oracle with 1000Kcovvvviiviiiiineinnnn, 60
Table 3.11: Update on MS SQL Server and Oracle with 1000K..............ccccovvviieinennn 61
Table 3.12: Delete on MS SQL Server and Oracle with 1000K..........ccoceiviiiiiiieeiennnns 63
Table 3.13: Select on MS SQL Server and Oracle with 1000K.........ccoveviei e iniiennnes 64
Table 3.14: Insert on MS SQL Server and Oracle with 1000Kcoovieiiiiiinnnnnns 66
Table 3.15: Update on MS SQL Server and Oracle with 1000K..............ccccovveiviiennnnns 67
Table 3.16: Delete on MS SQL Server and Oracle with 1000Kccoceiiiiiin e 69

Vil

Table 3.17: Select on MS SQL Server and Oracle with 1000K............ccocevieiiiiiinnnnn. 70

Table 3.18: Insert on MS SQL Server and Oracle with 1000K...........cccooiiviiiiiiienene, 71
Table 3.19: Update on MS SQL Server and Oracle with 1000K.............cccevvvviveieeen .. 72
Table 3.20: Delete on MS SQL Server and Oracle with 1000Kccoviiiiiiennn. 73
Table 3.21: POSSIDIE RUIES. ... e e 77
Table 3.22: Actionsfor @aCh rule........ ..o e 78

Table 3.23: Final ssimplified table of rules and actions on ORACLE environment78

Table 3.24: Fina ssimplified table of rules and actionson MS-SQL Server environment....79

VI

List of Figures

Figure 1.1 Root node and branch nodes of anindex..............c.cocvviii i, 3
Figure 1.2 A search tree showing branch nodes and leaf nodes...................cccoeveeee. 4
FIgUre L3 IN0EX LEVEIS. ... e e e e e e e e 5
Figure 1.4 B-tree Clustered INAeX.........ooieniiie et e e e e e 6
Figure 1.5 Non-Clustered index on atable without a Clustered index.................... .. 8

Figure 1.6 Non-clustered indexes on atable with a clustered index...........................9

Figure 1.7 AN Oracle B-treeindeXovviiiiiiiiii e e e e e e e 10

Figure 1.8 MS-SQL Server B-treeiNaeX.ovvvve e e it e e e ereeee e 11

Figure 2.1 Flowchart of methodology procedure on Oracle platform......................32

Figure2.2 Flowchart of methodology procedure on MS SQL Server platform........... 33

Figure 3.1: Full scan SELECT evauation time for different indexing with 100K on

Figure 3.3: Full scan SELECT executions time for different indexes with 5000K on
[7= o7 = 0o PP 1 |
Figure 3.4: Query execution plan for SELECT statement on table with clustered

(1870 (=TT .o

Figure 3.5: Query execution plan for SELECT operation on table with non-clustered

INAEX INMS SOL SEIVEY ...t e e e e e e e 49

Figure 3.6: Comparison between the response times (ms) of B-tree Oracle and MS SQL

S S V(< o) 1 1100 S 53

Figure 3.7: Comparison between the response times (ms) of B-tree over Oracle and MS

SQL Server 0N L000Kttt i et e e e e e e e e e 53

Figure 3.8: Comparison between the response times (ms) of B-tree over Oracle and MS

SQL Server 0N 5000Kttt e 54

Figure 3.9: Execution result after INSERT one row using B-tree index with 100K......55
Figure 3.10: Execution result after INSERT one row using B-tree index with
Figure 3.11: Execution result after INSERT one row using B-tree index with

Table of Contents

ListOf TabIeS. ... e e e e Y
List Of FIQUIES. ... e e e e e e e X
AbStract iNn ENGlISh... ..o XVI
ADSIFACt INATADIC ...t e e e XVIII
Chapter 1: - Introduction.
i R gL oo (U ot i o o FO VPP UPTRPR 1
1.2 Database INEXINGttt e e e e e e e e e e et e e e 2
1.2.1 Indexing techniques for relational databases...............ccovvviviie i, 2
1.2.21N0EX PrOCESS ...t it et e et et e e e e D
123 TYPESOf INAEXES.......ieie e e e e 5
1.2.3.1 Clustered INJEXESoovniiie e e e e e 5
1.2.3.2 NON-Clustered INJEXES.coiiriieie et e e 7

1.3 Indexing EXamMPIES.c.uiriieiie e e e e e e e e e e nenenee s D

1.3. 1 0raCl@ INAEXING. et et e e e e et e e et e e e e 11

1.3.2MS-SQL Server INdeXing........cceveiiiiiieieiee e e e e e v 13

1.4 The Current Indexing TEChNIQUES..........cuviiiirie i e e e 14

1.5 Advantages and Disadvantages of Indexes.............c.ccoovvviiiiiiiccn i 15

1.6 The Problem Statement. oo oo e e e e e e, 16

1.7 Significance of the Study and Motivations...............ccccevvve e vi i e 17

Xl

1.8 ThesisS CoNntribULIONSieiie i e e e AT
LOMENOUOIOGY ...« e et e e e s 18
I (Ol I 03 (o PP 19
1.11 Literature Review and Related WOrkK............coooiiiiiiii e 19
1111 Literatur@ REVIBW.ot et e e e e e et e et 20
I 2 = 1 o Yo 23
112 TheSIS OrganiZation. en e e et e e e e e e e e e e e e e 25
Chapter 2: - The Methodology and Experimental Test

P28 R 1 oo 1§ o1 o o PRSPPI 26
2.2 Methodology ContribBULIONS.ccoiiei e e e e 27
2.3 Criteriafor COMPariSONS.ttt et et e e e e ettt e ee e e s 28
2.4 Methodology ASSUMPLIONS. e e ettt e e e e ne e e aeeens 28
2.5 Methodology DESCIIPLION.ttt e et e e et e e 29
2.7 Test HIW & S/W (Test ENVIFONMENL)........ouuiritieie it e e e e ceen e eee e e 30
2.8 TS PrOCEUAUNE. ...ttt e e e e e e et e e et e e e e e e 30
Chapter 3: - Experimentsand Test Results

L INEOTUCTION. .. e et e et e e e e e et et et et e e e e e e e 34
3.2 Test: SELECT PerformanCe.ccouiiriieie e e i e e 35

3.21Test 1: Oracle 10g and 100Koiue ittt e e e e e

3.2.1.1 Test 1-a Single-row SELECT performance with single row

X1l

3.2.1.2 Test 1-b: Range SELECT performance...............ccovviviiiiiinenen 35
3.2.1.3 Test 1-c: Full scan SELECT performance...........cc.cocveeveiieniniiennenn. 37
3.2.1.4 Test 1-d: Single-row SELECT performance with non-row................ 38
3.22Test 2: Oracle 10g and 1000Kc.uiuiieiieiie e e e e e e e ee e 40
3.2.2.1 Test 2-a Single-row SELECT performance with singlerow.............. 40
3.2.2.2 Test 2-b: Full scan SELECT performance.............covovviviiienecnnnns 40
3.2.2.3 Test 2-c: Single-row SELECT performance with non-row................ 41
3.2.3Test 3: Oracle 10g and 5000Kovvieiieiieiie e e ee e 42
3.2.3.1 Test 3-a Single-row SELECT performance with singlerow...............42
3.2.3.2 Test 3-b: Range SELECT performance..........cooovveviviiiiiieieene 42
3.2.3.3 Test 3-c: Full scan SELECT performance.............ccvovvviiiiivnennnn, 42
3.2.3.4 Test 3-d: Single-row SELECT performance with non-row..................43
3.24Test 4: MSSQL Server and 100K.........covvviiiiieiiiiiiiieieee e eneeneen.. 45
3.24.1 Test 4-a: Single-row SELECT performance with singlerow 45
3.2.4.2 Test 4-b: Full scan SELECT performance............ccoceeevvneeieiennnn, 46
3.2.4.3 Test 4-c: Single-row SELECT performance with non-row..................46
3.25Test 5: MSSQL Server and 1000Kouviniiiiieie e e e e 47
3.25.1 Test 5-a Single-row SELECT performance with singlerow47
3.2.5.2 Test 5-b: Full scan SELECT performance.............covcevevieneninnnnns 47
3.25.3 Test 5-c: Single-row SELECT performance with non-row................ a7
326 Test 6: MS SQL Server and 5000Kccoeviviiiiiiiiiiie e e el . 48

X1

3.2.6.1 Test 6-a Single-row SELECT performance with singlerow...............48

3.2.6.2 Test 6-b: Full scan SELECT performance...............ccocevvevieeenen. ... 49

3.2.6.3 Test 6-c: Single-row SELECT performance with non-row................ 49
3.3 Recommendations and Further Analysis..........c.ooiiiiiiiiiii e, 50
3.4 Test: INSERT PerfOrmancCe.ouvue it e e e e 54
3.5 Test: Select Performance using Composite Key inOracle............ccocovvvennnn. 57
3.6 Test: Select Performance using Composite Key in MS SQL Server................... 58

3.7 Test: Insert Performance using Composite Key in Oracle and MS SQL Server with
3.8 Test: Update Performance using Composite Key in Oracle and MS SQL Server
WIEN LO00K ... ettt e et e e e e e e et e e e e et e e e e et e 61
3.9 Test: Delete Performance using Composite Key in Oracle and MS SQL Server with
3.10 Test: Select Performance using Composite Key in Oracle and MS SQL Server
L7 00 00 64
3.11 Test: Insert Performance using Composite Key in Oracle and MS SQL Server with
3.12 Test: Update Performance using Composite Key in Oracle and MS SQL Server
LT 00 00 67
3.13 Test: Delete Performance using Composite Key in Oracle and MS SQL Server
L7 00 00 68
3.14 Test: Select Performance using Composite Key in Oracle and MS SQL Server
WIth BO00K ... ottt e e e e e e e e e e e e e 70
3.15 Test: Insert Performance using Composite Key in Oracle and MS SQL Server with

X1V

3.16 Test: Update Performance using Composite Key in Oracle and MS SQL Server
WItN BO00K e ettt e e e e e e e e et e e e e e e 72

3.17 Test: Delete Performance using Composite Key in Oracle and MS SQL Server

WITN BO00K .. . ottt e et et e e e e e e e e e e e 73
3.18 Guidelinesto Select Indexing TEChNIQUESoviiviiiiii i 75
3.18.1 Using Decision Table to Select the Indexing for the DBAS:...........c.ccovvennene. 75
3.18.1.1 Oracle ENVIFONMENT.oe et 76
3.18.1.2 MS-SQL Server ENVIroNmMENt........coiiie it it e e e e 78

3.18.2 Descriptive Guidelines and Advicesfor the DBAS..........cocovvvvviiviiennnn .79

3.19 Observations and Recommendations.o. e oo i ..82

Chapter 4. - Conclusions and Future Work
g 0 o 1101 oL 84
A | L0 =AY o 86

REFEIENCES. .. .ot e e e e e e e e e e e e e 8T

XV

Abstract

A Comparative Study of Indexing Techniques for Relational
Database Management Systems

By

Huda Ayesh Mashaan AlRashidi

Indexing Represents the essential importance in the databases of all kinds and
forms of organization is a method of knowledge and access to different sources of
information. Indexes in general are data-structures that were created to speed up the
search process and access to data and reduce the number of input and output | / O data, as
well as free up system resources for various computer applications.
On the other hand, there is very little published research which presents to comparisons
of methodology between the indexing techniques and through the extensive research and
deep study shows that there is weakness or lack in previously published research which,
did not take adequate criteria that would make clear the comparison process, as well as
the absence of a clear methodology and database developers or administrator can follow.
In this thesis, established a guidelines in order to advise the database developers to select
the best suitable indexing technique (such as B-tree index, organization index, reverse
index, clustered index , non-clustered and Bitmap index) for the database tables over two
different platforms. Oracle and MS SQL Server with different data sizes starting with
100K, 1000K and ending with 5000K .
There are two directions to build the research methodology in this thesis. mathematical
and theoretical, empirical test that relies on the experiments and simulation that are
conducted on the same technical environment. In this research, the experimental test is

more suitable to the problem statement. Furthermore, we have identified the factors that

XVI

need to be considered when database administrator (DBA) or developer wants to
establish a proper index on database.

To evauate the efficiency of indexing technique, we have implemented six indexes
(B-tree, reverse, organization, clustered, non-clustered and bitmap) on the Oracle and MS
SQL Server. We have conducted several experiments on large databases and recorded the
overall performance, CPU consumptions, and 1/O cost. Thus, the results obtained are
based on criteria of the proposed methodology for selecting the best suitable indexing
technique. The DBA then is able to use the guidelines in establishing and retrieving the

information from the databases through the indexes.

XVII

uadlal)

Aaal @l ao) g 5y kil L ygdl gkt 45 aa A)

gl lada Gile s

Jashly 4 uall adati A8y sk (68 LISl g Lgo) o) anany clibll a0 g (8 4y)9 e dpad] A gl Ji
g) o3) il JSUa 08 Bk b ale JSdy G lglld | AliEal) cilaglaall il)
Al iy caliball 1/0 gAY JBaY) clble ae padds 5 alibdl) Jeasll 5 dadl dlas
Adlida) 4y gadad) cilipdaill 2UBTY) 3) ga
O Angall Ul) gl gl) 5 pdiall Gla) e BN a3 s AT Bali (e
Glay) A A8 s gl Cind aa g Ad) Ou ABsaall A jallg Gl DAl B3 g sal) A pgdll (3)b
dadagdadly el Adee (e Jaad O LEld (e AN LS pulaadl 380 A LgS G Uil 5 gl
o) ULl s B (g) ke il daudl g Apagia 350 a2 dllis

)8 g shal A Yy malll andiil Aagiadl sabuall plag aghi o) dag kY sda B Jglaiu 1N
Organization <B-tree index Jia) 4aidle W JiSig 4 gdll §uh Juadl JLidly 1 gaghy I cilibal)
Opallai P e i) 201 8 Jglaat (Bitmap index «clustered index «reverse index «index
Sl sbS 1000 ¢l S 100 2 125 A8l Uiy alaaly A s b g g ySila g J81 0 il 201 68 5)2y
Sl oliS 5000 2 (4=

B gdall Gigaal) (ha Wgale Jguant) a3 45 jla 10y e o (5 gt Aa g k) o2 (B Aa jilal) dagial)
Salsall yaad Uab G0 (ld o Db AL Al (i o gl a5 (A s) LAY il
) g8 ualia dugd sliy (DBA) clibnll aoigd dyda &y Ladie JLie¥) Gay AU of qag A
LRI

creverse «Organization «B-treeindex) dusgd @b cuu o Ll el Jas i B

A pgdl) (3 ok Allad SLEY A pae g g Sila g JS1 s = (Non-clustered, Bitmap «clustered

XVIII

$1aY) Jpaally Lyl Uil dBg ¢ B ity Adans gl g B S il 30198 o cujladl) (e aad) 5150 o Eua
gAY JBY) clles Cillss dlis g (CPU) 48l dallall aag 8 (§adal) cdgll iy (AS!)
Ll Juad] SLAAY da jlal) dpaglall gmlaall o gule Jgandl ol A guilill) cativd Mg /O
4ald) bl aladicd lo 3 a8l (DBA) clibnll 3o g8 8 pda sl ol Ud (e g Aplial) 4 ygdl)

gl (3 VA (o i) 201 68 (a il slaall ln sl £l (B

XIX

Chapter 1

| ntroduction

1.1 Introduction

Relational Database Management Systems (RDBMS) maintain a collection of huge data files to

provide fast and efficient methods in order to access and modify data which is necessary (Martin et
a., 1992). Therefore, RDBMS have supported indexing techniques in order to access the data
efficiently in static and dynamic manners.
Databases have been in use since the earliest days of computing revolution. In 1960's, it started
the development of DBMS that supports manual navigation of alinked data set which was formed
into a large network. In addition, DBMS provides boolean queries that required the programmers
to go through the entire database and collect the matching records.

In 1970's, Codd outlined a new approach to database construction that was based on a
Relational Model of Data for Large Shared Data Banks. He described a new system for storing and
working with large databases. Instead of records being stored in some sort of linked list of free-
form records as in Codasyl, Codd's idea was to use a "table" of fixed-length records. A linked-list
system was inefficient when storing "sparse index" databases where some of the data for any one

record could be left empty. The relational model splits the datainto a series of normalized tables.

Nowadays, databases have matured and required new technological advancements in order to

raise its overall performance, and sustain heavy loads of data. Query processing and optimization

have aways been one of the most critical components of database technology. This component
deals with efficient and effective processing of user queries against a database. The purpose of the
guery processing and optimization is to find user-defined data from large database effectively and
with an acceptable accuracy (Clement et al., 1997). This sort of optimization is performed mostly

by utilizing indexes to facilitate the quick accessto user defined queries.

1.2 Database indexing

An index is an identifier, attribute, keyword and their conjunctions using conditiona
statements. The index is used to retrieve the multimedia information (Ponce , 2002). In databases,
indexes alow to quickly identify and locate objects (such as data elements or file objects)
according to some criteria which might be based on one or more fields containing key values to
which search criteria are applied. In other words, Indexes are data structures designed to make
search faster (Wesley, 2008 ; Elbassioni, et €. , 2003).

The nature of index could be an implicit or explicit key. The implicit index is the location of the
target object to improve the speed of dataretrieval operations on a database table particularly when

the storing is costly (Crowe and Chizek, 2004; Mike et al., 2005).

Indexing significantly reduces the number of 1/0 operations, speeds up access to data as well as

frees up the system resources for different applications.(Marcilinaet a. , 2000).

1.2.1 Indexing techniquesfor relational databases

Currently, a database index can be organized in B-tree structure.

In B-tree structure, each page in an index is named and index page or an index node. The index

configuration has distinct index structure. This structure begins with a root node at the top level

which marks the beginning of the index-it is the first data accessed when a data lookup occurs. The
root node includes a number of index rows, which contain a key value and a pointer to an index

page (Marcilinaet al., 2000 ; Lin et a. , 2005).

Note that, the B-tree index configuration is necessary because it improves the information
retrieving from huge table. B-tree index consists of thousands or millions of index pages. By
starting at the root node and traversing the branch nodes, SQL servers can retrieve the data needed

for the search criteria

1.2.2 Index Process

As shown in Figure 1.1, the root node consists of a number of branch nodes. Each branch node
contains a number of index rows held in an index page. Each index row points to another branch
node or a leaf node. The leaf nodes make up the last level of an index. However, unlike the root
node, each branch node also includes a linked list to other branch nodes on the same level. This
means, the node recognizes for adjacent nodes as well as lower nodes as illustrated in Figure 1.2

(Sheldon, 2008 ; D. Linet a., 2005).

Root Nodea
Index Rows

- L 3 - -
Il Irclasx Irclamx Il Irngdis
page page page pags= pags

Branch MNodes

Figure 1.1 Root node and branch nodes of an index

Index Rows
Root Node
¥ L i Y ¥
Index Rows Index Rows Inclex Rows . Index Rows
il —— —
- !
I Branch Nodes
L L L
Indlex Rows Index Rows Index Rows
Leaf Modes

Figure 1.2 A search tree showing branch nodes and leaf nodes

Figure 1.3 illustrates that every group of branch nodes at the same level of the tree structure is
known as an index level. Thus this thesis will investigate the number of 1/0 operations that are
needed to reach the leaf nodes. Based on capacity of database, if the database table includes only a
small amount of data, the root node can point directly to the leaf nodes, and then the index no

longer needs to contain any branch nodes (Marcilinaet al., 2000).

Root Nodes 1

. |
Py T Tl
Index Levels ’ P ™
- R — 1 [
& 1 1‘.\
o || |

Figure 1.3 Index Levels

The next section describes the type of indexes including clustered indexes and non-clustered

indexes.

1.2.3 Typesof Indexes

There are two types of B-tree indexes: (i) clustered indexes and (ii) non-clustered indexes. In
brief, a clustered index stores the real rows of data in its leaf nodes. Whereas, a non-clustered
index is a secondary structure that points to data in a database table (Lin et a. ,2005; Oracle,

2005).

1.2.3.1 Clustered I ndexes

As shown in Figure 1.4, a clustered index is a B-tree index that stores the actual row data of the
database table in its leaf nodes, in sorted order. Such index offers several advantages and

disadvantages.

A-B Root Node
— C-D
E-F
¥ ¥ ¥
A . —1 Branch Nodes
B D M | F
L T
A B C D E F
Data Data Data ' Data Data Data

Leaf Nodes (include data rows)

Figure 1.4 B-tree Clustered Index

The first advantage is that the data availability which can result in a minimum number of /O
operations. Consequently, any reduction in these I/O operations will yield better performance for
the individual operations and greater overall performance for the B-tree index than other indexes

(Marcilinaet a., 2000; Oracle, 2005).

Further advantage is that the retrieved data will be in index-sorted order. For instance, if a
clustered index is created on the county, and city columns and a query selects all values for which
city? Kuwait, the results will be sorted on county and city according to the order in which the

index is declared.

As aresult, the sorted data feature enhances the time efficiency by reducing the time overhead
on database. Use of a clustered index means it will not need to perform the sort after the data

retrieval (Marcilinaet a., 2000; Oracle, 2005).

On the other hand, the first disadvantage of using a clustered index is that access to the database
table can result in extra time overhead. The SQL server begins data access at the root node and
traverses the index until it reaches the leaf node including the data. Based on the capacity of the
leaf nodes- if many more leaf nodes are built, the number of index levels necessary to support that
many leaf nodesis also large. Thus, thisinvolves more 1/O operations to pass from the root node to

the leaf node (Sheldon , 2008; Oracle, 2005).

1.2.3.2 Non-cluster ed I ndexes

Currently much research relies on clustered indexes; however, some database engines still use
the non-clustered indexes. The non-clustered index is different from clustered index at the leaf

nodes. The non-clustered index does not include actual table datain its leaf nodes.

Figure 1.5 shows that if there is no clustered index on a table, non-clustered indexes on that
table store Row Identifications (Ids) in their leaf nodes. At this stage, each Row ID points to the
actual datarow in the table. The Row ID compromises from a value that contains: the datafile ID,
the page number, and the row in the page. The importance of this value is to enable rush access to

the actual data by pointing where the data is stored (Sheldon, 2008; Oracle, 2005).

A-B Root Node
— (-0
E-F
. S Y
C — Branch Nodes
B D F
. vy L L
A B C D E F
Row Row Row Row Row Row
D D ID ID D D
Data Data Data Data Data Data
Row Row Row Row Row Row

Leaf Nodes [Pointers to data rows)

Figure 1.5 Non-Clustered index on a table without a Clustered index.

On the other hand, if there is a clustered index on the table, non-clustered indexes will contain the
clustered index key value for that data in the leaf node, as illustrated in Figure 1.6. When the |eaf
node of the non-clustered index is reached, the clustered key value indicates that it should be used

to search the clustered index, when datarow will be found in its leaf node (Marcilinaet al., 2000).

A-B Root Node
C-D

E-F

I ¥ ¥

A C E_ Branch Nodes
B D F—

Leaf Nodes
A B F
CIUSterEd E|USterEd (SRS R RS RRNRRNRRRUIRRRRURRORRRURRRRY] EIUSterEd
Key value Key value Key value

Pointers to the clustered index

Figure 1.6 Non-clustered indexes on atable with a clustered index.

1.3 Indexing Examples

In this section, the B-tree indexing is described in Oracle and MS-SQL Server Database

Management Systems.

The B-tree index in the Oracle and MS-SQL Server is the most popular type for servicing

gueries and for avoiding large sorting operations (Burleson , 2002; Arzucan ,2006).

In Oracle, a number of choices are provided when creating an index using the default B-tree

structure as follows;

1. Indexing on multiple columns (concatenated indexes) to improve access speeds.

2. Allowing for individual columns to be sorted in different orders. For example, it is possible
to create a B-tree index on a column called “city” in descending order and have a second
column within the index that displays the “country” column in a ascending order (Burleson

2002; Arzucan 2006).

Figure 1.7 describes a B-tree index in a hierarchical manner with aroot node at the top and the |leaf

nodes at the bottom.
Root Level m
Intermediate Level 65 136 151
| |]
16~ Rowid 66 - Rowid 123 - Rowid 139 - Rowid 160 - Rowid
Leaf Level 35=Rowid | 97 = Rowid) 135=FRowid 150 = Rowid | 190 = Rowid
B5-Rowid [¢1 122-Rowid #1 136-Rowid [151-Rowid 650 - Rowid

Figure 1.7 An Oracle B-tree index

10

Root Level |- 1- 200]

G e

Intermediate Lavel —1 L o
! 1-10 1 101 - 200

{

!

Illh h"llll E

Leaf Level 1-50 le— o SI-100 b5 101-150 f

ST 7V TN

1-1% 150 ¥ 5575 H 76000 [+—H8 101135 105150 (151175 |<-Iv]TE.!}[-|

4
—
W
=5
r
=

Index Modes

Figure 1.8 MS-SQL Server B-tree index.

Figure 1.8 depicts a practical example which demonstrates the search method in a B-tree. If
“Huda’ searches for the value 156, then the query engine would start at the root level to determine
which page to reference in the top intermediate level. The first page points to the values 1-100, and
the second page points to the values 101-200, so the query engine would go to the second page on
that level. The query engine would then determine that it must go to the fourth page at the next
intermediate level. From there, the query engine would navigate to the leaf node for value 156. The
leaf node will contain either the entire row of data, or a pointer to that row depending on whether

the index is clustered on non-clustered (Sheldon , 2008; Giugno , 2002) .

1.3.1 Oracle Indexing

Following a description of some indexing techniques on Oracle database.

1. B-Treelndex

B-tree is one of the methods used for searching a specific value on the tree. To implement this

method is to invoke the adjacent value of the node and compare it, if the value of the node is less

11

than the root it will start from the left part of the tree; and if the value is greater, it will start from

the right part of the tree.

2. Bitmap Index

Cyran et a. (2005), discovered the Bitmap index. Bitmap is a method containing a two-
dimensional matrix and each column stores value in a single bit. The implementation of this
method is that each index will have either 1'sor O's, if the value is found, it will specify 1's; but if
it isnot found it will specify 0’'s. While searching, the oracle will take the entire raw indices that

have avalue of 1's. In other words, it will be pointed at the index that has been found.

3. Reverse Key Indexes

Cyran et al. (2005), created Reverse Key Index. It is a method that compares a standard index,
and reverses the entire bytes in each column except the rowed, in the mean while it will keep the
columnsin order as arrangements will avoid performance degradation with real application cluster.
Oracle would be forced to search for each specific index value separately as each value in the
range is likely to be in differing leaf blocks. By reversing the keys of the index, the insertions

become distributed across all leaf keysin the index

4. Index-Organized Tables

Index organized tables contain a storage organization that istotally different from B-tree, itisa
distinct ordinary, such as heap-organized. The table that is stored as datain an unordered collection
will be organized in atable and stored as in B-tree index structure as a primary key stored manner.
On the other hand, the primary key will be stored as column values of an index-organized table

row. Each index in the not key column values will be entered in the b-tree stores structure.

12

1.3.2MSSQL Server Indexing

Following is a description of some indexing techniques on MS-SQL Server database.

1. Clustered Index

Vassie & Lee (2009), sorted and stored the data rows of the table to perform the table in order.
This is based on clustered index key. Clustered index is implemented as same as B-tree index
structure which supports fast retrieval of the row. This implementation is based on the value of the

clustered index.

2. Non-clustered Index

Vassie & Lee (2009), performed a table with a clustered index or on heap, it can be defined in
anon-clustered index. Also, the rows in the non-clustered index will contain the non-clustered key
value and alocator for the rows. This locater is a pointer to the data row to the clustered index in
order to obtain the value of the key. However, if the datain a clustered index is created in the table

will be in order, otherwise it is not guaranteed to be in any particular order.

3. Unique Index
The unique index is one of the technigques that ensures no duplicate values. Therefore, each

row on the table should be unigue in some way. Both clustered and nonclustred are unique.

4. B-TreesIndex
B-trees index is a multi-way trees (forest), each node will contain two parameters set of keys
and pointers. The minimum size of B-tree node is a tree which has four keys and five pointers.
Also, it contains data pages and it is a dynamic which means as much as the height of the treeis

growing the record are added and del eted.

13

1.4 The Current Indexing Techniques

This thesis is focused on relational database indexing techniques. As a part of future work, the
object oriented databases indexing techniques will be discussed. So, RDBMS employ many
techniques and methods to enhance the overall performance based on indexes. Thus, this section
mentions the most popular indexing techniques used in Oracle and MS-SQL Server, as shown in

Table1.1.

Table 1.1: Summary of indexing typesin Oracleand MS SQL Server

Database Platform Indexing Type
Oracle B-Tree Index
MS SQL Server
Oracle
Bitmap Index
MS SQL Server
Oracle
XML Index
MS SQL Server
Oracle
Index Organized Tables
Oracle
Domain Index
Oracle
Cluster Index
MS SQL Server
Oracle
Reverse Key Index

14

Oracle
B-Tree cluster Index

Oracle
Bitmap Join Index

MS SQL Server
Non-clustered Index

1.5 Advantages and Disadvantages of I ndexes:

I ndexes have the following advantages and disadvantages:

e Advantages

=

Use ordered data to avoid sorts to favor merge joins over nested-loop joins.

2. Speed up reading arow when the right search arguments are known.

3. Index scans are much faster than table scans.

4. Index files are generaly small in size and require less time to read than an entire table,
particularly as tables grow larger.

5. Theentireindex may not need to be scanned.

6. The predicates that are applied to the index reduce the number of rows to be read from the
data pages.

7. If an ordering requirement on the output can be matched with an index column, then
scanning the index in column order will allow the rows to be retrieved in the correct order
without sorting.

8. Each index entry contains a search-key value and a pointer to the row containing that

value, so values can be searched in an ascending or a descending order.

15

9. Anindex can include columns, which are non-indexed columns in the indexed row. Such
columns might make it possible for the optimizer to get required information only from the

index, without accessing the table itself.

e Disadvantages

Although indexes can reduce access time significantly, they can aso have adverse effects on
performance. Before you create indexes, consider the effects of multiple indexes on disk space and

processing time

1. Eachindex requires a storage or a disk space. The exact amount depends on the size of the
table and the size and number of columnsin the index.

2. Each INSERT or DELETE operation performed on a table requires additional updating of
each index on that table. This is also true for each UPDATE operation that changes the
value of an index key.

3. The LOAD utility rebuilds or appends to any existing indexes.

4. Each index potentialy adds an alternative access path for a query for the optimizer to

consider, which increases the compilation time.

1.6 The Problem Statement

Indexing isacritical areain the era of academia and industry and it should increase the speed of
processing information and enhance accessing the storage areas of hard drives and search engines.
A number of researchers and database practitioners have attempted to set guidelines for using the
indexing techniques in Oracle and MS SQL Server. However, thereisalack of knowledge because
they did not consider part of criteria (such as CPU time, 1/O operations, Packet size, and memory

factor) which are used to demonstrate the overall performance of indexing typesin Oracle and MS

16

SQL Server. It should be noted that the indexing techniques will be implemented and tested on two
platforms: Oracle and MS SQL Server.

Thus the problem question is how to establish a guide to advise the database developers how to
select the best indexing techniques that suit their database design. This will be done in this thesis
contribution “A Comparative Study of Indexing Techniques for Relational Database M anagement

Systems”.

1.7 Significance of the Study and Motivations

Through our research process in the database indexing field, it is found that there is no
systematic approach for the selecting of indexing which relies on the expertise and experience of
the user to use it. Therefore, progress should be taken into account to construct a referenced guide
to give all database developers who are interested in enhancing the database engine performance
and to allow them to understand how an index could affect the performance and use indexing and
when not. Moreover, we will cover indexing techniques that help developers and DBAS to make

quick, correct decisions in choosing their type of indexing.

1.8 Thesis Contributions

The main contributions of thisthesis are summarized as follows:

1- We estimated rules (Full Scan SELECT operation, Range SELECT operation, and Single-
row SELECT operation) and criteria (1/0O cost, CPU consumption, and Performance) that

makes the decision of selecting appropriate indexing technique.

2- We have done a systematic comparison between the available indexing methods (B-tree,

Bitmap, reverse, and organization index) on Oracle platform and the indexing techniques

17

(Primary key clustered, unique clustered index, and non-unique clustered index) on MS

SQL Server platform).

3- We constructed a referenced guide to help database developers and DBASs for selecting the

indexing method in order to retrieve their datain efficient method.

1.9 Methodology

The research methodology that will be followed is directly connected to our problem
statement and contributions of this thesis. Since the thesis purpose and problems may vary,
different methods of research can be utilized. A systematic literature review has been performed
to analyze all the facts about indexing with the focus on comparing experimental tests and the
indexing techniques (B-tree index, Bitmap index, reverse index, and organization index) on Oracle
platform and the indexing techniques (Primary key clustered, unique clustered index , and non-
unigue clustered index) on MS SQL Server platform with different size of data (100K, 1000K,

and 5000K) and practical results on table indexing.

After that, testing and evaluation have been conducted which are based on the following criteria:
a. Performance with various sizes of datafor both environments Oracle and MS-SQL Server.
b. CPU time for both environments Oracle and MS-SQL Server.
c. Memory factor for both environments Oracle and MS-SQL Server.

d. Number of 1/0O operations for for both environments Oracle and MS-SQL Server.

As aresult of evaluation, three main points are obtained:

1- To build indexing reference for the DBAs and developers; we will assume that indexes can be

created well if they have the right selection to evaluate the fitness of an index.

18

2- To assess the indexing techniques; we will create databases with various sizes ranging from
small, medium and large to assess many types of indexing for each database in Oracle and MS-

SQL Server.

3- To represent the results we will use special SQL commands to analyze tables; the methods for

query optimization include: SQL Trace and Oracle Trace.

The methods adopted in this thesis are in order to clarify indexing by assessing many types of
indexes to identify which one is the better for special types of tables by considering and taking into

account the size of tables.

1.10 Limitations

Complete and consistent assessment of all indexing methods for al database types is not
possible due to difficulties in representing every case scenario to cover all types of databases.
Therefore we will take the most common methods of indexing used by Oracle and MS-SQL

Server.

1.11 Literature Review and Related Work

This section is drawn according to the recent research papers and technical reports. We survey
the recent indexing techniques such as clustered indexes and non-clustered indexes. Also we state

the process of these techniques, strengths, and weaknesses. Based on this comparison, the thesis

will adopt the methodology for selecting the optimal database indexing techniques.

19

1.11.1 Literature Review

As mentioned in pervious sections, the thesis is concentrated on the database indexing
techniques. Thus, this section discuses the past, and present of indexing techniques.

Martin et al., (1992) presented a novel approach for a tool that assists the database
administration in designing an index configuration for the relational database system. A relational
database uses indexes to provide a fast access to data repository. However, there is a tradeoff
involved in use of indexes for every column. As a result, this tradeoff is referred as the Index
Selection Problem (ISP). The ISP denotes to tailoring the configuration of index to the database
usage profile. Moreover, Martin's research presented a methodology for run time facility. This
methodology for collecting usage statistics at run time was developed which lets the optimizer
estimates query execution costs for alternative index configuration. However, this research work
has two weaknesses:

a) Requiring much time for running the queries, and

b) Defining aworkload specification required by existing index design tool,

¢) Thearchitecture of thistool may be very complex for large integrated database system.

d) The proposed tool automatically derives the workload statistics. These statistics are then

used to efficiently compute an index configuration.

Chaudhuri and Narasayya , (1998) introduced algorithms for the index selection tool in
Microsoft's SQL Server as part of the AutoAdmin project. The objective of the index selection
tools is to generate an index set for a given input workload, obtained by the DBA to be able to
perform a quantitative analysis of the existing indexes. In addition, the DBA should have the
ability to propose hypothetical (“what-if”) indexes and quantitatively anayze their impact on
performance of the system. The authors also presented interfaces supported by a Hypothetical

Configuration Analysis Engine (HCAE) to conduct significant and powerful analysis studies.

20

However, the developed HCAE limits the overall performance of query processing and

information retrieval systems.

Gaffar, (2001) described how to create B-tree index from independent building blocks that are

coherent and decoupled. He expanded the concept to build a complete modular index system. In
this design, the index data structure is broken with functionality into container of pages. Each page
isbuilt as container of entries where each entry isapair of <key, reference> .
In the end, the data and the data reference modules are added to complete the system. This allowed
constructing a complete index system from modules. In order to adapt the system to different
keys/data types, different queries, different access methods, and different storage media, it is
needed to locate and modify some modules in the system. This reflects the modifications on the
system design and eventually on the interface.

Using a modular design for the index system has the advantage of making it easier to adapt the
system to work in different database domains. The analysis of the domain determines the modules

that need changes (or replacement), and the sort of changes (or modules) required.

The complexity of modification is also reduced since the developer does not need to know
about the details of all modules, but only of those modules to be changed along with an overview
of the system. The adoption of Standard Template Library (STL) approach adds great advantage of
having a wealth of off-the-shelf standard modules that can be simply used to replace system
modules in the process of modifying the system. The modification reduces time and money

overheads incurred during the application devel opment process.

Aouiche et al., (2005) presented an automatic strategy for bitmap index selection in data

warehouses. In order to improve a response time, data warehouse administrators generally use

21

indexing techniques such as star join indexes or bitmap join indexes. The proposed model
estimated data access cost through indexes, maintenance and storage cost. The experimental
evaluation showed that the application of cost models to their index selection strategy decreased
the number of selected indexes without a significant loss in performance. Thus, this actually
guaranteed a substantial gain in storage space and then a decrease in maintenance cost during data

warehouse updat.

Graefe, (2010) developed a B-tree locking technique. The process of this technique is dividing
B-tree into two sub-topics and exploring each of them in depth. Concurrency control for B-tree
indexes in databases can be separated into two levels: (i) concurrent threads accessing in-memory
data structures and (ii) concurrent transactions accessing database contents. These two levels are
implemented with latches and locks. The functions of latches and locks are explained as follows:

1. Latches support a limited set of modes such as shared and exclusive. They do not provide
advanced services such as a deadlock detection or escalation. They can also be embedded in the
data structures for protection. Therefore, their acquisition and release can be very fast.
Furthermore, they implemented short critical sectionsin the database system code.

2. Locks provide several modes and multiple advanced services. The management of locks is
separated from the protected information, for instance, keys and gaps between keys in the leaf of a

B-tree index. Note that the hash table in the lock manager isin fact secure itself by latches.

The conceptual technique for concurrency control among transactions accessing B-tree contents

isakey range locking.

The ultimate recent design has the following advantages:

A) Allowing separate locks on individual key values and on the gaps between key values.

22

B) Applying strict multi-granularity locking to each pair of a key and a neighboring gap.

C) Reducing lock manager invocations by using additional lock modes that can be derived
automatically.

D) Enabling increment locks in grouped summary views.

E) Exploiting ghost records not only for deletions for but also for insertions.

1.11.2 Related Work

Zobel et al. , (1996) discussed the techniques and methods for new indexing which are of
common outcome regarding the database research. Moreover, they presented a framework and
compared the proposed framework with the existing indexing techniques and schemes. Based on
the criteria (namely direct argument, mathematical modeling, simulation, and experimentation),

they discussed the principal methods.

The aim of this comparison is to indicate the minimum overall speed, CPU , time and ease of
index construction. In adynamic system should also consider index maintenance in the presence of
addition, modification, and deletion of records; and implications for concurrency, transactions, and
recoverability.

King, (2001) Oracle8i provided many database tables which have primary or unique keys
based on a sequence. These keys are usually indexed by b-tree indexes which, by nature, store the
indexed values in order. These types of indexes can become performance bottlenecks on high-
volume transactional systems because of serialization that occurs when inserting values into the

|eaf-blocks of these indexes.

To avoid this seridlization, reverse-key indexes can be used. A reverse-key index stores

indexed values in reverse-bit order. So, where the values (31, 32, 33) are stored sequentially and

23

contiguously in anormal b-tree index, they were stored out of sequence and non-adjacent (33, 31,
32) .Over alarger set, this reversing of the key distributed the indexed values across the leaf-node

blocks of the index, thereby eliminating the serialization on sequential inserts.

King, (2001) Oracle8i presented different types of indexes : (B-tree index , Bitmap index ,
index-Organized table and reverse-key index), then compared and contrasted the various options
available and how to choose from among them . So that, the system helped developers when

deciding not just what columns to index but how to index them .

King, (2001) Oracle8i described the index organized tables worked best when there are few
columns in the table / index and the size of a row is small compared to the size of block. Index
organized columns may not consist LONG columns. Index organized tables may not be used in a

cluster.

Madhulatha, (2010) built a new methodology for collecting usage statistics at run time. This
methodology developed the optimizer to estimate query execution costs for aternative index
configurations that assist the database administrator in designing an index configuration for a
relational database system. In addition, the proposed methodology defined the workload
specification required by an existing index design tools which may be very complex for a large
integrated database system.

However, one need to automatically derive the workload statistics and these are then used to

efficiently compute an index configuration.

24

1.12 Thesis Organization

The reminder of this thesis consists of the following Chapters:

Chapter 2; discuss the thesis methodology. We describe the methodology for selecting indexing
techniques for relational databases.

Chapter 3; implements the experimental tests and shows the results. According to these resullts,
the thesis is evaluated.

Chapter 4; draws the conclusions and future work. We identify the real outcomes and compare

with the expected contributions. As aresult, we have achieved the objectives of thisthesis.

25

Chapter 2

Test Methodology and Experimental Test

2.1 Introduction

The mgjority of commercia (RDBMS) Relational database management systems performance
isrelied on 1/O operations rather than other computing resources. This is because the performance
cost of 1/O is expensive and there are other costs such as memory allocations and CPU
consumption. The most important factor to consider is whether the 1/0 subsystem of a given

(RDBMYS) will support areliable performance as time passes.

This chapter describes a methodology for evaluating indexing techniques for relational
databases. The methodology is based on a number of experiments to test a set of indexing
techniques on two different platforms (Oracle and MS-SQL Server) with different data sizes
(small, medium, and very large) over the same technical environment (Multiple processors,
memory, and 1/O devices). This factor is necessary to satisfy the real results on different

platforms: Oracle and MS-SQL Server.

To run the experiments, we have taken the following indexing techniques in Oracle: B-tree,
Bitmap, Reversed, and organization index. In the meanwhile, we have taken the following
indexing techniques in MS-SQL Server: B-tree, Clustered index, and unique non-clustered index

and Primary Key Clustered index.

The methodology includes the technical environment, platforms, table schema, table sizes, and
a number of indexing technigues. We have also established a number of test scenarios to achieve
the real results. The methodology procedure and flowchart include an ordered set of steps that have

been taken to run the experiments in this thesis.

26

The aim of the methodology contribution is to measure overall performance and behavior of
indexing techniques that are performed against the same set of data: (i) As a non-clustered index
on a specified set of columns, (ii) and as a clustered index on the same set of columns. Note that,
we have measured the performance of SELECT operation over Oracle 10g and MS SQL Server on

different data sizes (100K, 1000K, and 5000K).

2.2 Methodology Contributions

The contribution of our test methodology is to characterize the performance and behavior of

DML operations performed against the same set of table data organized:

e Asanon-clustered index on a specified set of columns.

e Asaclustered index on the same set of columns.

In thistest, anumber of questions should be answered through the experimental results as follows:

1. Areclustered indexes necessary for al tables?

2. Arenon-clustered indexes necessary for all tables?

3. What are the performance gains or losses for row-by-row SELECT operations executed
against three different sizes of tables (100K, 1000K, and 5000K) with a clustered index
versus the same tables without a non-clustered index for a high-throughput workload on
Oracle 10g and MS-SQL Server 2005 platforms?

4. How does a range query perform on the same tables with a clustered index versus a non-
clustered index?

5. What are the effects of having the first column index be monotonically increasing? The
purpose of thistest isto measure performance.

6. What are the CPU utilization characteristics when rows are selected from a table with a

clustered index and from non-clustered index?

27

2.3 Criteriafor Comparison

Each type of index is related to query evaluation algorithms that access the requested
information, and update algorithms that maintain it. There are many criteria by which indexing
techniques can be compared. We need to consider the overall speed, space requirements, CPU
time, memory requirements, measurements of disk traffic such as numbers of seeks and volumes
of data transferred, and ease of index construction. All of these considerations will be in the

context of assumptions made about the properties of the data and queries (Zobel et al., 1996).

2.4 M ethodology Assumptions

To make a contribution to the study of indexing, it is not sufficient to ssmply describe the
current indexing techniques. It is also necessary to provide a demonstration of the value of the
method, and place it in the context of other established methods. This demonstration will be based
on several constraints and assumptions: the class of data (such as textual and multimedia data), the
class of queries (such as SELECT queries), characteristics of the application, for example-and

characteristics of the supporting hardware for both MS SQL Server and Oracle.

Database Administrators (DBA) will judge the success of the used technique according to its
performance on the basis of the stated. Assumptions should not only be claimed to be reasonable,

they should be argued for, and, where possible, demonstrated as being reasonable.

Similarly, assumptions about hardware should associate with the current technology or likely
future improvements. The performance of the hardware should be related to common benchmarks,
to allow comparison with familiar systems and to convey the impression that the technique will be
of value on probable hardware-rather than a machine with limited memory but massive arrays of

parallel disks.

28

2.5 Methodology Description

The main aim of this section is to conduct the tests described in the previous section against
throughput workload that represented real-world scenarios. Another aim is to keep the test setup
(server configuration, database settings, table schema, computer configuration and Operating
System) approximately constant across the tests so that we compare the overall performance

between different SELECT operations using different indexes.

After some testing and analysis using real-world measurements, we have noticed that the testing
results could not represent the real performance measurements. This is because the experiments are
conducted on stand alone machine. Even though, we have obtained results in a way that would

make these results meaningful and applicable to awide variety of other workloads.

Based on our findings, we have drawn a number of recommendations for DBA’s and
researchers. This methodology is used for the tests explained in Experiments Test and Results
section. Our intent is that these individual tests might help the DBA’s and researchers to estimate
the overall impact of the index choices for a particular application on both platforms. Oracle and
MS- SQL Server. Further intent is that the obtained results could ease the selection of the optimal

indexing techniques for a certain application and platform.

2.6 Technical Test

We have conducted all tests on computer hardware that was configured with adequate storage.
We have used a TOSHIBA Satellite with Core ™ i7 CPU processors: 720 @ 1.60GHz and 4-GB
memory. The tests are performed on Windows 7 Home Premium for both platforms. MS SQL

Server 2005, and Oracle 10g.

29

2.7 Test H/W & S/W (Test Environment)

We have obtained results for the following test scenarios as shown:

SELECT performance

1- Measure the time taken to select 100K, 1000K, and 5000K rows of data from the table with the
primary clustered index, unique clustered index and unique non-clustered index by using

individual (row-by-row) select statementsin MS SQL Server Platform.

2- Measure the time taken to select 100K, 1000K and 5000K rows of data from the table with the
Bitmap index, B-tree index, Reverse index and Organization index by using individual (row-by-

row) select statementsin Oracle Platform.

2.8 Test Procedure

As shown in Figure 2.1 and Figure 2.2, our methodology procedure was performed on two
platforms: Oracle 10g, and MS-SQL Server, respectively. The following steps are used to execute

the tests over Oracle platform as described in Test scenarios.

1. Thetable of size 100Kk is created and initialized on Oracle platform.

2. Thebitmap index is created on the table.

3. The particular test is executed.

4. Thetableisdropped.

5. Thetable of size 100k is created and initialized on Oracle platform.

6. The above steps (1-5) have been repeated for other indexing techniques (unique index (B-

tree), reverse index and organization index).

30

7. Note that the procedure that contains steps from 1 to 7 has also repeated for two different

data sizes (1000K and 5000 K).

On the MS-SQL Server platform, we have performed the above procedure (steps 1- 7) taking into

considerations the following indexing techniques:

1. Primary key clustered index
2. Unique clustered index

3. Unique non-clustered index

Figure 3 illustrates the flowchart of the test procedure. Note that this process of flowchart shows
the steps from 1-7 on different platforms with different data sizes. Further note is that the Oracle

supports different indexing techniques from MS-SQL Server, as explained in Chapter 1 “Related

Work™.

31

Setup Oracle platform

!

Initialize data table (100K, 1000K
and 5000K)

!

Create index table
in oracle platform
-Bitmap
-B-tree
-reverse index
-organization index

Yes

}

Execute test

|

Drop table

!

Another test

No

Figure 2.1: Flowchart of index evaluation on Oracle platform.

32

Setup MS SQL Server platform

k

Initialize data table (100K, 1000K
and S000K)

!

Create index table
in MS SQL Server
-Primary clustered index

-Unique clustered index

_ . Yes
- Unigue non-clustered index

}

Execute test

|

Drop table

!

Another test

No

Figure 2.2: Flowchart of the index evaluation on MS-SQL Server platform.

33

Chapter 3

Experimentsand Test Results

3.1 Introduction

This chapter describes the tests for selecting the indexing techniques in detail and presents the
results measured. We have evaluated the experimental tests through measuring the performance
(response time) of SELECT operation over Oracle 10g and MS SQL Server on different data table
sizes (100K, 1000K, and 5000K). In addition, we have mentioned the costs of 1/0O operations,
CPU consumptions and the retrieved rows. Furthermore, a set of guidelines have been added for

helping the DBA to select the best indexing techniques.

We have found out the SELECT performance on four different types of SELECT statements
including select operation retrieved a single row; select operation retrieved a number of rows
depending on the condition in the SELECT statement; SELECT statement retrieved al rows; and
SELECT statement retrieved non-row. In order to advise the best indexing technique, this section

also contains evaluation analysis for each type of SELECT statement.

Furthermore, we have introduced deeper a anaysis through comparing the results on Oracle
with MS SQL Server. Even it is very difficult to compare between two different platforms. Oracle
and MS SQL Server, we have attempted to run our experimental tests on the identical environment

to achieve the possible encouraged results.

Finally it also summarizes observations and includes general recommendations where

appropriate.

34

3.2Test: SELECT Performance

The SELECT test measured the performance on four different types of SELECT statements:

Test a. Single-row SELECT performance —in this test, each SELECT statement retrieved a single

row.

Test b. Range' SELECT performance —in this test, each SELECT statement retrieved a number of

rows depending on the condition in the SELECT statement.
Test c. Full' scan SELECT performance —in this test, each SELECT statement retrieved all rows.

Test d. Single-row SELECT performance —in this test, each SELECT statement retrieved non-

row.

3.2.1Test 1: Oracle 10g and 100K

3.2.1.1Test 1-a: Single-row SELECT performance

The single-row SELECT test has been conducted on Oracle 10g platform with 100K as table
size. It should be noted that the row size is 1K and the data attribute is STUD _ID in the SELECT
statement. As shown in Table 3.1 the performance of Bitmap index is less costly compared with
the other indexing techniques including B-tree (Unique index), Reverse index, and Organization
index. The Bitmap index and Organization index consume less response time (2 ms) than B-tree (3

ms) and Reverse index (3 ms).

3.2.1.2 Test 1-b: Range select performance

In this test, we have performed a range select experiment on STUD_GRADE attribute. This

attribute has five values from A, B, C, D, and F. On Oracle 10g platform and 100K asfile size, the

35

Table 3.1 illustrates that the Bitmap index consumes less response time (2 ms) than the Reverse

index (3 ms).

For example:

SELECT STUD_ID FROM STUDENT WHERE STUD_GRADE = B;

There are two basic plans the query optimizer could choose:

e Plan 1: Reading al the rows from the "STUDENT" table, for each, check if the predicate is

true (STUD_GRADE = B).

e Plan 2: Read the index where STUD_GRADE = B, then access the table based on the

ROWIDs returned.

In this test, the "STUDENT" table has 100,000 rows. Also, the values for STUD GRADE

rangefromA, B, C, D and F.

The cost of Plan 1, which involves a FULL SCAN, will be the cost of reading al the rowsin
the STUDENT table, which is approximately equal to 100,000; but since Oracle will often be able
to read the blocks using multi-block reads, the actual cost will be lower (depending on the database
setting up). For example, if the multi-block read count is 1, then the calculated cost of the full scan

will be 100,000. Note that the cost has not measured unit.

The cost of Plan 2, which involves an INDEX RANGE SCAN and a table lookup by ROWID,
will be the cost of scanning the index, plus the cost of accessing the table by ROWID. The cost of
the index range scan is 1 per row; it is expected to find a match in 1 out of 5 cases, so the cost of
the index scan is 100,000 / 5 = 20,000; plus the cost of accessing the table (assuming 1 block read

per access) = 20,000; Overall cost = 40,000.

36

Therefore, the cost of Plan 1 (Full scan) is much greater than the cost of Plan 2 (Index range
scan + access by rowid). This means the query optimizer would choose the Index Range scan.
Table 3.2 shows that the cost of full scan Bitmap index is 340, whereas the cost of index range

Bitmap is 2. This result proves what we have noted above.

3.2.1.3 Test 1-c: Full scan SELECT performance

The full scan test has been conducted on Oracle 10g platform with 100K as table size. It should
be noted that the row size is 1K and the data attribute is STUD _ID in the SELECT statement. As
shown in Table 3.1, the performance of Bitmap index is the best compared with the other indexing
techniques including B-tree (Unique index), Reverse index, and Organization index. The Bitmap
index consumes less response time (4 ms) than B-tree (6 ms), Reverse index (6 ms) and
Organization index (8 ms) asillustrated in Figure 3.1. On the other hand, another full scan test has
been conducted on Oracle 10g platform with 100K as table size. The data attribute is
STUD_GRADE in the SELECT statement. As shown in Table 3.1, the performance of Bitmap
index is the same compared with the Reverse index. The Bitmap index and Reverse index consume

the same response time (6 ms).

37

O Response Time (ms) ‘

Organization Reverse Unique Bitmap

Figure 3.1: Full scan SELECT evaluation time for different indexing with 100K on Oracle

3.2.1.4 Test 1-d: Single-row SELECT performance with non-row

This test has been conducted on Oracle 10g platform with 100K as table size. The data attribute
is STUD_ID in the SELECT statement. As seen in Table 3.1, the indexing techniques
approximately have the same response time. The Bitmap index, B-tree and Reverse index take 2

ms to complete, whereas Organization index takes 3 ms.

Further testing results

According to the above anaysis and Table 3.1, the Bitmap index on 100K has the optimal
retrieving time and then it is better performance compared with the other indexing techniques. We

have recommended using Bitmap index in the relational Databases.

38

Table 3.1 100k on Oracle

Indexing Scan Operation Data Attribute | CPU Cost" | Response | # of rows
Technique Consumption Time retrieved
(%)" (ms)
Bitmap Full Scan STU_ID 8 316 4 99996
Bitmap Index Scan STU_ID 0 {Big | 2 2 1
Fraction}
Bitmap Index Scan STU_ID 0 2 2 0
Bitmap Full Scan STU_GRADE | 6 340 6 99996
Bitmap Index Scan STU GRADE | 0 2 2 19972
Bitmap Index Scan STU GRADE | 0 2 0
Unique (B- | Full Scan STU_ID 6 340 6 99996
tree)
Unique (B- | Index Scan STU_ID 0 5 3 1
tree)
Unique (B- | Index Scan STU_ID 0 5 3 0
tree)
Reverse Full Scan STU_ID 6 340 6 99996
Reverse Index Scan STU_ID 0 5 3 1
Reverse Index Scan STU_ID 0 2 2 0
Reverse Full Scan STU_Grade 6 340 6 99996
Reverse Index Range Scan(i) STU_Grade 0 5 3 19972
Reverse Index Range Scan STU_Grade 0 5 3 0
Organization | Index Fast Full | STU_ID 4 552 8 99996
Scan(ii)
Organization | Index Unique Scan STU_ID 2 0
Organization | Index Unique Scan STU_ID 0 2 1

(i) INDEX RANGE SCAN: Retrieval of one or more rowids from an index. Indexed values are scanned in ascending

order.

(i) INDEX FULL SCAN: Retrieval of al rowidsfrom an index when there is no start or stop key. Indexed values are

scanned in ascending order.

(i) CPU_COST (NUMERIC) CPU cost of the operation as estimated by the query optimizer's approach. The value of
this column is proportional to the number of system cycles required for the operation. For statements that use the rule-

based approach, this columnisnull.

(iv) COST (NUMERIC): Cost of the operation as estimated by the optimizer's query approach. Cost is not determined
for table access operations. The value of this column does not have any particular unit of measurement; it is merely a
weighted value used to compare costs of execution plans. The value of this column is afunction of the CPU_COST

and |O_COST columns.

39

3.2.2 Test 2: Oracle 10g and 1000K

3.2.2.1 Test 2-a: Single-row SELECT performance

The single-row select test has been conducted on Oracle 10g platform with 1000K as table size.
It should be noted that the row size is 1K and the data attribute is STUD _ID in the SELECT
statement. As shown in Table 3.2, the performance of Bitmap and Organization indexes are less
costly compared with the other indexing techniques including B-tree (Unique index), Reverse
index, and Organization index. The Bitmap index and Organization index consume |less response

time (2 ms) than B-tree (3 ms) and Reverse index (3 ms).

3.2.2.2 Test 2-b: Full scan SELECT performance

The full scan test has been performed on the data attribute STUD_ID in the SELECT statement.
As shown in Table 3.2, the Bitmap, B-tree and Reverse indexes consume less response time (38
ms) than Organization index (64 ms). Figure 3.2 draws the variances of response times from 38 ms

to 64 ms.

r70

60

r50

40

O Response Time (ms)‘

30

r20

10

Organization Reverse Unique Bitmap

Figure 3.2: Full scan SELECT executions time for different indexing with 1000K on Oracle

40

3.2.2.3 Test 2-c: Single-row SELECT performance with non-row

As seen in Table 3.2, the indexing techniques have approximately the similar response time.
The Bitmap index and Organization take 2 ms to complete, whereas B-tree and Reverse index take

3ms.

Further testing results

In relation with the above analysis and Table 3.2, the Bitmap index on 1000K relatively has the
best retrieving time and then better performance compared with the other indexing techniques. It is

suggested to use Bitmap index in the relational Databases.

Table 3.2 1000k on Oracle

Indexing Scan Operation Data Attribute | CPU Cost | Response | # of rows

Technique Consumptio Time (ms) | retrieved
n (%)

Bitmap Full Scan STU_ID 8 3018 | 38 999731

Bitmap Index Scan STU_ID 0 6 2 1

Bitmap Index Scan STU_ID 0 6 2 0

Bitmap Full Scan STU_GRADE | 8 3020 | 38 999731

Bitmap Index Scan STU_GRADE | 8 3026 | 38 200720

Bitmap Index Scan STU_GRADE | 8 3026 | 38 0

Unique (B- | Full Scan STU_ID 8 3008 | 38 999731

tree)

Unique (B- | Index Scan STU_ID 0 8 3 0

tree)

Unique (B- | Index Scan STU_ID 0 8 3 1

tree)

Reverse Full Scan STU_ID 8 3020 | 38 999731

Reverse Index Scan STU_ID 0 13 3 0

41

Reverse Index Scan STU_ID 0 13 3 1
Organization | Index Fast Full Scan STU_ID 4 5272 | 64 999731
Organization | Index Unique Scan STU_ID 0 4 2 0
Organization | Index Unique Scan STU_ID 0 4 2 1

3.2.3 Test 3: Oracle 10g and 5000K

3.2.3.1 Test 3-a: Single-row SELECT performance

The single-row SELECT test has been conducted on Oracle 10g platform with 5000K as table
size. As shown in Table 3.3 the performance of Organization index is less costly compared with
the other indexing techniques including B-tree (Unique index), Reverse index, and Bitmap index.
The Organization index consumes less response time (2 ms) than B-tree (3 ms), Reverse index (3

ms) and Bitmap index (3 ms).

3.2.3.2 Test 3-b: Range SELECT performance

In this test, we have performed a range SELECT experiment on STUD _GRADE attribute. This
attribute has five values A, B, C, D and F. Table 3.3 illustrates that the Bitmap index and Reverse

index have the same response time (1840 ms).

3.2.3.3 Test 3-c: Full scan SELECT performance

The full scan test has been conducted on Oracle 10g platform with 5000K as table size. As
shown in Table 3.3, the performance of B-tree and Reverse indexes are relatively the best
compared with the other indexing techniques including Bitmap, Organization indexes. The B-tree
and Reverse indexes consume less response time (1840 ms) than Bitmap (1880 ms) and

Organization index (3220 ms).

42

Another full scan test has been conducted on Oracle 10g platform with 5000K astable size. The
data attribute is STUD_GRADE in the SELECT statement. Figure 3.3 shows the full scan
SELECT performance with 5000K on Oracle 10g. As shown in Table 3.3 and Figure 3.3, the
performance of Bitmap index is the same compared with the Reverse index. The Bitmap index and

Reverse index consume the same response time (1840 ms).

r3500

r3000

r2500

r2000

O Response Time (msj

r1500

r1000

r500

Organization Reverse Unique Bitmap

Figure 3.3: Full scan SELECT executions time for different indexes with 5000K on Oracle 10g

3.2.3.4 Test 3-d: Single-row SELECT performance with non-row

This test has been conducted on Oracle 10g platform with 5000K as table size. The data
attribute is STUD_ID in the SELECT statement. As seen in Table 3.3, the indexing techniques
(such as Bitmap index, B-tree, Reverse index and Organization index) approximately have the

same response time (3 ms).

Further testing results

According to the above analysis and Table 3.3, the performance of Bitmap index, B-tree and
Reverse index are much better than Organization index especially at full scan select performance.

We do not recommend using Organization index in the relational Databases.

43

Table 3.3 5000k on Oracle

Indexing Scan Operation Data Attribute | CPU Cost | Response # of Rows
Technique Consumption Time (ms) Retrieved
(%)
Bitmap Full Scan STU_ID 8 15610 | 1880 4994346
Bitmap Index Scan STU ID 0 10 3 1
Bitmap Index Scan STU ID 0 10 3 0
Bitmap Full Scan STU_GRADE | 8 15280 | 1840 4994346
Bitmap Index Scan STU_GRADE | 8 15310 | 1840 998391
Bitmap Index Scan STU GRADE | 0 2 2 0
Unique (B- | Full Scan STU_ID 8 15280 | 1840 4994346
tree)
Unique (B- | Index Scan STU_ID 0 8 3 1
tree)
Unique (B- | Index Scan STU_ID 0 8 3 0
tree)
Reverse Full Scan STU_ID 8 15280 | 1840 4994346
Reverse Index Range Scan | STU_ID 0 11 3 1
Reverse Index Range Scan | STU_ID 0 2 3 0
Reverse Full Scan STU_Grade 8 15280 | 1840 4994346
Reverse Index Range Scan | STU_Grade 0 11 3 0
Reverse Index Range Scan | STU_Grade 8 15310 | 1840 998391
Organization | Index Fast Full | STU_ID 2 26694 | 3220 5001165
Scan
Organization | Index Unique | STU_ID 0 2 2 1
Scan
Organization | Index Unique | STU_ID 0 2 3 0
Scan

3.24Test 4: MS-SQL Server and 100K

3.24.1 Test 4-a: Single-row SELECT performance

The single-row SELECT test has been conducted on MS-SQL Server with 100K as table size.
Asshown in Table 3.4, the Primary Key Clustered and B-tree (Unique Non-clustered) consume the

same response time (0.1 ms).

It should be noted that the SELECT statement with the clustered index, which is based on the
predictions on the indexed columns, results in an index seek operation, which then gives the data
values requested. While the related SELECT statement without a clustered index results in a seek
operation using the non-clustered index, followed by nested loop join with the table in order to
extract the columns not in the index definition (assuming the index is not a covering index for the

given query), which then gives the requested row.

A SELECT statement requires the lookup for one or more rows from atable. In the table with a
clustered index, the DBMS engine performs a Clustered Index Seek operation into the table and

yields the requested data row, as shown in the query execution plan in Figure 3.4.

|3 igl
SELECT Clustered Index Seek
Cost: 0 % [RG_PKB] . [dbo] . [Tabl]. [c_1idxl]
L. & - -

Cost: 100 %

Figure 3.4: Query execution plan for SELECT statement on table with clustered index

45

3.2.4.2 Test 4-b: Full scan SELECT performance

The full scan test has been conducted on MS-SQL Server with 100K as table size. As shown in
Table 3.4, the performance of Primary Key Clustered is relatively the faster than B-tree (Unique
Non-clustered). The Primary Key Clustered consumes less response time (15 ms) than B-tree (16

ms).

3.2.4.3 Test 4-c: Single-row SELECT performance with non-row

As illustrated in Table 3.4, the Primary Key Clustered and B-tree (Unique Non-clustered)

consume the same response time (0.4 ms).

Further testing results

According to the above analysis and Table 3.4, the performance of Primary Key Clustered is

relatively better than B-tree (Unique Non-clustered) especially at full scan SELECT performance.

Table 3.4 MS SQL Server on 100K

Indexing Technique Scan Data CPU Operator | Response | # of Rows
Operation Attribute | cost(%) | Cost Time (ms) | Retrieved

Primary Key Clustered Full Scan STU_ID | 11 69 15 99996

Primary Key Clustered Index Scan STUID |1 1 0.1 1

Primary Key Clustered Index Scan STUID |1 3 04 0

Unique (B-tree) Non- | Full Scan STUID | 11 69 16 99996

Clustered

Unique (B-tree) Non- | Index Scan STUID |1 1 0.1 1

Clustered

Unique (B-tree) Non- | Index Scan STUID |1 1 04 0

Clustered

46

3.25Test 5: MS SQL Server and 1000K

3.25.1 Test 5-a: Single-row SELECT performance

The single-row SELECT test has been conducted on MS-SQL Server with 1000K as table size.
Asshownin Table 3.5, the Primary Key Clustered and B-tree (Unique Non-clustered) consume the

same response time (0.4 ms).

3.2.5.2 Test 5-b: Full scan SELECT performance

The full scan test has been conducted on MS-SQL Server with 1000K as table size. As shown in
Table 3.5, the performance of Primary Key Clustered isrelatively faster than B-tree (Unique Non-

clustered). The Primary Key Clustered consumes less response time (11 ms) than B-tree (14 ms).

3.2.5.3 Test 5-c: Single-row SELECT performance with non-row

As illustrated in Table 3.5, the Primary Key Clustered and B-tree (Unique Non-clustered)

consume the same response time (0.5 ms).

Further testing results

According to the above analysis and Table 3.5, the performance of Primary Key Clustered is

relatively better than B-tree (Unique Non-clustered) especially at full scan SELECT performance.

47

Table 3.5: MS-SQL Server on 1000K

Indexing Technique Scan Data CPU Operator | Response # of Row
Operation Attribute | cost(%) Cost Time (ms) Retrieved

Primary Key Clustered | Full Scan STU_ID 110 688 11 999999

Primary Key Clustered | Index Scan | STU_ID 1 1 04 1

Primary Key Clustered | Index Scan | STU_ID 1 1 0.5 0

Unique (B-tree) Non- | Full Scan STU_ID | 110 688 14 999999

Clustered

Unique (B-tree) Non- | Index Scan | STU_ID 1 1 04 1

Clustered

Unique (B-tree) Non- | Index Scan | STU_ID 1 1 0.5 0

Clustered

3.26Test 6: MS SQL Server and 5000K

3.2.6.1 Test 6-a: Single-row SELECT performance

The single-row SELECT test has been conducted on MS-SQL Server with 5000K as table size.

Asshown in Table 3.6, the Primary Key Clustered and B-tree (Unique Non-clustered) consume the

same response time (15 ms). The Unique Clustered consumes (16 ms) to complete the scan.

In non-clustered index, the data row has first to be located by using an Index Seek operation

with the non-clustered index, followed by Nested Loops with a RID Lookup to extract the set of

selected columns that are not a part of the non-clustered index, asillustrated in Figure 3.5.

48

el ic] %

SELECT Nested Loops Index Seek
EHapa 5 % {Inner Join) [RG PKE]. [dbo]. [Tabl]. [nc idxl]
el b+ = ="

~ Cost: 0 % Cost: a0 %

d;‘Jp

RID Lookup
[RG_PKE].[dbo] . [Tabl}

&

Cost: 50 %

Figure 3.5: Query execution plan for SELECT statement on table with non-clustered index in MS-

SQL Server

3.2.6.2 Test 6-b: Full scan SELECT performance

The full scan test has been conducted on MS SQL Server with 5000K as table size. As shown in
Table 3.6, the performance of Primary Key Clustered is relatively faster than B-tree (Unique Non-
clustered) and Unigue Clustered. The Primary Key Clustered consumes |ess response time (16 ms)

than B-tree and Unique Clustered (17 ms).

3.2.6.3 Test 6-c: Single-row SELECT performance with non-row

As illustrated in Table 3.6, the Primary Key Clustered, Unique Clustered and B-tree (Unique

Non-clustered) consume the same response time (18 ms).

Further testing results

According to the above analysis and Table 3.6, the performance of Primary Key Clustered is
relatively better than B-tree (Unique Non-clustered) and Unique Clustered especialy at full scan

SELECT performance.

49

Table 3.6: MS-SQL Server on 5000K

Indexing Technique Scan Data CPU Operator Response # of Rows
Operation | Attribute | cost(%) | Cost Time Retrieved
(ms)
Primary Key Clustered Full Scan | STU_ID 560 351 16 5099800
Primary Key Clustered Index STU_ID 1 1 15 1
Scan
Primary Key Clustered Index STU_ID 1 1 18 0
Scan
Unique (B-tree) Non- | Full Scan | STU_ID | 560 378 17 5099800
Clustered
Unique (B-tree) Non- | Index STU_ID 1 1 15 1
Clustered Scan
Unique (B-tree) Non- | Index STU_ID 1 1 18 0
Clustered Scan
Unique (B-tree) | Full Scan | STU_ID 560 369 17 5099800
Clustered
Unique (B-tree) | Index STU_ID 1 1 16 1
Clustered Scan
Unique (B-tree) | Index STU_ID 1 1 18 0
Clustered Scan

3.3 Recommendations and Further Analysis

It is very difficult to compare between two different platforms:. Oracle and MS-SQL Server
because we do not know the background process for each platform. However, we have attempted

to run our experiment on the identical environment to achieve the possible encouraging results.

50

It is clear from the empirical results that the performance of indexing techniques in MS-SQL
Server is much faster than Oracle 10g as shown in Figure 3.6, 3.7 and 3.8. Therefore, using the
index in the SELECT statement over MS-SQL Server is much less costly in terms of 1/0
operations, CPU consumptions, and response time than Oracle. However, Figure 3.8 shows that
the B-tree index in the SELELCT statement over Oracle is faster in terms of performance than
MS-SQL Server in the following cases:

e Index scan SELECT performance when retrieved single row.

e Index scan SELECT performance when retrieved non-row.

A number of technical reports and studies indicate that using index in the retrieval systems over
Oracle platform consumes greater response time than MS-SQL Server. Thus, those studies support
theresultsin thisthesis.

It should be noted that the B-tree is the common between Oracle and MS-SQL Server. As shown
in Table 3.7-A and Table 3.7-B, the B-tree is the best indexing technique and it is more effective
on huge data. The results of Bitmap index in Oracle are interesting and significant and

unfortunately, thisindex is not supported by MS-SQL Server.

51

Table 3.7-A: A summary of the best indexing techniques with different data sizes on Oracle

Data Size Best Indexing Comments
Techniques
0-100K Bitmap Low Cardinality ()
Medium
Cardinality(ii)
100-1000K Bitmap, B-tree Low Cardinality

Medium Cardinality
High Cardinality(iii)

1000-5000K Bitmap, B-tree Low Cardinality
Medium Cardinality
High Cardinality

Table 3.7-B: A summary of the best indexing techniques with
different datasizeson MS SQL Server.

Data Size Best Indexing Comments
Techniques

0-100K Non clustered Low Cardinality
index Medium Cardinality

100-1000K Primary clustered Medium Cardinality
index High Cardinality

1000-5000K Primary clustered Medium Cardinality
Index High Cardinality

(i) Low-cardinality refersto columns with few unique values.
(i) Medium-cardinality refers to columns with values that are somewhat uncommon. Medium-cardinality column data
values such as names, street addresses, or vehicle types

(iii) High-cardinality refersto columns with values that are very uncommon or unique.

52

Response Time (MS)

Index
Scan, 0

MS SQL
Server

Index
Scan, 1

MS SQL
Server

Full Scan | Full Scan

Oracle

Figure 3.6: Comparison between the response times (ms) of B-tree over

Oracle and MS-SQL Server on 100K

Response Time (MS)

Index
Scan, 0

Oracle

Index | Full Scan| Full Scan

Scan, 1

Oracle | MS SQL | Oracle

Server

Figure 3.7: Comparison between the response times (ms) of B-tree over

53

Res ponse Time (M5)

Index
Scan, 0

Index
Scan, 1

Full Scan | Full Scan

Cracle

MS 5QL
Sener

MS SQL
Saner

M5 SQL
Server

Figure 3.8: Comparison between the response times (ms) of B-tree over

Oracle and MS-SQL Server on 5000K

3.4 Test: INSERT Performance
In this section, we have described the effects of INSERT statement on the Oracle platform with
100K, 1000K and 5000K. One row has been added on the database that contains 100K and 1000K

with B-tree index technique.

First, we have compiled the following statement on Oracle engine with 100K :

insert into student100k (stu_id ,stu_name, stu_gender , stu_address ,stu_seq)

values ('3748528','amman822195','f',' meu92289',' 202255') ;

This statement inserts one row on the database. As a result, figure 3.9 shows a snapshot of the
execution result. This result ensures that one row will not have an effect on the performance

because the response time is zero ms.

Faw Fubi Seeesh Ogeisees Hwip

HAL> Ineesrt intn sbeslenty@es |'l||u_1r| ALN_NaRE . KEW ul‘l AT . 'Illl _SEETEE U _SSEF
VElassE [Urary®™l- o iRsssrr raYkC T FT RPN SRSEY | C YRR C

1 Fiw Drealed .o
Haruulian Flan

§ I || Speration | l'I-l-l- i Ilﬂn] Hl.l-rl- iiﬂ“ ! L] I1|-|r |
i @ FMEERT STERICEEMNT | i] aE i 8 pBs) eEcaacad |

ntariarica

1 ProdrLkes Ccallu
1wl

whinf Ewm clieng
L II Rew rlllr-l.l.lwl wia SLe=Hek from oidjest
% SOL=Hert roundorigs tosdfren cliient
¥ omorks Cemeorugl
B mores caisdy
1 FouE pgraceEsnsd

L LnEEFT ANt SDEISNTIENEE (STu_i0 atE_naRE , StU_[Enaes . SUu_sRdvess . EDE_SEik
T UaleRE [CAFEEVEEC ,C ARRSEETFAYLC ,CFC , CREUIREESET PR b

1 Fie Greatsd .

Figure 3.9: Execution result after INSERT one row using B-tree index with 100K

Furthermore, we have complied the above INSERT statement on 1000K. Figure 3.10 illustrates
that there is no effect on the database performance because the response time is too small.

|* ettt KINN
Fis Bl el Cplew e

EpEF ERTEeT IRUE|SUedentiamm (At bl ,E0E naee , SUE jedeE , STU_SOBEETE S0 Ledb
P owalwes {CO7EATTRT CamnanBEFAFET 0, meulUaEyEE - FREREEE)2
¥ orne eieaded

Esweution Flas

| Ed | Deeea o | Mans | Waws || BUEER | GEST QEGPEE| Wi i
1
i o | dMmLED LEATEERHD | i 1 & 1 qnj| mEzmpza |
Shatintice
LLE] rvlr\-l-lr ealls
i¥ dh mincE gein
A1 annEisrenl gens
i physdcel reads
HLEY FEOE siaE
PS5 Byles wenf wis T0l-Hrl §s cli=nk
kil mytes recrived vis S shsi fram cliesc
AR ST Piosaidlelpe Todf e o0 el
G mnris {emperyi
P oanrea fadoey
1 rows pracessed
BT EAGeel GATa Sdenl N0 (Al b ShE e sl grmler STH_Gdfress o Gle s)
F oowaless ("OFEELEE" CammanBRfaFh T -l-l.l:I'i'hHI'i\l o EREEEERL D
|
T FOE EFEETES.
-
[[

Figure 3.10: Execution result after INSERT one row using B-tree index with 1000K

55

Further test, we have conducted the same INSERT statement on 5000K. As aresult, figure 3.11
shows no change happened to the database performance.

.|r-u- BNl s iptew tEW

3 AELEEED PEandlrigs tafrron cblesl
¥ AGPEA s

0 dEiEDE (iR)

1 rmws pracessed

g Ensert Db |=.1_.||:.||_5.|m Pmbu B g uim nese . who -.m-|-.- e wkn_aiddress abe segk
r walinry {375 . u—q-l'll'l.ﬂl. T ey - N it -

1 e createn.

Lsmowtien Fiaw

| ta | npesarioe I Pt [REws | Byres | Casp (ECRUT] Tiee L

i W | THEEWT EA&TFERHE | 1 CE 1 P3| B EREG R

Eratinkics

FF recersise calis
i o0 FincE gEtE
s5f CanEletEnt gels
¢ pEyElcsl reaon
M PRilE aidE
LT h.n-t aFnE uis DELSHEE T Slisnt
AR EmilEd PR Liidll Wbka REL SEED Beai el ienk
3 Rl -n-: Fimndlrigs TafFean 0 Leal
B osmrls s gl

0 nwmrcks H.I.:l! l

Figure 3.11: Execution result after INSERT one row using B-tree index with 5000K

56

3.5 Test: Select Performance using Composite Key in Oracle

In this test, we have conducted several experiments on Oracle with data size: 1000K through
Select statement that contains composite key (STUD_ID, STUD_NAME).

Table 3.8: Select Performance using Composite Key in Oracle 1000k

Indexing Scan Data Attribute (Composite | Response Time | # of rows
Technique Operation Key) (ms) retrieved
Bitmap Full Scan STUD_ID, STUD_NAME 38 999731
Bitmap Index Sclan | STUD_ID, STUD_NAME | 2 1
Bitmap Index Scan STUD_ID, STUD_NAME 2 0
Unique (B- | Full Scan STUD_ID, STUD_NAME | 38 999731
tree)
Unique (B- | Index Scan STUD_ID, STUD_NAME 3 1
tree)
Unique (B- | Index Scan | STUD_ID, STUD_NAME | 3 0
tree)
Reverse Full Scan STUD_ID, STUD_NAME 38 999731
Reverse Index Scan STUD_ID, STUD_NAME 3 1
Reverse Index Scan STUD_ID, STUD_NAME | 3 0
Organization | Index Fast | STUD_ID, STUD NAME | 66 999731
Full Scan(ii)
Organization | Index Unique | STUD_ID, STUD_NAME 3 1
Scan
Organization | Index Unique | STUD_ID, STUD NAME |3 0
Scan

The single-row select test has been conducted on Oracle 10g platform with 1000K as table size.
Note that we have used composite key (STUD_ID,STUD_NAME) .As shown in Table 3.8, the
performance of Bitmap, B-tree index and Organization indexes are less costly compared with the
Reverse index. The Bitmap index, Reverse index and B-tree consume less response time (38 ms)

than Organization index (66 ms).

57

In case of non-row retrieved data and in retrieving single row, Table 3.8, the indexing techniques
have approximately the similar response time. The Bitmap index takes 2 ms to complete, whereas

B-tree, Organization index and Reverse index take 3 ms.

Further testing results

In relation with the above analysis and Table 3.8, the Bitmap index on 1000K relatively has the
best retrieving time and then better performance compared with the other indexing techniques.
3.6 Test: Select Performance using Composite Key in MS SQL Server

Table 3.9: Select Performance using Composite Key in MS SQL Server 1000K

Indexing Technique Scan Data Attribute | Response # of Row
Operation (Composite Time(ms) | Retrieved

Key)

Primary Key Clustered Full Scan STUD_ID, 33 999999
STUD_NAME

Primary Key Clustered Index Scan STUD _ID, 04 1
STUD_NAME

Primary Key Clustered Index Scan STUD _ID, 0.5 0
STUD_NAME

Unique (B-tree) Non- | Full Scan STUD_ID, 10 999999

Clustered STUD_NAME

Unique (B-tree) Non- | Index Scan STUD_ID, 04 1

Clustered STUD_NAME

Unique (B-tree) Non- | Index Scan STUD_ID, 0.5 0

Clustered STUD_NAME

The singlerow SELECT test has been conducted on MS-SQL Server with 1000K using
composite key. As shown in Table 3.9, the Primary Key Clustered and B-tree (Unique Non-

clustered) consume the same response time (0.4 ms).

58

On the other hand, the full scan test has been conducted on MS-SQL Server. Table 3.9 shows that
the performance of B-tree (Unique Non-clustered) is relatively faster than the Primary Key

Clustered. The Primary Key Clustered consumes more response time (33 ms) than B-tree (10 ms).

The final test has been conducted on composite key when the SELECT does not retrieve any data.
Asillustrated in Table 3.9, the Primary Key Clustered and B-tree (Unique Non-clustered) consume

the same response time (0.5 ms).

Further testing results

According to the above analysis and Table 3.5, the performance of B-tree (Unique Non-
clustered) is relatively better than Primary Key Clustered especially at full scan SELECT

performance.

3.7 Test: Insert Performance using Composite Key in Oracle and MS SQL

Server with 1000K

After inserting one row in the table, it is clear from Table 3.10 that the Primary Key Clustered
index in MS SQL Server is the best one. This index consumes only 9 ms for full scan using
composite key. On the other hand, the Bitmap index is the best in the Oracle Platform for all scan
operations including Full scan, Index Scan with one row returned and Index scan without rows

returned.

59

Table 3.10: Insert on MS SQL Server and Oracle with 1000K

Platform Indexing Technique | Scan Data Attribute | Response | # of Row
Operation (Composite Key) Time (ms) | Retrieved
MS SQL Server Primary Key | Full Scan STUD_ID, 9 1000001
Clustered STUD_NAME
MS SQL Server Primary Key | Index Scan STUD_ID, 04 1
Clustered STUD_NAME
MS SQL Server Primary Key | Index Scan STUD_ID, 0.5 0
Clustered STUD_NAME
MS SQL Server Unique (B-tree) Non- | Full Scan STUD_ID, 26 1000001
Clustered STUD_NAME
MS SQL Server Unique (B-tree) Non- | Index Scan STUD_ID, 04 1
Clustered STUD_NAME
MS SQL Server Unique (B-tree) Non- | Index Scan STUD_ID, 0.5 0
Clustered STUD_NAME
Oracle Bitmap Full Scan STUD_ID, 38 1000001
STUD_NAME
Oracle Bitmap Index Scan STUD_ID, 2 1
STUD_NAME
Oracle Bitmap Index Scan STUD_ID, 2 0
STUD_NAME
Oracle Unique (B-tree) Full Scan STUD_ID, 38 1000001
STUD_NAME
Oracle Unique (B-tree) Index Scan STUD_ID, 3 1
STUD_NAME
Oracle Unique (B-tree) Index Scan STUD_ID, 3 0
STUD_NAME
Oracle Reverse Full Scan STUD_ID, 38 1000001
STUD_NAME
Oracle Reverse Index Scan STUD_ID, 3 1
STUD_NAME
Oracle Reverse Index Scan STUD_ID, 3 0
STUD_NAME
Oracle Organization Index Fast Full | STUD_ID, 68 1000001
Scan(ii) STUD_NAME

60

Oracle Organization Index Unique | STUD_ID, 2 1
Scan STUD_NAME

Oracle Organization Index Unique | STUD_ID, 2 0
Scan STUD_NAME

3.8 Test: Update Performance using Composite Key in Oracle and MS SQL

Server with 1000K
After the Update operation applied on one row, there is not any change for the performance
values, especidly in the Oracle Platform. Bitmap, B-tree and Reverse indexes takes 38 ms for full

scan. In the MS SQL Server, alittle change happened for the performance after applying Primary

Key Clustered index. Table 3.11 shows all the values with different scan operation.

Table 3.11: Update on MS SQL Server and Oracle with 1000K

Platform Indexing Technique Scan Data Attribute | Response # of Row
Operation (Composite Time (ms) Retrieved
Key)
MS SQL Server Primary Key Clustered | Full Scan STUD_ID, 12 1000000
STUD_NAME
MS SQL Server Primary Key Clustered | Index Scan | STUD _ID, 04 1
STUD_NAME
MS SQL Server Primary Key Clustered | Index Scan | STUD_ID, 0.5 0
STUD_NAME
MS SQL Server Unique (B-tree) Non- | Full Scan STUD _ID, 9 1000000
Clustered STUD_NAME
MS SQL Server Unique (B-tree) Non- | Index Scan | STUD _ID, 04 1
Clustered STUD_NAME
MS SQL Server Unique (B-tree) Non- | Index Scan | STUD _ID, 0.5 0
Clustered STUD_NAME
Oracle Bitmap Full Scan STUD_ID, 38 1000000
STUD_NAME
Oracle Bitmap Index Scan | STUD_ID, 2 1
STUD_NAME
Oracle Bitmap Index Scan | STUD_ID, 2 0

61

STUD_NAME
Oracle Unique (B-tree) Full Scan | STUD_ID, 38 1000000
STUD_NAME
Oracle Unique (B-tree) Index Scan | STUD_ID, 3 1
STUD_NAME
Oracle Unique (B-tree) Index Scan | STUD_ID, 3 0
STUD_NAME
Oracle Reverse Full Scan | STUD_ID, 38 1000000
STUD_NAME
Oracle Reverse Index Scan | STUD_ID, 3 1
STUD_NAME
Oracle Reverse Index Scan | STUD_ID, 3 0
STUD_NAME
Oracle Organization Index Fast | STUD_ID, 68 1000000
Full STUD_NAME
Scan(ii)
Oracle Organization Index STUD_ID, 2 1
Unique STUD_NAME
Scan
Oracle Organization Index STUD_ID, 2 0
Unique STUD_NAME
Scan

3.9 Test: Delete Performance

Server with 1000K

Table 3.12 shows that the Delete performance using composite key in Oracle and MS SQL
Server platforms. Indeed, there is no change for the performance values. This means deleting one

row from the table, but has no effect on the performance. Bitmap index and others indexes take 38

msin Oracle Platform.

using Composite Key in Oracle and MS SQL

62

Table 3.12: Delete on MS SQL Server and Oracle with 1000K

Platform Indexing Technique Scan Operation Data Attribute | Response | # of Row
(Composite Time (ms) | Retrieved
Key)
MS SQL Server Primary Key Clustered | Full Scan STUD_ID, 10 999999
STUD_NAME
MS SQL Server Primary Key Clustered | Index Scan STUD_ID, 04 1
STUD_NAME
MS SQL Server Primary Key Clustered | Index Scan STUD_ID, 0.5 0
STUD_NAME
MS SQL Server Unique (B-tree) Non- | Full Scan STUD_ID, 10 999999
Clustered STUD_NAME
MS SQL Server Unique (B-tree) Non- | Index Scan STUD_ID, 04 1
Clustered STUD_NAME
MS SQL Server Unique (B-tree) Non- | Index Scan STUD_ID, 0.5 0
Clustered STUD_NAME
Oracle Bitmap Full Scan STUD_ID, 38 999999
STUD_NAME
Oracle Bitmap Index Scan STUD_ID, 2 1
STUD_NAME
Oracle Bitmap Index Scan STUD_ID, 2 0
STUD_NAME
Oracle Unique (B-tree) Full Scan STUD_ID, 38 999999
STUD_NAME
Oracle Unique (B-tree) Index Scan STUD_ID, 3 1
STUD_NAME
Oracle Unique (B-tree) Index Scan STUD_ID, 3 0
STUD_NAME
Oracle Reverse Full Scan STUD_ID, 38 999999
STUD_NAME
Oracle Reverse Index Scan STUD_ID, 3 1
STUD_NAME
Oracle Reverse Index Scan STUD_ID, 3 0
STUD_NAME
Oracle Organization Index Fast Full | STUD_ID, 68 999999
Scan(ii) STUD_NAME
Oracle Organization Index Unique | STUD_ID, 2 1

63

Scan STUD_NAME
Oracle Organization Index Unique | STUD_ID, 2 0
Scan STUD_NAME

3.10 Test: Select Performance using Composite Key in Oracle and MS SQL

Server with 100K

Asshown in Table 3.13, Primary key Clustered and B-tree have the same response time (7 ms)
in the MS SQL Server. On the other hand, Bitmap index in Oracle platform is the best for all
scans, whereas the Organization scan takes the longest time (8 ms). It is clear from the table that

Bitmap and B-tree are recommended for use in the Oracle and MS SQL platform.

Table 3.13: Select on MS SQL Server and Oracle with 1000K

Platform Indexing Technique | Scan Operation | Data Attribute | Response # of Row
(Composite Time (ms) Retrieved
Key)
MS SQL Server | Primary Key | Full Scan STUD_ID, 7 100000
Clustered STUD_NAME
MS SQL Server | Primary Key | Index Scan STUD_ID, 0.1 1
Clustered STUD_NAME
MS SQL Server | Primary Key | Index Scan STUD_ID, 04 0
Clustered STUD_NAME
MS SQL Server | Unique (B-tree) Non- | Full Scan STUD _ID, 7 100000
Clustered STUD_NAME
MS SQL Server | Unique (B-tree) Non- | Index Scan STUD_ID, 4 1
Clustered STUD_NAME
MS SQL Server | Unique (B-tree) Non- | Index Scan STUD_ID, 4 0
Clustered STUD_NAME
Oracle Bitmap Full Scan STUD_ID, 4 100000
STUD_NAME
Oracle Bitmap Index Scan STUD_ID, 2 1
STUD_NAME

64

Oracle Bitmap Index Scan STUD_ID, 0
STUD_NAME
Oracle Unique (B-tree) Full Scan STUD_ID, 100000
STUD_NAME
Oracle Unique (B-tree) Index Scan STUD_ID, 1
STUD_NAME
Oracle Unique (B-tree) Index Scan STUD_ID, 0
STUD_NAME
Oracle Reverse Full Scan STUD _ID, 100000
STUD_NAME
Oracle Reverse Index Scan STUD_ID, 1
STUD_NAME
Oracle Reverse Index Scan STUD_ID, 0
STUD_NAME
Oracle Organization Index Fast Full | STUD_ID, 100000
Scan(ii) STUD_NAME
Oracle Organization Index Unique | STUD_ID, 1
Scan STUD_NAME
Oracle Organization Index Unique | STUD_ID, 0
Scan STUD_NAME

3.11 Test: Insert Performance using Composite Key in Oracle and MS SQL

Server with 100K

In Insert operation using composite key for MS SQL Server and Oracle, no change happened for

performance. This confirms that inserting one row will not affect the performance, as shown in

Table 3.14.

65

Table 3.14: Insert on MS SQL Server and Oracle with 1000K

Platform Indexing Technique Scan Data Attribute | Response # of Row
Operation (Composite Time (ms) Retrieved
Key)
MS SQL Server Primary Key Clustered | Full Scan STUD_ID, 7 100001
STUD_NAME
MS SQL Server Primary Key Clustered | Index Scan | STUD _ID, 0.1 1
STUD_NAME
MS SQL Server Primary Key Clustered | Index Scan | STUD _ID, 04 0
STUD_NAME
MS SQL Server Unique (B-tree) Non- | Full Scan STUD_ID, 7 100001
Clustered STUD_NAME
MS SQL Server Unique (B-tree) Non- | Index Scan | STUD _ID, 6 1
Clustered STUD_NAME
MS SQL Server Unique (B-tree) Non- | Index Scan | STUD _ID, 4 0
Clustered STUD_NAME
Oracle Bitmap Full Scan STUD_ID, 4 100001
STUD_NAME
Oracle Bitmap Index Scan | STUD_ID, 2 1
STUD_NAME
Oracle Bitmap Index Scan | STUD_ID, 2 0
STUD_NAME
Oracle Unique (B-tree) Full Scan STUD_ID, 4 100001
STUD_NAME
Oracle Unique (B-tree) Index Scan | STUD_ID, 3 1
STUD_NAME
Oracle Unique (B-tree) Index Scan | STUD_ID, 3 0
STUD_NAME
Oracle Reverse Full Scan | STUD_ID, 4 100001
STUD_NAME
Oracle Reverse Index Scan | STUD_ID, 3 1
STUD_NAME
Oracle Reverse Index Scan | STUD_ID, 3 0
STUD_NAME
Oracle Organization Index Fast | STUD_ID, 8 100001
Full STUD_NAME
Scan(ii)

66

Oracle Organization Index STUD_ID, 2 1
Unique STUD_NAME

Scan

Oracle Organization Index STUD_ID, 2 0
Unique STUD_NAME
Scan

3.12 Test: Update Performance using Composite Key in Oracle and MS SQL

Server with 100K

Table 3.15 illustrates no change took place for the performance. Updating one record on the table

does not make sense on the performance values.

Table 3.15: Update on MS SQL Server and Oracle with 1000K

Platform Indexing Technique Scan Data Attribute (Composite | Response | # of Row
Operation Key) Time (ms) | Retrieved
MS SQL | Primary Key Clustered | Full Scan | STUD_ID, STUD_NAME 7 100000
Server
MS SQL Primary Key Clustered | Index STUD_ID, STUD_NAME 0.1 1
Server
Scan
MS SQL Primary Key Clustered | Index STUD_ID, STUD_NAME 04 0
Server
Scan
MS SQL Unique (B-tree) Non- | Full Scan | STUD_ID, STUD_NAME 7 100000
Server
Clustered
MS SQL Unique (B-tree) Non- | Index STUD_ID, STUD_NAME 6 1
Server
Clustered Scan
MS SQL Unique (B-tree) Non- | Index STUD_ID, STUD_NAME 4 0
Server
Clustered Scan
Oracle Bitmap Full Scan | STUD_ID, STUD_NAME 4 100000
Oracle Bitmap Index STUD_ID, STUD_NAME 2 1
Scan

67

Oracle Bitmap Index STUD_ID, STUD_NAME 2 0
Scan
Oracle Unique (B-tree) Full Scan | STUD_ID, STUD_NAME 4 100000
Oracle Unique (B-tree) Index STUD_ID, STUD_NAME 3 1
Scan
Oracle Unique (B-tree) Index STUD_ID, STUD_NAME 3 0
Scan
Oracle Reverse Full Scan | STUD_ID, STUD_NAME 4 100000
Oracle Reverse Index STUD_ID, STUD_NAME 3 1
Scan
Oracle Reverse Index STUD_ID, STUD_NAME 3 0
Scan
Oracle Organization Index Fast | STUD_ID, STUD_NAME 8 100000
Full
Scan(ii)
Oracle Organization Index STUD_ID, STUD_NAME 2 1
Unique
Scan
Oracle Organization Index STUD_ID, STUD_NAME 2 0
Unique
Scan

3.13 Test: Delete Performance using Composite Key in Oracle and

MS SQL Server with 100K

As shown in Table 3.16, only one change happened for the value of the Primary Key Clustered
index inthe MS SQL Server. On the other hand, all indexes keep the values which have shown the

above tests.

68

Table 3.16: Delete on MS SQL Server and Oracle with 1000K

Platform Indexing Technique Scan Data Attribute (Composite | Response # of Row
Operation Key) Time (ms) Retrieved
MS SQL | Primary Key Clustered | Full Scan STUD_ID, STUD_NAME |1 99999
Server
MS SQL Primary Key Clustered | Index Scan | STUD_ID, STUD_NAME | 0.1 1
Server
MS SQL Primary Key Clustered | Index Scan | STUD_ID, STUD_NAME | 0.4 0
Server
MS SQL Unique (B-tree) Non- | Full Scan STUD_ID, STUD_NAME | 7 99999
Server
Clustered
MS SQL Unique (B-tree) Non- | Index Scan | STUD_ID, STUD_NAME | 6 1
Server
Clustered
MS SQL Unique (B-tree) Non- | Index Scan | STUD_ID, STUD_NAME | 4 0
Server
Clustered
Oracle Bitmap Full Scan STUD_ID, STUD_NAME | 4 99999
Oracle Bitmap Index Scan | STUD_ID, STUD_NAME | 2 1
Oracle Bitmap Index Scan | STUD_ID, STUD_NAME | 2 0
Oracle Unique (B-tree) Full Scan STUD ID, STUD NAME | 4 99999
Oracle Unique (B-tree) Index Scan | STUD_ID, STUD_NAME | 3 1
Oracle Unique (B-tree) Index Scan | STUD_ID, STUD_NAME | 3 0
Oracle Reverse Full Scan STUD_ID, STUD NAME | 4 99999
Oracle Reverse Index Scan | STUD_ID, STUD_NAME | 3 1
Oracle Reverse Index Scan | STUD_ID, STUD_NAME | 3 0
Oracle Organization Index Fast | STUD_ID, STUD_NAME | 8 99999
Full
Scan(ii)
Oracle Organization Index STUD_ID, STUD_NAME 2 1
Unique
Scan
Oracle Organization Index STUD _ID, STUD NAME |2 0
Unique
Scan

69

3.14 Test: Select Performance using Composite Key in Oracle and MS SQL

Server with 5000K

In Table 3.17, B-tree is the best for the MS SQL Server and Oracle. This index consumes 49
ms in MS SQL Server and 184 ms in Oracle platform. We are not recommended to use the
organization index in the Oracle platform. This index takes 336 ms in Oracle. Further details are
shown in Table 3.17.

Table 3.17: Select on MS SQL Server and Oracle with 1000K

Platform Indexing Technique Scan Data Attribute (Composite | Respo | # of Row
Operation Key) nse Retrieved
Time
(ms)
MS SQL | Primary Key Clustered | Full Scan STUD_ID, STUD_NAME 53 5000000
Server
MS SQL Primary Key Clustered | Index Scan | STUD_ID, STUD_NAME | 1 1
Server

MS SQL Primary Key Clustered | Index Scan | STUD_ID, STUD_NAME | 0.4 0
Server

MS SQL Unique (B-tree) Non- | Full Scan STUD_ID, STUD_NAME 49 5000000
Server
Clustered
MS SQL Unique (B-tree) Non- | Index Scan | STUD_ID, STUD NAME 1 1
Server
Clustered

MS SQL Unique (B-tree) Non- | Index Scan STUD _ID, STUD_NAME 0.4 0
Server

Clustered
Oracle Bitmap Full Scan STUD_ID, STUD_NAME | 184 5000000
Oracle Bitmap Index Scan | STUD_ID, STUD_ NAME | 2 1
Oracle Bitmap Index Scan | STUD_ID, STUD_ NAME | 2 0
Oracle Unique (B-tree) Full Scan STUD_ID, STUD NAME | 184 5000000
Oracle Unique (B-tree) Index Scan | STUD_ID, STUD_NAME | 3 1
Oracle Unique (B-tree) Index Scan | STUD_ID, STUD_NAME | 3 0
Oracle Reverse Full Scan STUD_ID, STUD NAME | 184 5000000
Oracle Reverse Index Scan | STUD_ID, STUD_NAME | 3 1
Oracle Reverse Index Scan | STUD_ID, STUD_NAME | 3 0

70

Oracle Organization Index Fast | STUD_ID, STUD_NAME | 336 5000000
Full Scan(ii)

Oracle Organization Index STUD_ID, STUD_NAME | 2 1
Unique Scan

Oracle Organization Index STUD_ID, STUD_NAME 2 0
Unique Scan

3.15 Test: Insert Performance using Composite Key in Oracle and MS SQL

Server with 5000K

Table 3.18 shows a very alittle bit changein MS SQL Server. This change does not have an effect

on the performance values.

Table 3.18: Insert on MS SQL Server and Oracle with 1000K

Platform Indexing Technique Scan Data Attribute (Composite | Response | # of Row
Operation Key) Time (ms) | Retrieved
MS SQL | Primary Key Clustered | Full Scan STUD_ID, STUD NAME | 53 5000001
Server
MS SQL Primary Key Clustered | Index Scan | STUD_ID, STUD_NAME | 6 1
Server
MS SQL Primary Key Clustered | Index Scan | STUD_ID, STUD_NAME | 6 0
Server
MS SQL Unique (B-tree) Non- | Full Scan STUD_ID, STUD_NAME | 57 5000001
Server
Clustered
MS SQL Unique (B-tree) Non- | Index Scan | STUD_ID, STUD_NAME | 8 1
Server
Clustered
MS SQL Unique (B-tree) Non- | Index Scan | STUD_ID, STUD_NAME | 6 0
Server
Clustered
Oracle Bitmap Full Scan STUD _ID, STUD_NAME 184 5000001
Oracle Bitmap Index Scan STUD_ID, STUD_NAME 2 1
Oracle Bitmap Index Scan | STUD_ID, STUD_NAME |2 0
Oracle Unique (B-tree) Full Scan STUD_ID, STUD NAME | 184 5000001
Oracle Unique (B-tree) Index Scan | STUD_ID, STUD_NAME | 3 1
Oracle Unique (B-tree) Index Scan | STUD_ID, STUD_NAME | 3 0
Oracle Reverse Full Scan STUD_ID, STUD_NAME | 184 5000001

71

Oracle Reverse Index Scan | STUD_ID, STUD_NAME | 3 1

Oracle Reverse Index Scan | STUD_ID, STUD_NAME | 3 0

Oracle Organization Index Fast | STUD_ID, STUD_NAME | 336 5000001
Full Scan(ii)

Oracle Organization Index STUD_ID, STUD_NAME 2 1
Unique Scan

Oracle Organization Index STUD_ID, STUD_NAME 2 0
Unique Scan

3.16 Test: Update Performance using Composite Key in Oracle and MS SQL

Server with 5000K

As illustrated in Table 3.19, the only change happened in MS SQL Server. The Primary Key

Clustered index takes 142 ms. On the other hand; the values of indexes in the Oracle take 184 ms.

Table 3.19: Update on MS SQL Server and Oracle with 1000K

Platform Indexing Technique Scan Data Attribute (Composite | Response | # of Row
Operation Key) Time Retrieved
(ms)
MS SQL | Primary Key Clustered | Full Scan STUD _ID, STUD_NAME 142 5000000
Server
MS SQL Primary Key Clustered | Index Scan | STUD_ID, STUD_NAME 6 1
Server
MS SQL Primary Key Clustered | Index Scan | STUD_ID, STUD_NAME | 6 0
Server
MS SQL Unique (B-tree) Non- | Full Scan STUD_ID, STUD_NAME | 49 5000000
Server
Clustered
MS SQL Unique (B-tree) Non- | Index Scan | STUD _ID, STUD NAME 1 1
Server
Clustered
MS SQL Unique (B-tree) Non- | Index Scan | STUD_ID, STUD_NAME 1 0
Server
Clustered
Oracle Bitmap Full Scan STUD_ID, STUD_NAME 184 5000000
Oracle Bitmap Index Scan | STUD_ID, STUD_NAME | 2 1

72

Oracle Bitmap Index Scan | STUD_ID, STUD_NAME 2 0
Oracle Unique (B-tree) Full Scan STUD_ID, STUD_NAME 184 5000000
Oracle Unique (B-tree) Index Scan | STUD_ID, STUD_NAME 1
Oracle Unique (B-tree) Index Scan | STUD_ID, STUD_NAME 0
Oracle Reverse Full Scan STUD_ID, STUD_NAME | 184 5000000
Oracle Reverse Index Scan | STUD_ID, STUD_NAME 3 1
Oracle Reverse Index Scan | STUD_ID, STUD_NAME 0
Oracle Organization Index Fast | STUD_ID, STUD_NAME | 334 5000000
Full
Scan(ii)
Oracle Organization Index STUD _ID, STUD NAME |2 1
Unique
Scan
Oracle Organization Index STUD _ID, STUD NAME |2 0
Unique
Scan

3.17 Test: Delete Performance using Composite Key in Oracle and MS SQL

Server with 5000K

No change happened here in delete operation.

Table 3.20: Delete on MS SQL Server and Oracle with 1000K

Platform Indexing Technique Scan Data Attribute | Response # of Row
Operation (Composite Time (ms) Retrieved
Key)
MS SQL | Primary Key Clustered | Full Scan STUD_ID, 59 4999999
Server STUD_NAME
MS SQL Primary Key Clustered | Index Scan | STUD_ID, 6 1
Server STUD_NAME
MS SQL Primary Key Clustered | Index Scan | STUD_ID, 6 0
Server STUD_NAME
MS SQL Unique (B-tree) Non- | Full Scan STUD _ID, 57 4999999
Server
Clustered STUD_NAME

73

MS SQL Unique (B-tree) Non- | Index Scan | STUD_ID, 10 1
Server Clusered STUD_NAME
MS SQL Unique (B-tree) Non- | Index Scan | STUD_ID, 6 0
Server Clustered STUD _NAME
Oracle Bitmap Full Scan STUD _ID, 184 4999999
STUD_NAME
Oracle Bitmap Index Scan | STUD_ID, 2 1
STUD_NAME
Oracle Bitmap Index Scan | STUD_ID, 2 0
STUD_NAME
Oracle Unique (B-tree) Full Scan STUD_ID, 184 4999999
STUD_NAME
Oracle Unique (B-tree) Index Scan | STUD_ID, 3 1
STUD_NAME
Oracle Unique (B-tree) Index Scan | STUD_ID, 3 0
STUD_NAME
Oracle Reverse Full Scan STUD _ID, 184 4999999
STUD_NAME
Oracle Reverse Index Scan | STUD_ID, 3 1
STUD_NAME
Oracle Reverse Index Scan | STUD_ID, 3 0
STUD_NAME
Oracle Organization Index Fast | STUD_ID, 334 4999999
Full STUD_NAME
Scan(ii)
Oracle Organization Index STUD_ID, 2 1
Unique STUD_NAME
Scan
Oracle Organization Index STUD _ID, 2 0
Unique STUD_NAME
Scan

74

3.18 Guidelinesto Select Indexing Techniques

This section will describe the guidelines to select indexing techniques which helpsthe DBAsto

select indexing techniques that are suitable for databases.

3.18.1 Using Decision Tableto Select the Indexing for the DBAS:

1. Decision Tables

Decision tables are precise and compact way to model complicated logic. They are ideal for
describing situations in which a number of combinations of actions are taken under varying sets of
conditions (Fisher, D.L. 1966). The benefit of using the decision table is to make it easy to observe
all possible conditions. Decision tables are also used to analyze a problem. The conditions
applying in the particular problems are set out, and the actions to be taken as a result of any

combination of the conditions arising, are shown below in this section.

2. Cardinality

The word cardinality is an SQL term to refer to the uniqueness of a data value in a particular
column in a database table (Burleson 2010). Low cardinality means that the values in the data
column of the data table are pretty common. For example, data value such as gender, race, age,
hair color or Boolean data represents a kind of low cardinality. On the other hand, Medium-
cardinality means that the columns with data values are somewhat uncommon. Normal-cardinality
or medium- cardinality column data values include, names, street addresses, or vehicle types. The
last type of cardinality ahigh cardinality data may refer to datain a column which are unique. That
data may include identification numbers, user telephones number; email addresses or social

security number.

75

Example Cardinality Attribute

The following samples on the STUDENT table demonstrate the variety of query-processing

techniques that are necessary for optimal performance.

CREATE TABLE UI.STUDENT _index100K

(
STU_ID NUMBER(10),

STU_NAME VARCHAR2(50),

STU_GRADE VARCHAR2(1),

STU_ADDRESS VARCHAR2(100),

STU SEQ NUMBER(10),

CONSTRAINT STUDENT _index100K_PK
PRIMARY KEY

(STU_ID)
)
Example 1. High-Cardinality Attribute
select * from student100k where STU _ID = 974166938;
Example 2: Medium-Cardinality Attributes
select * from student100k where STU_NAME="meul1253398454',
Example 3. Low-Cardinality Attributes
select * from student100k where STU_GRADE ="A’;

In the following section a guidelines to select indexing techniques that decision table to help the
DBAs to select indexing techniques suited for their databases on MS-SQL Server environment and
ORACLE environment:
3.18.1.1 Oracle Environment:

Scenario: A DBA wishes to construct a decision tableto decide how to select an indexing
techniques to three characteristics. Data size: A (under 100,000), B (between 100,000 and
1,000,000), and C (over 1,000,000). Cardinaity type: L (Low cardinality), M (Medium

cardinadity), and H (High cardinality), and Columns: S (Single columns) and C (Combine

76

columns). The DBA has two indexes (X,Y) to select. Index X will appeal to Bitmap index. Index
Y will appeal to B-Tree index.
1. Identify Conditions & Values
The three data attributes tested by the conditions in this problem are
Data size: with values A, B and C; Cardinality L, M and H; and Columns. S and C as
stated in the problem.
2. Compute Maximum Number of Rules

The maximum number of rulesis3 x 3x 2 = 18.

3. Identify Possible Actions
The two actions are: Bitmap index X, B-Treeindex Y.
4. Enter All Possible Rules

The top of the tablewould look as follows: Note that all combinations of values are

present.

Table 3.21: Possible Rules

Process 1 12 (3 |4 |5 |6 (7 (8 (9 |10 (11 |12 |13 |14 |15 |16 |17 |18
Datasize A A |A|A|A|A B |B|B |B |B |B |C|C | C|C |C|C
Cardinality L L M|{M|H||H|L|L M|M|HH |L L M |M|H|H
Columns s|c|s |Cc|sS|C|S|C|S |C|S |C|S |C|SsS |C|S |C

5. Define Actionsfor each Rule

The bottom of the table would look as follows:

Table 3.22: Actions for each rule

77

Indexes 1123|4567 8 10| 11| 12| 13| 14| 15| 16| 17| 18
X X | X| X| X X| X| X| X X | X
Y X X X | X X | X | X | X
6. Simplify thetable
Therevised table is as follows:
Table 3.23: Final simplified table of rules and actions on ORACLE environment
Proccess 112 |3 4 5 |6 (7 |8 |9 10 | 11 |12 |13 (14 |15 |16 |17 | 18
Datasize AlA |A |A |A|A B |B|B |B |B |B |C|C]|C |C |C |C
Cardinality L M|M|H | H|L |L | M|M|H|H|L L M M |H |H
Columns s ¢c|s |Cc| s |Cc|s|C|S |C|S |C|S |C|S |C|s |C
X Bitmap |X[X [X [X X [X [X [X X | X
index)
Y (B-Tree) X | X X X X |[X [X [X

3.18.1.2 MS-SQL Server Environment:

In MS-SQL Server will do the same steps on section 3.18.1.1 on Oracle environments except

step 3. That Identify Possible Actions that will be the two actions are: Clustered index X, Non-

Clustered index Y.

78

Table 3.24: Final smplified table of rules and actions on MS-SQL Server environment.

Process 112 |3 4 5 16 |7 |8 |9 10 [11 |12 |13 |14 |15 |16 |17 | 18
Datasize AlA|A|A |A A |B |B|B|B |B |B|C|C|C|C|C|C
Cardinality L L M|{M|H|H |L L M |M|H |H|L L M M |H |H
Columns s/c|s |C|s|C|s|C|SsS |C|s |C|s |C|s |Cc|s |C
X(Clustered | X X X | X | X [X [X | X | X [X [X | X | X |[X | X |X
index)

Y (Non- X X

Clustered

index)

The performance benefits of having a clustered index on a table outweigh the negatives for our
sample database table. For the case where the performance was lower (SELECT statements Test4,
Test5, Test6), the difference was insignificant. Given this, we recommend creating a clustered

index on all SQL Server user tables.

3.18.2 Descriptive Guidelines and Advicesfor the DBAs

There are several aspects which affect the DBAs performance. However , to select the best
indexing technique in Oracle or MS-SQL Server, the DBAS should take into account the following

guidelines and pieces of advices.

1. If two database objects are used at the same time, the DBA should store them on different
disk drives to minimize disk head contention. For example, if the DBA runs a SELECT
statement on two tables or more, the I/0O will be at the same time - any two B-tree indexes
that show 1/O at the same time, or a table that shows I/O at the same time as the B-tree
index defined on it.

2. If users are randomly accessing atable and if the total size of the table is much larger than

any practical buffer size, then increasing the buffer size is not helpful. For example, if the

79

table size is 100 MBytes, then a 2000-page buffer does not work much better than a 1000-
page buffer.

The B-tree indexing is the intersection between Oracle and MS-SQL Server. As a result,
the B-tree is the best indexing technique and it is more effective on huge data. But the
Bitmap index in Oracle are interesting and significant, unfortunately this index is not
supported by MS-SQL Server.

. Creating an index on a column in any of the following situations:

e Thecolumnis queried frequently.

o A referential integrity constraint exists on the column.

e A UNIQUE key integrity constraint exists on the column.
It is possible to create an index on any column if the column is not used in any of the above
situations. In this case, creating an index on the column does not increase performance and
the index takes up resources unnecessarily.
. Assuming the composite index is on (Coll, Col2), then DBAS cannot use the B-Tree and
will either do a complete index scan or a table scan (depending on which it thinks is faster
to complete the processing of the SQL statement). Composite index is an index that
contains more than one column. In both SQL Server 2005 and 2008, DBA can include up
to 16 columns in an index, as long as the index does not exceed the 900-byte limit. Note
that both clustered and non-clustered indexes can be composite indexes. In Oracle and MS-
SQL Server, composite index could be aso a B-tree index, which consists of many
columns.

A composite index has a significant advantage in the following two cases:
a) assumes that the frequent use in the WHERE clause of the following conditions:
STUD ID =1 and STUD _GRADE ="A'. If the DBA creates an index for each column,

then to search out the value of the two indexes should be read, but if the two have created a

80

composite index, only an index is read, it certainly demands more than two indexes fewer
1/O.

b) Using the same conditions as the previous example: if the DBA creates a composite
index, then it will retrieve the line quickly, because the DBA isexcluding all STUD_ID not
aline, thereby reducing the number of rows STUD_GRADE search.

8. In composite index, B-tree is the preferable indexing technique on both platforms: Oracle
and MS SQL Server with different data table sizes (small, medium and large).

9. An experiment is an implementation tested with real data. Experiments should be designed
to obtain clear results. Experiments should be reproducible, which means that they should
not only be conducted rigorously but their description should be sufficiently comprehensive
those others can reproduce the conditions and verify the claimed results. Experiments
should be based on benchmarks such as standard sets of data and queries, use of such
benchmarks allows easy comparison with other work.

10. DBASs can judge the success of the used technique according to its performance on the
basis of the stated. Assumptions should not only be claimed to be reasonable, they should
be argued for, and, where possible, demonstrated as being reasonable.

11. DBA should aso note that the scaling can relatively change the oval performance. Having
larger data table can reduce the chance of sequential seeks to the same block; can increase
data fetch costs, even relative to seek costs; and can even affect the proportion of records

that are answers.

3.19 Observations and Recommendations

81

After conducting these tests using our sample database table (100K, 1000K and 5000K), we

have made the following genera observations and recommendations. Thus, it is suggested that

Database DBA’s are encouraged to use them as standard recommendations only and validate the

applicability of the results to certain target scenario.

1.

In Oracle, the Bitmap index on 100K has the efficient retrieving time compared with the

other indexing techniques.

In Oracle, the Bitmap index on 1000K relatively has the best retrieving time compared with

the other indexing techniques.

In Oracle with size: 5000K, the performance of Bitmap index, B-tree and Reverse index are

much better than Organization index especialy at full scan select performance.

In MS-SQL Server with size: 100K, the performance of Primary Key Clustered isrelatively

faster than B-tree (Unique Non-clustered) especially at full scan select performance.

In MS-SQL Server with sizes: 1000K and 5000K, the performance of Primary Key
Clustered is relatively better than B-tree (Unique Non-clustered) especially at full scan

select performance.

Some technical studies indicate that using index in the retrieval systems over Oracle
platform consumes greater response time than MS-SQL Server. Thus, those studies support

our resultsin thisthesis.

B-tree is the common between MS-SQL Server and Oracle. The results of Bitmap index in
Oracle are interesting and significant and unfortunately, thisindex is not supported by MS-

SQL Server.

82

Chapter 4

Conclusions and Future Work

83

4.1 Conclusions

1. The proposed methodology is in thesis driven by our desire to undertake a formal comparison
between the current indexing techniques. In this work we have applied the guidelines described in
this chapter to one particular problem, and but felt the guidelines themselves are sufficiently
interesting to warrant separate description. A set of criteria by which indexing techniques should

be compared are discussed.

2. Our methodology is based on a series of experiments to test a set of indexing techniques on two
different platforms (Oracle and MS SQL Server) with different data sizes (small — 100K, medium
— 1000K, and very large — 5000K) over the same technical environment (Multiple processors,

memory, and 1/O devices).

3. To run the experiments, we have taken the following indexing techniques in Oracle: B-tree,
Bitmap, Reversed, and organization index. In the meanwhile, we have taken the following
indexing techniques in MS-SQL Server: B-tree, Clustered index, and unique non-clustered index
and Primary Key Clustered index.

4. The empirical results show that the overall performance of indexing techniques (B-tree, reverse,
organization, clustered, and bitmap indexes) in MS-SQL Server is much faster than Oracle 10g.
Thus using the index in the SELECT statement over MS-SQL Server is less much costly in terms
of 1/0 operations, CPU consumptions, and response time than Oracle. However, the B-tree index
in the SELELCT statement over Oracle is faster in terms of performance than MS-SQL Server in
the following cases:

e Index scan select performance when retrieved single row.

e Index scan select performance when retrieved non-row.

84

5. We have attempted to achieve the thesis objectives to be real outcomes at the end of this thesis.

The main outcomes of this thesis are summarized as follows:

a Building areferenced guide is to help database developers and DBAS for selecting the indexing
method in order to retrieve their data in efficient method. This outcome is very clear in Chapter 3
because we have shown the best indexing technique on Oracle and MS-SQL Server with different

data sizes (100K, 1000K, and 5000K).

b- Making two types of comparisons between the available indexing methods (Clustered and Non-
Clustered indexes) on two platforms: Oracle and MS-SQL Server. The first outcome is shown in
chapter 1 where we have offered a cooperative comparison between the indexing techniques in
accordance with the previous research. The second outcome is shown in chapter 2 and chapter 3
because we have described experimental results among the indexing techniques on Oracleand MS-

SQL Server with different data sizes (100K, 1000K, and 5000K).

c- Finding the rules and criteria that make the decision of selecting appropriate indexing technique.
This outcome is shown in chapters 2 and chapter 3 because we have provided a flowchart of
methodology procedure and methodology scenarios for conducting the comparisons between the

available indexing techniques.

4.2 FutureWork

In this research, we have pointed out the following subjects that can be performed in Future Work.

85

1. Develop a methodology for selecting the indexing techniques for the object oriented

databases indexing techniques.

2. The experimental tests can be run on very huge data such as 50,000K. When the data is
being huge, the results will be more valid. For example, Google search engine has a very

huge retrieval system that contains trillion of documents and files.

3. Apply the indexing techniques on distributed systems.

Refer ences:

86

1

2.

Gaffar A. ,(2001), ' Design Of A Framework For Database Indexes ', Thesis, degree of

master of computer science ,Concordia Univirsity.

An Oracle White Paper,(2005), 'Technical Comparison of Oracle Database 10g vs. SQL
Server 2005: Focus on Performance, an Oracle White Paper October , viewed 10

September 2010,

< http://www.oracle.com/technetwork/database/features/perf ormance/twp-perf-oracle-2.pdf>

w

Ozgur A., Taflan I. Gundem, (2006), ' Efficient indexing technique for XML-based

electronic product catalogs , Electronic Commerce Research and Applications, pp. 56—77.

Yu B. and Guoliang L., (2007), 'Effective Keyword-based Selection of Relationa
Databases, SGMOD'07, Beijing, China. Copyright 2007 ACM .
Burleson C., (2010) , 'Bitmapped Index Usage' , viewed at 1 December 2010 , <

http://www.remote-dba.net/t_grid rac_bitmapped _index_usage.htm> .

Fisher D., (1966), 'Data, Documentation and Decision Tables, Comm ACM , Vol. 9 No. 1,

pp. 26-31.

Lin D., Jensen C., Ooi B., and Sdltenis S., (2005), 'Efficient indexing of the historical’,

present and future positions of moving objects. In MDM, pp. 59-66.

Graefe G., (2010) ,'A survey of B-tree locking techniques , published in ACM

Transactions on Database Systems (TODS), Volume 35, Issue 2.

87

10.

11.

12.

13.

14.

Chai I., Bongki M. and Hyoung J.,(2007), 'A clustering method based on path similarities

of XML data, Data & Knowledge Engineering 60 , pp. 361-376.

Lo J, Barroso L., Eggers S., Gharachorloo K., Levy H., and Parekh S., (1998), 'An
analysis of database workload performance on simultaneous multithreaded processors, in
ISCA’98: Proceedings of the 25th annual international symposium on Computer

architecture, pp. 39-50.

King J.,, (2001), ' ORACLESI INDEXING CHOICES : BEST OF BREED' ,Designing,
Developing and Deploying Applications , viewed 20 June 2010 , <

http://www.kingtraining.com/confdownl oads/downl oads/O8index_ paper.pdf>.

Zobel, J., Moffat, A. and Ramamohanarao, K. (1996), ‘Guidelines for Presentation and

Comparison of Indexing Techniques'. SGMOD Record, Vol. 25.,PP 10-15.

Aouiche K., Darmont J., Boussaid O. and Bentayeb F., (2005) , ' Automatic Selection of

Bitmap Join Indexes in Data Warehouses, Data Warehousing And Knowledge Discovery ,

Volume 3589, pp. 64-73.

Elbassioni K., Elmasry A., and Kamel 1., (2003), 'An efficient indexing scheme for multi-

dimensional moving objects, In ICDT, pp. 422-436.

88

15.

16.

17.

18.

19.

20.

Keeton K., Patterson D., Raphael R. and Baker W., (1998), 'Performance Characterization
of a Quad Pentium Pro SMP using OLTP Workloads , In Proceedings of the 25th

International Symposium on Computer Architecture, pp. 15 — 26, Barcelona, Spain.

Nguyen L., Walid G. Aref and Mohamed F. Mokbel, (2003), 'Spatio-Temporal Access
Methods: Part 2 (2003 - 2010)', Bulletin of the IEEE Computer Society Technical

Committee on Data Engineering .

Cyran, M, Lane, P & Pol. JP (2005) , Oracle® Database Concepts , 10g Release 2
(10.2) , Oracle , U.SA, viewed 10 September 2010 :

<http://www.datacons.it/oradoc/26004.pdf>.

Giugno R., (2002) , PhD Thesis ,'Searching Algorithms and Data Structures for
Combinatorial, Temporal and Probabilistic Databases ,UNIVERSIT'A DEGLI STUDI

DI CATANI.

Martin R. Frank, Edward R. Omiecinski and Shamkant B. Navathe , 1992, Adaptive and
automated index selectionin RDBMS, Advances In Database Technology , Volume
580/1992, pp. 277-292, viewed 20 Augest 2010,

<http://www.springerlink.com/content/d4327448p5342880/>.

Chaudhuri, S., and Narasayya, V. , (1998)," Autoadmin “what-if” Index Analysis Utility’,

In Proceedings of the ACM SGMOD International Conference on Management of Data,

pp. 367-377.

89

21.

22.

23.

24,

25.

Chaudhuri, S, Datar, M., and Narasayya, V. , (2004) ,' Index Selection for Databases, A
Hardness Study and a Principled Heuristic Solution. |EEE Transactions on Knowledge and

Data Engineering, 16(11), pp. 1313-1323.

Dessloch S, Mattos N., (1997), 'Integrating SQL Databases with Content-specific Search

Engines , Proceedings of the 23rd VLDB Conference Athens, Greece.

Halawanil S., Albidewi 1., Alam J. and Khan Z, (2010),’A Critical Evaluation of
Relational Database Systems for OLAP Applications, (IJCNS) International Journal of

Computer and Network Security, Vol. 2, No. 5, PP.122-126.

Madhulatha S. , 2010, ' A Sudy on Index Selection Problem’, Dept of Informatics Alluri
Institute of management sciences, viewed 2 September 2010, <

http://www.articlesbase.com/print/2930457>.

Ponce S., VilaP. and Hersch R.,(2002), 'Indexing and selection of dataitems in huge data
sets by constructing and accessing tag collections, 19th IEEE Symposium on Mass Storage
Systems & TenthGoddard Conf. on Mass Sorage Systems and Technologies Unitv. of

Maryland, College Park, Maryland, USA, pp. 181-192.

90

Glossary

Attribute

Describes the value found in each field in a table. Every field or column in a database table
represents a single attribute of that table. (An attribute is what the data in that field represents,

while the value is the actual datathat a specific field contains. See also: Value.

Cardinality

In SQL (Structured Query Language), the term refers to the uniqueness of data values contained

in aparticular column (attribute) of a database table.
Case; Casing

To designate which characters in an alpha string will be uppercase and which will be lowercase.
Common casing methods include: uppercase al characters; lowercase all characters; uppercase
first character of the string; uppercase the first character of each “word” (space-separated
substrings) contained (aka called “Proper” case); lowercase the entire string, then uppercase the

first character; or lowercase the entire string, then uppercase the first character of each “word”.
Case-Sensitive

To be aware of the case of character values. In this context, “SPUD,” “Spud” and “spud” would all
be considered as different strings, so the case-sensitivity of a function or query will influence the

values they will return.

91

Client

That part of a DBMS that displays information on the screen and responds to user input (the front-

end).

Client/Server System

A multi-user system in which a central processor (server) is connected to multiple intelligent user

workstations (clients).

Column

Synonymous with field. See also: Field and Attribute.

Commit

Decision to proceed with the actual posting of a change to the database.

Composite Key

A primary key that consists of two or more attributes is known as composite key

Concurrent Access

Two or more users operating on the same records in the same database table at the same time.

Constraints

Data restrictions specified in a database; rules that determine what values the field to the table can

assume.

92

Data Dictionary

The database stores metadata in an area called the data dictionary, which describes the tables,

fields, indexes, constraints, and other related items that make up the database.

Data M odel

The logical data structures, including operations and constraints provided by the DBMS to

effectively process data; system used for the representation of data (the ERD, or relational model).

Data Redundancy

Having the same data stored in more than one place in a database.

Data Retrieval

It's a data extraction from disparate sources, most operational, some legacy -- typicaly in different

formats.

Data Source

It's the source of data used by a database application. It maybe a DBMS, table or adatafile.

Data Structure

Isalogical relationship among data elements that is designed to support specific data manipulation

functions (trees, lists, and tables).

93

Data Type

Every field in every table in a database must be declared as a specific type of data with defined

parameters and limitations (e.g. numeric, character or text, date, logical, etc.), known as a data

type.

Database

1) A collection of al the data needed by a person or organization to perform their required
functions, 2) A collection of related files or tables; 3) Any collection of data organized to answer
queries; or, 4) [Informally,] a database management system. (Databases usually consist of both
data and metadata [data about the database's data]. When a database contains a description of its
own structure, it is said to be self-describing. A database is integrated when it includes its

relationships among data items as well as the data items themselves.)

Database Administrator [DBA]

The person who is ultimately responsible for the functionality, integrity, and safety of the database.

Database Engine

That part of the DBMS that directly interacts with the database (part of the back-end).

Database Management System [DBM §]

Also called a database manager. An integrated collection of programs designed to enable people to

design databases, enter and maintain data, and perform queries.

94

Database M anager

1) The person with primary responsibility for the design, construction, and maintenance of a

database. 2) [Informally,] a database management system.

Database Warehouse —Short: A copy of transaction data specifically structured for query, analysis
and reporting. Long: The database warehouse, a single repository depicting a logical view of an
enterprise's data, accessible to developers and business users alike. Effective database warehousing
requires frequent updates and impeccable data quality to insure business end-users and decision
makers are using the same data, at the same extraction level, as everyone else when they run

gueries and reports or formulate analyses.

Distributed Database

|s a database in which resources are stored on more than one computer system, often at different

physical locations.

Entity

A real-world object, observation, transaction, or person about which data are to be stored in a

database.

Expression

An SQL statement that returns a value.

Extraction

The process of selecting data from one environment and transporting it to another environment.

See also: Data Transfor mation.

95

Field

Synonymous with column. A component of a relation or table that holds a single attribute of that

relation or table. See also: Column and Attribute.

File

1) The separately named unit of storage for al data, programs and indexes on most computer
systems. For example, a table or a whole database may be stored in one file; 2) Term used as a
synonym for relation or table in some database managers [usually smaller or older], like dBase,

FoxPro, Alpha Four/Five, etc.

Functional Dependency

Is a relationship between or among fields where one field is functionally dependent on another if
the value of the second field determines the value of thefirst. (If you know the value of the second,

you can determine the value of the first.)

High-cardinality

It refers to columns with values that are very uncommon or unique. High-cardinality column
values are typically identification numbers, email addresses, or user names. An example of a data
table column with high-cardinality would be a STUDENT table with a column named STU _ID.
This column would contain unique values of 1-n. Each time a new user is created in the
STUDENT table, a new number would be created in the STU _ID column to identify them
uniquely. Since the values held in the STU_ID column are unique, this column's cardinality type

would be referred to as high-cardinality.

96

I mplementation

A particular relational DBM S running on a specific hardware platform.

I ndex

1) A method used to reorder display or output records in a specific order; 2) A data structure of

pointers used to provide rapid, random access to rowsin the table.

I nfor mation Schema- See: Schema, | nformation.

Integrity

The property of the database that ensures that the data contained in the database is as accurate and

consistent as possible.

Join

A relational operator (query) that combines data from multiple tables into a single result table.
Tables must have at least one field (sometimes called the join or linking field) in common, so that

values from corresponding records in each table are matched up correctly.

Join, Cross

Cross joins return all rows from the left table, each row from the left table is combined with all

rows from the right table. Cross joins are also called Cartesian products.

Join, Inner

An inner join discards all records from the result table that don't have corresponding records in

both source tables, while an outer join preserves unmatched records.

97

Key

A key isafield, or combination of fields, that uniquely identifies arecord in atable. See also: Key,

Primary.

Key, Candidate

1) One or more fields that will uniquely identify one record in atable; 2) A potential primary key.

Key, Composite

A key made up of two or more table columns that, together, guarantee uniqueness, when there is

no single column available that can guarantee uniqueness by itself.

Key, Database

The unique value that exists for each record in a database. The value is often indexed.

Key, Foreign

A column or group of columns in atable that corresponds to or references a primary key in another
table in the database. A foreign Key need not itself be unique, but must uniquely identify the field

or fieldsin the table that the key references.

Key, Primary

A field or combination of fields that uniquely identifies each record in atable, so that each record
can be uniquely distinguished from every other occurring in the table. A table cannot have more

than one primary key, and a primary key, by definition may not contain a null value.

98

K ey, Secondary

A key that is not the primary key for atable.

L ow-cardinality

That refers to columns with few unique values. Low-cardinality column Boolean values, or major
classifications such as gender. An example of a data table column with low-cardinality would be a
STUDENT table with a column named NEW_STUDENT. This column would contain only 2
distinct values. Y or N, denoting whether the student was new or not. Since there are only 2

possible values held in this column, its cardinality type would be referred to as low-cardinality.
M edium-car dinality

That refers to columns with values that are somewhat uncommon. Normal-cardinality column
values are typicaly names, street addresses, or vehicle types. An example of a data table column
with normal-cardinality would be a STUDENT table with a column named LAST _NAME,
containing the last names of customers. While some people have common last names, such as
Mohammed, others have uncommon last names. Therefore, an examination of all of the values
held in the LAST_NAME column would show "clumps" of names in some places (e.g.: a lot of
Mohammed) surrounded on both sides by a long series of unique values. Since there are a variety
of possible values held in this column, its cardinality type would be referred to as normal-

cardinality.

Normal Form

1) A condition of tables and databases intended to reduce data redundancy and improve

performance; 2) Rules and processes for putting tables and databases into normal form.

99

Normalization

1) The process of breaking up a table into multiple tables, each of which has a single theme,
thereby reducing data redundancy; 2) The technique that reduces or eliminates the possibility that a

database is subject to modification anomalies. See also: Data Redundancy.

Query

1) Literally, a question you ask about data in the database in the form of a command, written in a
guery language, defining sort order and selection, that is used to generate an ad hoc list of records;

2) The output subset of data produced in response to a query.

Record

Synonymous with row and tuple. An instance of data in atable, arecord is a collection of all the
facts related to one physical or conceptual entity; often referring to a single object or person,
usually represented as a row of data in a table, and sometimes referred to as a tuple in some,

particularly older, database management systems.

Schema

1) The database’ s metadata -- the structure of an entire database, which specifies, among other
things, the tables, their fields, and their domains. In some database systems, the linking or join
fields are also specified as part of the schema

2) The description of asingletable. Also called aLogica Schema.

Sdlect; Selection

A query in which only some of the records in the source table appear in the output.

100

Sort; Sorting

The act of putting recordsin a particular order.

SQL

Pronounced “ Sequel”, it stands for Structured Query Language, the standard format for commands
that most database software understands. There are different dialects, since every program handles
certain types of data differently, but the core commands are always the same. ODBC uses SQL as
the "Lingua Franca' to transfer information between databases. Currently accepted ANSI standard

is SQL-92.

Table

Synonymous with relation. A collection of data organized into records and fields (aka rows and
columns), with fields being descriptions of the kinds of information contained in each record
(attributes); and records being specific instances usually referring to specific objects or persons

(entities). See also: Relation and Attribute.

Transaction

1) The fundamental unit of change in many (transaction-oriented) databases. A single transaction
may involve changes in several tables, all of which must be made simultaneously in order for the

database to be internally consistent and correct

2) A red-life event which is modeled by the changes to the database; 3) The sequence of SQL
statements whose effect is not accessible to other transactions until all of its statements have been

executed.

101

102

