

A Comparative Study of Indexing

Techniques for Relational Database

Management Systems

 By

Huda Ayesh Mashaan Alrashidi

A Thesis
Submitted in Partial Fulfillment of the
Requirements for the Master Degree

in Computer Information Systems

Supervisor

Dr.Hazim A. Farhan

Department of Computer Information Systems
Faculty of Information Technology

Middle East University

Amman - Jordan

March, 2011

 II

 إ	�ار �����

� ���و���� ����� ���� , ه���ى ������ ����
�ن ا
	�����ي أ���� ���أ%��$ض "��
��! ا
���	ق ا�و

.-+�*�ت أو ا
(�)�ت أو ا�%	اد /�
�� .��2 1.*(� ر

Authorization Statement

I , Huda Ayesh Mashaan AlRashidi, authorize Middle East University to

supply hardcopies and electronic copies of my thesis to libraries,

establishments, or bodies and institutions concerned with research and

scientific studies upon request, according to the university regulations.

 III

Middle East University
Examination Committee Decision

This is to certify that the Thesis entitled "A Comparative Study of

Indexing Techniques for Relational Database Management

Systems " was successfully defended and approved on 20 March

2011.

 IV

DECLARATION

I do declare that the present research work has been carried out by me

under the supervision of Dr. Hazim A. Farhan, and this work has not been

submitted elsewhere for any other degree, fellowship or any other similar

title.

 V

DEDICATION

I dedicate this thesis to my husband, who supported me, and my

family, my friends; they were the light in my path and without

them nothing of this would have been possible.

 VI

ACKNOWLEDGEMENTS

My foremost thank goes to my supervisor Dr Hazim Farhan. Without him,

this thesis would not have been possible. I appreciate his vast knowledge

his insights, suggestions and guidance that helped to shape my research

skills.

I would like to thank Prof. Musbah Aqel and Dr. Hussein Owaied for their

advice and help when I started my graduate studies. I want to express my

gratitude to all those who gave me the possibility to complete this thesis.

I would like to extend special thanks to my husband Mubarek AlRashidi

and my mother for their constant unconditional love and encouragement. It

has always been my dream to be able to return their favors for everything

that they have given to me. I also thank my sisters, for their genuine love

and support. I also would like to thank Eng Imad Saleh for his technical

support.

 VII

List of Tables

Table 1.1: Summary of indexing types in Oracle and MS SQL Server………………....…14

Table 3.1 100k on Oracle…………………………………………………………….…….39

Table 3.2 1000k on Oracle…………………………………………………………………41

Table 3.3 5000k on Oracle…………………………………………………………………44

Table 3.4 MS SQL Server on 100K………………………………………………….…….46

Table 3.5: MS-SQL Server on 1000K……………………………………………………..48

Table 3.6: MS-SQL Server on 5000K……………………………………………………..50

Table 3.7-A: A summary of the best indexing techniques with different data sizes

 On Oracle…………………………………………………………………………………52

Table 3.7-B: A summary of the best indexing techniques with different data sizes on

 MS SQL Server……………………………………………………………………...……52

Table 3.8: Select Performance using Composite Key in Oracle 1000k……………...…….57

Table 3.9: Select Performance using Composite Key in MS SQL Server 1000K ……..….58

Table 3.10: Insert on MS SQL Server and Oracle with 1000K…………………………....60

Table 3.11: Update on MS SQL Server and Oracle with 1000K…………………………..61

Table 3.12: Delete on MS SQL Server and Oracle with 1000K…………………...………63

Table 3.13: Select on MS SQL Server and Oracle with 1000K……………………...……64

Table 3.14: Insert on MS SQL Server and Oracle with 1000K……………………………66

Table 3.15: Update on MS SQL Server and Oracle with 1000K…………………….….…67

Table 3.16: Delete on MS SQL Server and Oracle with 1000K……………………….…..69

 VIII

Table 3.17: Select on MS SQL Server and Oracle with 1000K……………………..…….70

Table 3.18: Insert on MS SQL Server and Oracle with 1000K……………………..……..71

Table 3.19: Update on MS SQL Server and Oracle with 1000K………………….....……72

Table 3.20: Delete on MS SQL Server and Oracle with 1000K …………………….....….73

Table 3.21: Possible Rules…………………………………………………………..…..…77

Table 3.22: Actions for each rule………………………………………………………..…78

Table 3.23: Final simplified table of rules and actions on ORACLE environment …...…..78

Table 3.24: Final simplified table of rules and actions on MS-SQL Server environment....79

.

 IX

List of Figures

Figure 1.1 Root node and branch nodes of an index…………………………...…..…...3

Figure 1.2 A search tree showing branch nodes and leaf nodes………………….…..…4

Figure 1.3 Index Levels…………………………………………………………………5

Figure 1.4 B-tree Clustered Index………………………………………………………6

Figure 1.5 Non-Clustered index on a table without a Clustered index…….……….... ..8

Figure 1.6 Non-clustered indexes on a table with a clustered index………..….….........9

Figure 1.7 An Oracle B-tree index ………………………………………..…………..10

Figure 1.8 MS-SQL Server B-tree index……………………..……………..……...…11

Figure 2.1 Flowchart of methodology procedure on Oracle platform…………..…......32

 Figure2.2 Flowchart of methodology procedure on MS SQL Server platform………..33

 Figure 3.1: Full scan SELECT evaluation time for different indexing with 100K on

Oracle……………………………………………………………………….……..…..38

 Figure 3.2: Full scan SELECT executions time for different indexing with 1000K on

Oracle…………………………………………………………………………...…..…40

 Figure 3.3: Full scan SELECT executions time for different indexes with 5000K on

Oracle 10g……………………………………………………………………….…..…43

Figure 3.4: Query execution plan for SELECT statement on table with clustered

index……………………………………………………………………………..…..…45

 X

 Figure 3.5: Query execution plan for SELECT operation on table with non-clustered

index in MS SQL Server………………………………….……………….……...……49

Figure 3.6: Comparison between the response times (ms) of B-tree Oracle and MS SQL

Server on 100K………………………………………………...……………….…...…53

Figure 3.7: Comparison between the response times (ms) of B-tree over Oracle and MS

SQL Server on 1000K………………………….……………………………………....53

Figure 3.8: Comparison between the response times (ms) of B-tree over Oracle and MS

SQL Server on 5000K…………………………………………………..………...……54

Figure 3.9: Execution result after INSERT one row using B-tree index with 100K......55

Figure 3.10: Execution result after INSERT one row using B-tree index with

1000K………………………………………………………………………………….55

Figure 3.11: Execution result after INSERT one row using B-tree index with

5000K………………………………………………………………………………….56

 XI

Table of Contents

List of Tables……………………………………………………..………..…………VII

List of Figures……………………………………………………………………...…IX

Abstract in English…...………………………………..………………………..….XVI

Abstract in Arabic ….…….……………………………..………………..………XVIII

Chapter 1: - Introduction.

1.1 Introduction ………………..………………………..……………….………..……1

1.2 Database indexing ……………………………………..…………….…………..…2

1.2.1 Indexing techniques for relational databases………….…….…………..….2

1.2.2 Index Process ………………………………………….….…………….....3

1.2.3 Types of Indexes………………………………………..….………….……5

1.2.3.1 Clustered Indexes .. ……………………………..………….…..….5

1.2.3.2 Non-Clustered Indexes…………………………..……….……..….7

1.3 Indexing Examples……………………………………………………………….…9

1.3.1 Oracle Indexing……………………………………………………...………..….11

1.3.2 MS-SQL Server Indexing…………………………………………………….….13

1.4 The Current Indexing Techniques……………………………………………..…..14

1.5 Advantages and Disadvantages of Indexes………………………………….….…15

1.6 The Problem Statement………………….………………………………………....16

1.7 Significance of the Study and Motivations……………………………………..…17

 XII

1.8 Thesis Contributions …………………………………………………………....…17

1.9 Methodology……………………………………………………………...……......18

1.10 Limitations…………………………………………………………………….….19

1.11 Literature Review and Related Work……………………………………...…..…19

1.11.1 Literature Review……………………………………………………………....20

1.11.2 Related Work………………………………………………………………..….23

1.12 Thesis Organization…………………………………………………………..…..25

Chapter 2: - The Methodology and Experimental Test

2.1 Introduction………………………………………………………………..…….....26

2.2 Methodology Contributions…….…………………..……………..……..……...…27

2.3 Criteria for Comparisons……………………………………………….…….…….28

2.4 Methodology Assumptions……………………………………………...……..…..28

2.5 Methodology Description……………………………………………..…....…..….29

2.6 Technical Test…………………………………………………………..….........…29

2.7 Test H/W & S/W (Test Environment).………………………………….…....…....30

2.8 Test Procedure………………………….…………………….……………………30

Chapter 3: - Experiments and Test Results

3.1 Introduction……………………………….………………………………….…....34

3.2 Test: SELECT Performance………………………………...……………………..35

 3.2.1 Test 1: Oracle 10g and 100K……………………………………......……….35

3.2.1.1 Test 1-a: Single-row SELECT performance with single row.......…......35

 XIII

3.2.1.2 Test 1-b: Range SELECT performance………………………………..35

3.2.1.3 Test 1-c: Full scan SELECT performance………………………..……37

3.2.1.4 Test 1-d: Single-row SELECT performance with non-row……...…….38

 3.2.2 Test 2: Oracle 10g and 1000K…………………………………….……....…40

3.2.2.1 Test 2-a: Single-row SELECT performance with single row……...…..40

3.2.2.2 Test 2-b: Full scan SELECT performance…………………......………40

3.2.2.3 Test 2-c: Single-row SELECT performance with non-row……….…...41

 3.2.3 Test 3: Oracle 10g and 5000K…………………………………………….….42

3.2.3.1 Test 3-a: Single-row SELECT performance with single row…….........42

3.2.3.2 Test 3-b: Range SELECT performance………………………..….…...42

3.2.3.3 Test 3-c: Full scan SELECT performance……………………….….....42

3.2.3.4 Test 3-d: Single-row SELECT performance with non-row…..…..........43

 3.2.4 Test 4: MS SQL Server and 100K……………………………………..…….45

3.2.4.1 Test 4-a: Single-row SELECT performance with single row ……...….45

3.2.4.2 Test 4-b: Full scan SELECT performance……………..……...…..…...46

3.2.4.3 Test 4-c: Single-row SELECT performance with non-row…............…46

 3.2.5 Test 5: MS SQL Server and 1000K…………………………..…...………....47

3.2.5.1 Test 5-a: Single-row SELECT performance with single row ……....…47

3.2.5.2 Test 5-b: Full scan SELECT performance………………….……….…47

3.2.5.3 Test 5-c: Single-row SELECT performance with non-row………....…47

 3.2.6 Test 6: MS SQL Server and 5000K……………………………………….…48

 XIV

3.2.6.1 Test 6-a: Single-row SELECT performance with single row......……...48

3.2.6.2 Test 6-b: Full scan SELECT performance…………………..........……49

3.2.6.3 Test 6-c: Single-row SELECT performance with non-row………...….49

3.3 Recommendations and Further Analysis……………………………….……….....50

3.4 Test: INSERT Performance………………………………………………..………54

3.5 Test: Select Performance using Composite Key in Oracle…………………...……57

3.6 Test: Select Performance using Composite Key in MS SQL Server…………...….58

3.7 Test: Insert Performance using Composite Key in Oracle and MS SQL Server with

1000K……………………………………………………………………………..……59

3.8 Test: Update Performance using Composite Key in Oracle and MS SQL Server

with 1000K……………………………………………………..……………...……….61

3.9 Test: Delete Performance using Composite Key in Oracle and MS SQL Server with

1000K……………………………………………………..………..………………….62

3.10 Test: Select Performance using Composite Key in Oracle and MS SQL Server

with 100K……………………………………………………………………….…….64

3.11 Test: Insert Performance using Composite Key in Oracle and MS SQL Server with

100K……………………………………………………………………………….…..65

3.12 Test: Update Performance using Composite Key in Oracle and MS SQL Server

with 100K………………………………………………………………………………67

3.13 Test: Delete Performance using Composite Key in Oracle and MS SQL Server

with 100K………………………………………………………………………………68

3.14 Test: Select Performance using Composite Key in Oracle and MS SQL Server

with 5000K………………………………………………………..………………..….70

3.15 Test: Insert Performance using Composite Key in Oracle and MS SQL Server with

5000K……………………………………………………………………...…….……..71

 XV

3.16 Test: Update Performance using Composite Key in Oracle and MS SQL Server

with 5000K……………………………………………………………..…………..…..72

3.17 Test: Delete Performance using Composite Key in Oracle and MS SQL Server

with 5000K………………………………………………………………….…………73

3.18 Guidelines to Select Indexing Techniques ………………………………...…….75

3.18.1 Using Decision Table to Select the Indexing for the DBAs:………….………..75

3.18.1.1 Oracle Environment…………………………………………………………..76

3.18.1.2 MS-SQL Server Environment.……………………………………….….……78

3.18.2 Descriptive Guidelines and Advices for the DBAs…………………………….79

3.19 Observations and Recommendations……………..………………………………82

Chapter 4: - Conclusions and Future Work

4.1 Conclusions ………………………….……………….….………………..…….…84

4.2 Future Work……………..…………………………….…………………...….…...86

References…………………………………………………..…………………….....…87

Glossary………………………………………………………..…………………. …..91

 XVI

Abstract

A Comparative Study of Indexing Techniques for Relational
Database Management Systems

 By

Huda Ayesh Mashaan AlRashidi

 Indexing Represents the essential importance in the databases of all kinds and

forms of organization is a method of knowledge and access to different sources of

information. Indexes in general are data-structures that were created to speed up the

search process and access to data and reduce the number of input and output I / O data, as

well as free up system resources for various computer applications.

 On the other hand, there is very little published research which presents to comparisons

of methodology between the indexing techniques and through the extensive research and

deep study shows that there is weakness or lack in previously published research which,

did not take adequate criteria that would make clear the comparison process, as well as

the absence of a clear methodology and database developers or administrator can follow.

In this thesis, established a guidelines in order to advise the database developers to select

the best suitable indexing technique (such as B-tree index, organization index, reverse

index, clustered index , non-clustered and Bitmap index) for the database tables over two

different platforms: Oracle and MS SQL Server with different data sizes starting with

100K, 1000K and ending with 5000K .

 There are two directions to build the research methodology in this thesis: mathematical

and theoretical, empirical test that relies on the experiments and simulation that are

conducted on the same technical environment. In this research, the experimental test is

more suitable to the problem statement. Furthermore, we have identified the factors that

 XVII

need to be considered when database administrator (DBA) or developer wants to

establish a proper index on database.

 To evaluate the efficiency of indexing technique, we have implemented six indexes

(B-tree, reverse, organization, clustered, non-clustered and bitmap) on the Oracle and MS

SQL Server. We have conducted several experiments on large databases and recorded the

overall performance, CPU consumptions, and I/O cost. Thus, the results obtained are

based on criteria of the proposed methodology for selecting the best suitable indexing

technique. The DBA then is able to use the guidelines in establishing and retrieving the

information from the databases through the indexes.

 XVIII

������

����� �����	
��� ���
��� ���� ����� ����� �������� ��������

��� ���� ���!	 "��!���

ا	� ا������ت � �
���� ا������ أه��� ��ور�� ����� �!��" ��

ل �'&��% أ�
ا	�� وأ$#����)

� وا��*�+

� إ��6:�� ا�,� 	��رة 	8 ه��آ� �+�����ت '6#� 	�م ه�
�����رس. إ�1 .�0در ا��*+
.�ت ا��-,+�� � %��;,�

ل إ�1 ا������ت 	�+�� ا��=>)
�=��� وآC�D �+�����ت، A��-I/O 	�د 	�+��ت ا@د?�ل وا@?�اج و � و ا�

 . �-,+��ا�=��
'�� ا�+,��E!�ت �رد ا����م .
ا

ا�,� ���و�K و��E�K إ�1 ا��!�ر��ت ا����&�� '�8 ا�!+�� .8 اJ'=�ث ا���6
رة�
�H ه�����G�� 8. C أ?�ى،

دة "�قH

M*� �H أو 	�م د��
� اJ'=�ث ا������ ا��� N8 ا����و.O? 8ل ا��=> وا��را�� ا�*��!�

�G �!'�� رة
�D?Q ا��*���� ا�#�
�� ا�,� .���Q$ 8 أن �&*� .8 	�+�� ا��!�ر�� وا�=� ود��!� ا���6 �> أ��� �

 ��	���
ري �
ا	� ا������ت إE. %�E,;� �=&�� وا���د .
Hم و�	 C�Dوآ.

ري �
ا	� ���=�ول
� هTD اJ"�و�G أن �!
م '
�% ا����دئ ا����&�� �Dا E�� وا@ر$�د U0�ا� ���!,

ا '�?,��ر أ
�V "�ق����ا��.
 B-tree index ،Organization.�� (ا������ وأآ��ه� .O:�� ت �#� �!

index ،reverse index ،clustered index ،Bitmap index (ا������ت �	ا
.O? 8ل ���.�8 �&�اول �

� 'GQ&�م '����ت .-,+�� ���أ : @دارة �
ا	� ا������ت��� K

آ�+
'��K 1000آ�+
'��K، 100' أوراآ� و.��#�و�

 ��,�� . آ�+
'��K 5000' و

 �Gو�"Jا TDه �
 �G�,!&�� ا����+1 .!�ر�,�8 ا��	ي
,=�� ا�=0
ل 	+��� .8 ا��=
ث: � ا���6
رة .!�ر��

� إ�Hا:�� 	+1 ��^ ا���[� ا�,!��� ��'!��
ا.� ا�*
OV 	8 ذ�C، �!� ���� ',=��� . وا_?,��رات ا�,&����� ا�,�

?Q�
ا	� ا������ت ا�,� �&a أن � �

ا	� D) (DBA '*�8 ا_	,��ر 	��.� ���� .�6!� �����. ����
'��ء

 .ا������ت

�&�رب و���E!��و�� ��	 ��
���� 	+K� 1 "�ق)B-tree index ،Organization ،reverse ،

clustered ، Non-clustered, Bitmap (#��.+1 أوراآ� و	ق��" ����*

� @��dت ��� K

. ا������ و�

 XIX

� إ� <�G'����ت آ���ة �	ا
و�� ���� أ��V ',;&�� اJداء و.,
��E و(��eة ، �Hاء ا�*��� .8 ا�,&�رب 	+1 �

 ��fة ا��*��&� ا���آ�Gو �
�#���M 	�+��ت ا@د?�ل وا@?�اج وآCPU(C�D(ا�#+� و�;&�� ا�
�K ا��;,�eق

I/O .، ���,��'و��ت ا�,���!� �V
� ا�=0
ل 	+��� 	+1 ا��*���� ا����&�� ا��!,��G _?,��ر أ�ت ا��,�:g ا�,�

ا	�و.8 ه�� أ(�U ��. ا������ ا�������� �
ا�!�رة 	+1 ا�,-�ام ا����دئ ا@ر$�د�� (DBA)ا������ت ى .�6

 .ا������ .8 �
ا	� ا������ت .O? 8ل "�ق
� '��ء وا�,��Hع ا��*+
.�ت

Chapter 1

Introduction

1.1 Introduction

 Relational Database Management Systems (RDBMS) maintain a collection of huge data files to

provide fast and efficient methods in order to access and modify data which is necessary (Martin et

al., 1992). Therefore, RDBMS have supported indexing techniques in order to access the data

efficiently in static and dynamic manners.

Databases have been in use since the earliest days of computing revolution. In 1960's, it started

the development of DBMS that supports manual navigation of a linked data set which was formed

into a large network. In addition, DBMS provides boolean queries that required the programmers

to go through the entire database and collect the matching records.

 In 1970's, Codd outlined a new approach to database construction that was based on a

Relational Model of Data for Large Shared Data Banks. He described a new system for storing and

working with large databases. Instead of records being stored in some sort of linked list of free-

form records as in Codasyl, Codd's idea was to use a "table" of fixed-length records. A linked-list

system was inefficient when storing "sparse index" databases where some of the data for any one

record could be left empty. The relational model splits the data into a series of normalized tables.

 Nowadays, databases have matured and required new technological advancements in order to

raise its overall performance, and sustain heavy loads of data. Query processing and optimization

 2

have always been one of the most critical components of database technology. This component

deals with efficient and effective processing of user queries against a database. The purpose of the

query processing and optimization is to find user-defined data from large database effectively and

with an acceptable accuracy (Clement et al., 1997). This sort of optimization is performed mostly

by utilizing indexes to facilitate the quick access to user defined queries.

1.2 Database indexing

 An index is an identifier, attribute, keyword and their conjunctions using conditional

statements. The index is used to retrieve the multimedia information (Ponce , 2002). In databases,

indexes allow to quickly identify and locate objects (such as data elements or file objects)

according to some criteria which might be based on one or more fields containing key values to

which search criteria are applied. In other words, Indexes are data structures designed to make

search faster (Wesley, 2008 ; Elbassioni, et el. , 2003).

 The nature of index could be an implicit or explicit key. The implicit index is the location of the

target object to improve the speed of data retrieval operations on a database table particularly when

the storing is costly (Crowe and Chizek, 2004; Mike et al., 2005).

 Indexing significantly reduces the number of I/O operations, speeds up access to data as well as

frees up the system resources for different applications.(Marcilina et al. , 2000).

1.2.1 Indexing techniques for relational databases

 Currently, a database index can be organized in B-tree structure.

In B-tree structure, each page in an index is named and index page or an index node. The index

configuration has distinct index structure. This structure begins with a root node at the top level

 3

which marks the beginning of the index-it is the first data accessed when a data lookup occurs. The

root node includes a number of index rows, which contain a key value and a pointer to an index

page (Marcilina et al., 2000 ; Lin et al. , 2005).

 Note that, the B-tree index configuration is necessary because it improves the information

retrieving from huge table. B-tree index consists of thousands or millions of index pages. By

starting at the root node and traversing the branch nodes, SQL servers can retrieve the data needed

for the search criteria.

1.2.2 Index Process

 As shown in Figure 1.1, the root node consists of a number of branch nodes. Each branch node

contains a number of index rows held in an index page. Each index row points to another branch

node or a leaf node. The leaf nodes make up the last level of an index. However, unlike the root

node, each branch node also includes a linked list to other branch nodes on the same level. This

means, the node recognizes for adjacent nodes as well as lower nodes as illustrated in Figure 1.2

(Sheldon , 2008 ; D. Lin et al., 2005).

Figure 1.1 Root node and branch nodes of an index

 4

Figure 1.2 A search tree showing branch nodes and leaf nodes

Figure 1.3 illustrates that every group of branch nodes at the same level of the tree structure is

known as an index level. Thus this thesis will investigate the number of I/O operations that are

needed to reach the leaf nodes. Based on capacity of database, if the database table includes only a

small amount of data, the root node can point directly to the leaf nodes, and then the index no

longer needs to contain any branch nodes (Marcilina et al., 2000).

 5

Figure 1.3 Index Levels

The next section describes the type of indexes including clustered indexes and non-clustered

indexes.

1.2.3 Types of Indexes

 There are two types of B-tree indexes: (i) clustered indexes and (ii) non-clustered indexes. In

brief, a clustered index stores the real rows of data in its leaf nodes. Whereas, a non-clustered

index is a secondary structure that points to data in a database table (Lin et al. ,2005; Oracle,

2005).

1.2.3.1 Clustered Indexes

 As shown in Figure 1.4, a clustered index is a B-tree index that stores the actual row data of the

database table in its leaf nodes, in sorted order. Such index offers several advantages and

disadvantages.

 6

Figure 1.4 B-tree Clustered Index

The first advantage is that the data availability which can result in a minimum number of I/O

operations. Consequently, any reduction in these I/O operations will yield better performance for

the individual operations and greater overall performance for the B-tree index than other indexes

(Marcilina et al., 2000; Oracle, 2005).

 Further advantage is that the retrieved data will be in index-sorted order. For instance, if a

clustered index is created on the county, and city columns and a query selects all values for which

city? Kuwait, the results will be sorted on county and city according to the order in which the

index is declared.

 7

 As a result, the sorted data feature enhances the time efficiency by reducing the time overhead

on database. Use of a clustered index means it will not need to perform the sort after the data

retrieval (Marcilina et al., 2000; Oracle, 2005).

 On the other hand, the first disadvantage of using a clustered index is that access to the database

table can result in extra time overhead. The SQL server begins data access at the root node and

traverses the index until it reaches the leaf node including the data. Based on the capacity of the

leaf nodes- if many more leaf nodes are built, the number of index levels necessary to support that

many leaf nodes is also large. Thus, this involves more I/O operations to pass from the root node to

the leaf node (Sheldon , 2008; Oracle, 2005).

1.2.3.2 Non-clustered Indexes

 Currently much research relies on clustered indexes; however, some database engines still use

the non-clustered indexes. The non-clustered index is different from clustered index at the leaf

nodes. The non-clustered index does not include actual table data in its leaf nodes.

 Figure 1.5 shows that if there is no clustered index on a table, non-clustered indexes on that

table store Row Identifications (Ids) in their leaf nodes. At this stage, each Row ID points to the

actual data row in the table. The Row ID compromises from a value that contains: the data file ID,

the page number, and the row in the page. The importance of this value is to enable rush access to

the actual data by pointing where the data is stored (Sheldon, 2008; Oracle, 2005).

 8

 Figure 1.5 Non-Clustered index on a table without a Clustered index.

On the other hand, if there is a clustered index on the table, non-clustered indexes will contain the

clustered index key value for that data in the leaf node, as illustrated in Figure 1.6. When the leaf

node of the non-clustered index is reached, the clustered key value indicates that it should be used

to search the clustered index, when data row will be found in its leaf node (Marcilina et al., 2000).

 9

Figure 1.6 Non-clustered indexes on a table with a clustered index.

1.3 Indexing Examples

 In this section, the B-tree indexing is described in Oracle and MS-SQL Server Database

Management Systems.

 The B-tree index in the Oracle and MS-SQL Server is the most popular type for servicing

queries and for avoiding large sorting operations (Burleson , 2002; Arzucan ,2006).

 10

 In Oracle, a number of choices are provided when creating an index using the default B-tree

structure as follows:

1. Indexing on multiple columns (concatenated indexes) to improve access speeds.

2. Allowing for individual columns to be sorted in different orders. For example, it is possible

to create a B-tree index on a column called “city” in descending order and have a second

column within the index that displays the “country” column in a ascending order (Burleson

2002; Arzucan 2006).

Figure 1.7 describes a B-tree index in a hierarchical manner with a root node at the top and the leaf

nodes at the bottom.

 Figure 1.7 An Oracle B-tree index

 11

 Figure 1.8 MS-SQL Server B-tree index.

 Figure 1.8 depicts a practical example which demonstrates the search method in a B-tree. If

“Huda” searches for the value 156, then the query engine would start at the root level to determine

which page to reference in the top intermediate level. The first page points to the values 1-100, and

the second page points to the values 101-200, so the query engine would go to the second page on

that level. The query engine would then determine that it must go to the fourth page at the next

intermediate level. From there, the query engine would navigate to the leaf node for value 156. The

leaf node will contain either the entire row of data, or a pointer to that row depending on whether

the index is clustered on non-clustered (Sheldon , 2008; Giugno , 2002) .

1.3.1 Oracle Indexing

Following a description of some indexing techniques on Oracle database.

1. B-Tree Index

 B-tree is one of the methods used for searching a specific value on the tree. To implement this

method is to invoke the adjacent value of the node and compare it, if the value of the node is less

 12

than the root it will start from the left part of the tree; and if the value is greater, it will start from

the right part of the tree.

2. Bitmap Index

 Cyran et al. (2005), discovered the Bitmap index. Bitmap is a method containing a two-

dimensional matrix and each column stores value in a single bit. The implementation of this

method is that each index will have either 1’s or 0’s, if the value is found, it will specify 1’s; but if

it is not found it will specify 0’s. While searching, the oracle will take the entire raw indices that

have a value of 1’s. In other words, it will be pointed at the index that has been found.

3. Reverse Key Indexes

 Cyran et al. (2005), created Reverse Key Index. It is a method that compares a standard index,

and reverses the entire bytes in each column except the rowed, in the mean while it will keep the

columns in order as arrangements will avoid performance degradation with real application cluster.

Oracle would be forced to search for each specific index value separately as each value in the

range is likely to be in differing leaf blocks. By reversing the keys of the index, the insertions

become distributed across all leaf keys in the index

4. Index-Organized Tables

 Index organized tables contain a storage organization that is totally different from B-tree, it is a

distinct ordinary, such as heap-organized. The table that is stored as data in an unordered collection

will be organized in a table and stored as in B-tree index structure as a primary key stored manner.

On the other hand, the primary key will be stored as column values of an index-organized table

row. Each index in the not key column values will be entered in the b-tree stores structure.

 13

 1.3.2 MS-SQL Server Indexing

Following is a description of some indexing techniques on MS-SQL Server database.

 1. Clustered Index

 Vassie & Lee (2009), sorted and stored the data rows of the table to perform the table in order.

This is based on clustered index key. Clustered index is implemented as same as B-tree index

structure which supports fast retrieval of the row. This implementation is based on the value of the

clustered index.

2. Non-clustered Index

 Vassie & Lee (2009), performed a table with a clustered index or on heap, it can be defined in

a non-clustered index. Also, the rows in the non-clustered index will contain the non-clustered key

value and a locator for the rows. This locater is a pointer to the data row to the clustered index in

order to obtain the value of the key. However, if the data in a clustered index is created in the table

will be in order, otherwise it is not guaranteed to be in any particular order.

3. Unique Index

 The unique index is one of the techniques that ensures no duplicate values. Therefore, each

row on the table should be unique in some way. Both clustered and nonclustred are unique.

4. B-Trees Index

 B-trees index is a multi-way trees (forest), each node will contain two parameters set of keys

and pointers. The minimum size of B-tree node is a tree which has four keys and five pointers.

Also, it contains data pages and it is a dynamic which means as much as the height of the tree is

growing the record are added and deleted.

 14

1.4 The Current Indexing Techniques

 This thesis is focused on relational database indexing techniques. As a part of future work, the

object oriented databases indexing techniques will be discussed. So, RDBMS employ many

techniques and methods to enhance the overall performance based on indexes. Thus, this section

mentions the most popular indexing techniques used in Oracle and MS-SQL Server, as shown in

Table 1.1.

Table 1.1: Summary of indexing types in Oracle and MS SQL Server

Database Platform Indexing Type

Oracle B-Tree Index

MS SQL Server

Oracle
 Bitmap Index
MS SQL Server

Oracle
XML Index

MS SQL Server

Oracle
Index Organized Tables

Oracle
Domain Index

Oracle
 Cluster Index
MS SQL Server

Oracle
Reverse Key Index

 15

Oracle
B-Tree cluster Index

Oracle
Bitmap Join Index

MS SQL Server
Non-clustered Index

1.5 Advantages and Disadvantages of Indexes:

Indexes have the following advantages and disadvantages:

• Advantages

1. Use ordered data to avoid sorts to favor merge joins over nested-loop joins.

2. Speed up reading a row when the right search arguments are known.

3. Index scans are much faster than table scans.

4. Index files are generally small in size and require less time to read than an entire table,

particularly as tables grow larger.

5. The entire index may not need to be scanned.

6. The predicates that are applied to the index reduce the number of rows to be read from the

data pages.

7. If an ordering requirement on the output can be matched with an index column, then

scanning the index in column order will allow the rows to be retrieved in the correct order

without sorting.

8. Each index entry contains a search-key value and a pointer to the row containing that

value, so values can be searched in an ascending or a descending order.

 16

9. An index can include columns, which are non-indexed columns in the indexed row. Such

columns might make it possible for the optimizer to get required information only from the

index, without accessing the table itself.

• Disadvantages

 Although indexes can reduce access time significantly, they can also have adverse effects on

performance. Before you create indexes, consider the effects of multiple indexes on disk space and

processing time .

1. Each index requires a storage or a disk space. The exact amount depends on the size of the

table and the size and number of columns in the index.

2. Each INSERT or DELETE operation performed on a table requires additional updating of

each index on that table. This is also true for each UPDATE operation that changes the

value of an index key.

3. The LOAD utility rebuilds or appends to any existing indexes.

4. Each index potentially adds an alternative access path for a query for the optimizer to

consider, which increases the compilation time.

1.6 The Problem Statement

 Indexing is a critical area in the era of academia and industry and it should increase the speed of

processing information and enhance accessing the storage areas of hard drives and search engines.

A number of researchers and database practitioners have attempted to set guidelines for using the

indexing techniques in Oracle and MS SQL Server. However, there is a lack of knowledge because

they did not consider part of criteria (such as CPU time, I/O operations, Packet size, and memory

factor) which are used to demonstrate the overall performance of indexing types in Oracle and MS

 17

SQL Server. It should be noted that the indexing techniques will be implemented and tested on two

platforms: Oracle and MS SQL Server.

 Thus the problem question is how to establish a guide to advise the database developers how to

select the best indexing techniques that suit their database design. This will be done in this thesis

contribution “A Comparative Study of Indexing Techniques for Relational Database Management

Systems”.

1.7 Significance of the Study and Motivations

 Through our research process in the database indexing field, it is found that there is no

systematic approach for the selecting of indexing which relies on the expertise and experience of

the user to use it. Therefore, progress should be taken into account to construct a referenced guide

to give all database developers who are interested in enhancing the database engine performance

and to allow them to understand how an index could affect the performance and use indexing and

when not. Moreover, we will cover indexing techniques that help developers and DBAs to make

quick, correct decisions in choosing their type of indexing.

1.8 Thesis Contributions

The main contributions of this thesis are summarized as follows:

1- We estimated rules (Full Scan SELECT operation, Range SELECT operation, and Single-

row SELECT operation) and criteria (I/O cost, CPU consumption, and Performance) that

makes the decision of selecting appropriate indexing technique.

2- We have done a systematic comparison between the available indexing methods (B-tree,

Bitmap, reverse, and organization index) on Oracle platform and the indexing techniques

 18

(Primary key clustered, unique clustered index, and non-unique clustered index) on MS

SQL Server platform).

3- We constructed a referenced guide to help database developers and DBAs for selecting the

indexing method in order to retrieve their data in efficient method.

1.9 Methodology

 The research methodology that will be followed is directly connected to our problem

statement and contributions of this thesis. Since the thesis purpose and problems may vary,

different methods of research can be utilized. A systematic literature review has been performed

to analyze all the facts about indexing with the focus on comparing experimental tests and the

indexing techniques (B-tree index, Bitmap index, reverse index, and organization index) on Oracle

platform and the indexing techniques (Primary key clustered, unique clustered index , and non-

unique clustered index) on MS SQL Server platform with different size of data (100K, 1000K,

and 5000K) and practical results on table indexing.

After that, testing and evaluation have been conducted which are based on the following criteria:

a. Performance with various sizes of data for both environments Oracle and MS-SQL Server.

b. CPU time for both environments Oracle and MS-SQL Server.

c. Memory factor for both environments Oracle and MS-SQL Server.

d. Number of I/O operations for for both environments Oracle and MS-SQL Server.

 As a result of evaluation, three main points are obtained:

1- To build indexing reference for the DBAs and developers; we will assume that indexes can be

created well if they have the right selection to evaluate the fitness of an index.

 19

2- To assess the indexing techniques; we will create databases with various sizes ranging from

small, medium and large to assess many types of indexing for each database in Oracle and MS-

SQL Server.

3- To represent the results we will use special SQL commands to analyze tables; the methods for

query optimization include: SQL Trace and Oracle Trace.

The methods adopted in this thesis are in order to clarify indexing by assessing many types of

indexes to identify which one is the better for special types of tables by considering and taking into

account the size of tables.

1.10 Limitations

 Complete and consistent assessment of all indexing methods for all database types is not

possible due to difficulties in representing every case scenario to cover all types of databases.

Therefore we will take the most common methods of indexing used by Oracle and MS-SQL

Server.

1.11 Literature Review and Related Work

 This section is drawn according to the recent research papers and technical reports. We survey

the recent indexing techniques such as clustered indexes and non-clustered indexes. Also we state

the process of these techniques, strengths, and weaknesses. Based on this comparison, the thesis

will adopt the methodology for selecting the optimal database indexing techniques.

 20

1.11.1 Literature Review

 As mentioned in pervious sections, the thesis is concentrated on the database indexing

techniques. Thus, this section discuses the past, and present of indexing techniques.

 Martin et al., (1992) presented a novel approach for a tool that assists the database

administration in designing an index configuration for the relational database system. A relational

database uses indexes to provide a fast access to data repository. However, there is a tradeoff

involved in use of indexes for every column. As a result, this tradeoff is referred as the Index

Selection Problem (ISP). The ISP denotes to tailoring the configuration of index to the database

usage profile. Moreover, Martin’s research presented a methodology for run time facility. This

methodology for collecting usage statistics at run time was developed which lets the optimizer

estimates query execution costs for alternative index configuration. However, this research work

has two weaknesses:

a) Requiring much time for running the queries, and

b) Defining a workload specification required by existing index design tool,

c) The architecture of this tool may be very complex for large integrated database system.

d) The proposed tool automatically derives the workload statistics. These statistics are then

used to efficiently compute an index configuration.

 Chaudhuri and Narasayya , (1998) introduced algorithms for the index selection tool in

Microsoft’s SQL Server as part of the AutoAdmin project. The objective of the index selection

tools is to generate an index set for a given input workload, obtained by the DBA to be able to

perform a quantitative analysis of the existing indexes. In addition, the DBA should have the

ability to propose hypothetical (“what-if”) indexes and quantitatively analyze their impact on

performance of the system. The authors also presented interfaces supported by a Hypothetical

Configuration Analysis Engine (HCAE) to conduct significant and powerful analysis studies.

 21

However, the developed HCAE limits the overall performance of query processing and

information retrieval systems.

 Gaffar, (2001) described how to create B-tree index from independent building blocks that are

coherent and decoupled. He expanded the concept to build a complete modular index system. In

this design, the index data structure is broken with functionality into container of pages. Each page

is built as container of entries where each entry is a pair of <key, reference> .

In the end, the data and the data reference modules are added to complete the system. This allowed

constructing a complete index system from modules. In order to adapt the system to different

keys/data types, different queries, different access methods, and different storage media, it is

needed to locate and modify some modules in the system. This reflects the modifications on the

system design and eventually on the interface.

 Using a modular design for the index system has the advantage of making it easier to adapt the

system to work in different database domains. The analysis of the domain determines the modules

that need changes (or replacement), and the sort of changes (or modules) required.

 The complexity of modification is also reduced since the developer does not need to know

about the details of all modules, but only of those modules to be changed along with an overview

of the system. The adoption of Standard Template Library (STL) approach adds great advantage of

having a wealth of off-the-shelf standard modules that can be simply used to replace system

modules in the process of modifying the system. The modification reduces time and money

overheads incurred during the application development process.

 Aouiche et al., (2005) presented an automatic strategy for bitmap index selection in data

warehouses. In order to improve a response time, data warehouse administrators generally use

 22

indexing techniques such as star join indexes or bitmap join indexes. The proposed model

estimated data access cost through indexes, maintenance and storage cost. The experimental

evaluation showed that the application of cost models to their index selection strategy decreased

the number of selected indexes without a significant loss in performance. Thus, this actually

guaranteed a substantial gain in storage space and then a decrease in maintenance cost during data

warehouse updat.

 Graefe, (2010) developed a B-tree locking technique. The process of this technique is dividing

B-tree into two sub-topics and exploring each of them in depth. Concurrency control for B-tree

indexes in databases can be separated into two levels: (i) concurrent threads accessing in-memory

data structures and (ii) concurrent transactions accessing database contents. These two levels are

implemented with latches and locks. The functions of latches and locks are explained as follows:

1. Latches support a limited set of modes such as shared and exclusive. They do not provide

advanced services such as a deadlock detection or escalation. They can also be embedded in the

data structures for protection. Therefore, their acquisition and release can be very fast.

Furthermore, they implemented short critical sections in the database system code.

2. Locks provide several modes and multiple advanced services. The management of locks is

separated from the protected information, for instance, keys and gaps between keys in the leaf of a

B-tree index. Note that the hash table in the lock manager is in fact secure itself by latches.

 The conceptual technique for concurrency control among transactions accessing B-tree contents

is a key range locking.

The ultimate recent design has the following advantages:

A) Allowing separate locks on individual key values and on the gaps between key values.

 23

B) Applying strict multi-granularity locking to each pair of a key and a neighboring gap.

C) Reducing lock manager invocations by using additional lock modes that can be derived

automatically.

D) Enabling increment locks in grouped summary views.

E) Exploiting ghost records not only for deletions for but also for insertions.

1.11.2 Related Work

 Zobel et al. , (1996) discussed the techniques and methods for new indexing which are of

common outcome regarding the database research. Moreover, they presented a framework and

compared the proposed framework with the existing indexing techniques and schemes. Based on

the criteria (namely direct argument, mathematical modeling, simulation, and experimentation),

they discussed the principal methods.

 The aim of this comparison is to indicate the minimum overall speed, CPU , time and ease of

index construction. In a dynamic system should also consider index maintenance in the presence of

addition, modification, and deletion of records; and implications for concurrency, transactions, and

recoverability.

 King, (2001) Oracle8i provided many database tables which have primary or unique keys

based on a sequence. These keys are usually indexed by b-tree indexes which, by nature, store the

indexed values in order. These types of indexes can become performance bottlenecks on high-

volume transactional systems because of serialization that occurs when inserting values into the

leaf-blocks of these indexes.

 To avoid this serialization, reverse-key indexes can be used. A reverse-key index stores

indexed values in reverse-bit order. So, where the values (31, 32, 33) are stored sequentially and

 24

contiguously in a normal b-tree index, they were stored out of sequence and non-adjacent (33, 31,

32) .Over a larger set, this reversing of the key distributed the indexed values across the leaf-node

blocks of the index, thereby eliminating the serialization on sequential inserts.

 King, (2001) Oracle8i presented different types of indexes : (B-tree index , Bitmap index ,

index-Organized table and reverse-key index), then compared and contrasted the various options

available and how to choose from among them . So that, the system helped developers when

deciding not just what columns to index but how to index them .

 King, (2001) Oracle8i described the index organized tables worked best when there are few

columns in the table / index and the size of a row is small compared to the size of block. Index

organized columns may not consist LONG columns. Index organized tables may not be used in a

cluster.

 Madhulatha , (2010) built a new methodology for collecting usage statistics at run time. This

methodology developed the optimizer to estimate query execution costs for alternative index

configurations that assist the database administrator in designing an index configuration for a

relational database system. In addition, the proposed methodology defined the workload

specification required by an existing index design tools which may be very complex for a large

integrated database system.

 However, one need to automatically derive the workload statistics and these are then used to

efficiently compute an index configuration.

 25

1.12 Thesis Organization

The reminder of this thesis consists of the following Chapters:

Chapter 2; discuss the thesis methodology. We describe the methodology for selecting indexing

techniques for relational databases.

Chapter 3; implements the experimental tests and shows the results. According to these results,

the thesis is evaluated.

Chapter 4; draws the conclusions and future work. We identify the real outcomes and compare

with the expected contributions. As a result, we have achieved the objectives of this thesis.

 26

Chapter 2

 Test Methodology and Experimental Test

2.1 Introduction

 The majority of commercial (RDBMS) Relational database management systems performance

is relied on I/O operations rather than other computing resources. This is because the performance

cost of I/O is expensive and there are other costs such as memory allocations and CPU

consumption. The most important factor to consider is whether the I/O subsystem of a given

(RDBMS) will support a reliable performance as time passes.

 This chapter describes a methodology for evaluating indexing techniques for relational

databases. The methodology is based on a number of experiments to test a set of indexing

techniques on two different platforms (Oracle and MS-SQL Server) with different data sizes

(small, medium, and very large) over the same technical environment (Multiple processors,

memory, and I/O devices). This factor is necessary to satisfy the real results on different

platforms: Oracle and MS-SQL Server.

 To run the experiments, we have taken the following indexing techniques in Oracle: B-tree,

Bitmap, Reversed, and organization index. In the meanwhile, we have taken the following

indexing techniques in MS-SQL Server: B-tree, Clustered index, and unique non-clustered index

and Primary Key Clustered index.

 The methodology includes the technical environment, platforms, table schema, table sizes, and

a number of indexing techniques. We have also established a number of test scenarios to achieve

the real results. The methodology procedure and flowchart include an ordered set of steps that have

been taken to run the experiments in this thesis.

 27

 The aim of the methodology contribution is to measure overall performance and behavior of

indexing techniques that are performed against the same set of data: (i) As a non-clustered index

on a specified set of columns, (ii) and as a clustered index on the same set of columns. Note that,

we have measured the performance of SELECT operation over Oracle 10g and MS SQL Server on

different data sizes (100K, 1000K, and 5000K).

2.2 Methodology Contributions

 The contribution of our test methodology is to characterize the performance and behavior of

DML operations performed against the same set of table data organized:

• As a non-clustered index on a specified set of columns.

• As a clustered index on the same set of columns.

In this test, a number of questions should be answered through the experimental results as follows:

1. Are clustered indexes necessary for all tables?

2. Are non-clustered indexes necessary for all tables?

3. What are the performance gains or losses for row-by-row SELECT operations executed

against three different sizes of tables (100K, 1000K, and 5000K) with a clustered index

versus the same tables without a non-clustered index for a high-throughput workload on

Oracle 10g and MS-SQL Server 2005 platforms?

4. How does a range query perform on the same tables with a clustered index versus a non-

clustered index?

5. What are the effects of having the first column index be monotonically increasing? The

purpose of this test is to measure performance.

6. What are the CPU utilization characteristics when rows are selected from a table with a

clustered index and from non-clustered index?

 28

2.3 Criteria for Comparison

 Each type of index is related to query evaluation algorithms that access the requested

information, and update algorithms that maintain it. There are many criteria by which indexing

techniques can be compared. We need to consider the overall speed, space requirements, CPU

time, memory requirements, measurements of disk traffic such as numbers of seeks and volumes

of data transferred, and ease of index construction. All of these considerations will be in the

context of assumptions made about the properties of the data and queries (Zobel et al., 1996).

2.4 Methodology Assumptions

 To make a contribution to the study of indexing, it is not sufficient to simply describe the

current indexing techniques. It is also necessary to provide a demonstration of the value of the

method, and place it in the context of other established methods. This demonstration will be based

on several constraints and assumptions: the class of data (such as textual and multimedia data), the

class of queries (such as SELECT queries), characteristics of the application, for example-and

characteristics of the supporting hardware for both MS SQL Server and Oracle.

 Database Administrators (DBA) will judge the success of the used technique according to its

performance on the basis of the stated. Assumptions should not only be claimed to be reasonable,

they should be argued for, and, where possible, demonstrated as being reasonable.

Similarly, assumptions about hardware should associate with the current technology or likely

future improvements. The performance of the hardware should be related to common benchmarks,

to allow comparison with familiar systems and to convey the impression that the technique will be

of value on probable hardware-rather than a machine with limited memory but massive arrays of

parallel disks.

 29

2.5 Methodology Description

 The main aim of this section is to conduct the tests described in the previous section against

throughput workload that represented real-world scenarios. Another aim is to keep the test setup

(server configuration, database settings, table schema, computer configuration and Operating

System) approximately constant across the tests so that we compare the overall performance

between different SELECT operations using different indexes.

 After some testing and analysis using real-world measurements, we have noticed that the testing

results could not represent the real performance measurements. This is because the experiments are

conducted on stand alone machine. Even though, we have obtained results in a way that would

make these results meaningful and applicable to a wide variety of other workloads.

 Based on our findings, we have drawn a number of recommendations for DBA’s and

researchers. This methodology is used for the tests explained in Experiments Test and Results

section. Our intent is that these individual tests might help the DBA’s and researchers to estimate

the overall impact of the index choices for a particular application on both platforms: Oracle and

MS- SQL Server. Further intent is that the obtained results could ease the selection of the optimal

indexing techniques for a certain application and platform.

2.6 Technical Test

 We have conducted all tests on computer hardware that was configured with adequate storage.

We have used a TOSHIBA Satellite with Core ™ i7 CPU processors: 720 @ 1.60GHz and 4-GB

memory. The tests are performed on Windows 7 Home Premium for both platforms: MS SQL

Server 2005, and Oracle 10g.

 30

2.7 Test H/W & S/W (Test Environment)

 We have obtained results for the following test scenarios as shown:

SELECT performance

1- Measure the time taken to select 100K, 1000K, and 5000K rows of data from the table with the

primary clustered index, unique clustered index and unique non-clustered index by using

individual (row-by-row) select statements in MS SQL Server Platform.

2- Measure the time taken to select 100K, 1000K and 5000K rows of data from the table with the

Bitmap index, B-tree index, Reverse index and Organization index by using individual (row-by-

row) select statements in Oracle Platform.

2.8 Test Procedure

 As shown in Figure 2.1 and Figure 2.2, our methodology procedure was performed on two

platforms: Oracle 10g, and MS-SQL Server, respectively. The following steps are used to execute

the tests over Oracle platform as described in Test scenarios.

1. The table of size 100k is created and initialized on Oracle platform.

2. The bitmap index is created on the table.

3. The particular test is executed.

4. The table is dropped.

5. The table of size 100k is created and initialized on Oracle platform.

6. The above steps (1-5) have been repeated for other indexing techniques (unique index (B-

tree), reverse index and organization index).

 31

7. Note that the procedure that contains steps from 1 to 7 has also repeated for two different

data sizes (1000K and 5000 K).

On the MS-SQL Server platform, we have performed the above procedure (steps 1- 7) taking into

considerations the following indexing techniques:

1. Primary key clustered index

2. Unique clustered index

3. Unique non-clustered index

Figure 3 illustrates the flowchart of the test procedure. Note that this process of flowchart shows

the steps from 1-7 on different platforms with different data sizes. Further note is that the Oracle

supports different indexing techniques from MS-SQL Server, as explained in Chapter 1 “Related

Work”.

 32

 Figure 2.1: Flowchart of index evaluation on Oracle platform.

 33

 Figure 2.2: Flowchart of the index evaluation on MS-SQL Server platform.

 34

Chapter 3

Experiments and Test Results

3.1 Introduction

 This chapter describes the tests for selecting the indexing techniques in detail and presents the

results measured. We have evaluated the experimental tests through measuring the performance

(response time) of SELECT operation over Oracle 10g and MS SQL Server on different data table

sizes (100K, 1000K, and 5000K). In addition, we have mentioned the costs of I/O operations,

CPU consumptions and the retrieved rows. Furthermore, a set of guidelines have been added for

helping the DBA to select the best indexing techniques.

 We have found out the SELECT performance on four different types of SELECT statements

including select operation retrieved a single row; select operation retrieved a number of rows

depending on the condition in the SELECT statement; SELECT statement retrieved all rows; and

SELECT statement retrieved non-row. In order to advise the best indexing technique, this section

also contains evaluation analysis for each type of SELECT statement.

 Furthermore, we have introduced deeper a analysis through comparing the results on Oracle

with MS SQL Server. Even it is very difficult to compare between two different platforms: Oracle

and MS SQL Server, we have attempted to run our experimental tests on the identical environment

to achieve the possible encouraged results.

 Finally it also summarizes observations and includes general recommendations where

appropriate.

 35

3.2 Test: SELECT Performance

 The SELECT test measured the performance on four different types of SELECT statements:

Test a. Single-row SELECT performance —in this test, each SELECT statement retrieved a single

row.

Test b. Rangei SELECT performance —in this test, each SELECT statement retrieved a number of

rows depending on the condition in the SELECT statement.

Test c. Fullii scan SELECT performance —in this test, each SELECT statement retrieved all rows.

Test d. Single-row SELECT performance —in this test, each SELECT statement retrieved non-

row.

3.2.1 Test 1: Oracle 10g and 100K

3.2.1.1 Test 1-a: Single-row SELECT performance

 The single-row SELECT test has been conducted on Oracle 10g platform with 100K as table

size. It should be noted that the row size is 1K and the data attribute is STUD_ID in the SELECT

statement. As shown in Table 3.1 the performance of Bitmap index is less costly compared with

the other indexing techniques including B-tree (Unique index), Reverse index, and Organization

index. The Bitmap index and Organization index consume less response time (2 ms) than B-tree (3

ms) and Reverse index (3 ms).

3.2.1.2 Test 1-b: Range select performance

 In this test, we have performed a range select experiment on STUD_GRADE attribute. This

attribute has five values from A, B, C, D, and F. On Oracle 10g platform and 100K as file size, the

 36

Table 3.1 illustrates that the Bitmap index consumes less response time (2 ms) than the Reverse

index (3 ms).

For example:

SELECT STUD_ID FROM STUDENT WHERE STUD_GRADE = B;

There are two basic plans the query optimizer could choose:

• Plan 1: Reading all the rows from the "STUDENT" table, for each, check if the predicate is

true (STUD_GRADE = B).

• Plan 2: Read the index where STUD_GRADE = B, then access the table based on the

ROWIDs returned.

 In this test, the "STUDENT" table has 100,000 rows. Also, the values for STUD_GRADE

range from A, B, C, D and F.

 The cost of Plan 1, which involves a FULL SCAN, will be the cost of reading all the rows in

the STUDENT table, which is approximately equal to 100,000; but since Oracle will often be able

to read the blocks using multi-block reads, the actual cost will be lower (depending on the database

setting up). For example, if the multi-block read count is 1, then the calculated cost of the full scan

will be 100,000. Note that the cost has not measured unit.

 The cost of Plan 2, which involves an INDEX RANGE SCAN and a table lookup by ROWID,

will be the cost of scanning the index, plus the cost of accessing the table by ROWID. The cost of

the index range scan is 1 per row; it is expected to find a match in 1 out of 5 cases, so the cost of

the index scan is 100,000 / 5 = 20,000; plus the cost of accessing the table (assuming 1 block read

per access) = 20,000; Overall cost = 40,000.

 37

 Therefore, the cost of Plan 1 (Full scan) is much greater than the cost of Plan 2 (Index range

scan + access by rowid). This means the query optimizer would choose the Index Range scan.

Table 3.2 shows that the cost of full scan Bitmap index is 340, whereas the cost of index range

Bitmap is 2. This result proves what we have noted above.

3.2.1.3 Test 1-c: Full scan SELECT performance

 The full scan test has been conducted on Oracle 10g platform with 100K as table size. It should

be noted that the row size is 1K and the data attribute is STUD_ID in the SELECT statement. As

shown in Table 3.1, the performance of Bitmap index is the best compared with the other indexing

techniques including B-tree (Unique index), Reverse index, and Organization index. The Bitmap

index consumes less response time (4 ms) than B-tree (6 ms), Reverse index (6 ms) and

Organization index (8 ms) as illustrated in Figure 3.1. On the other hand, another full scan test has

been conducted on Oracle 10g platform with 100K as table size. The data attribute is

STUD_GRADE in the SELECT statement. As shown in Table 3.1, the performance of Bitmap

index is the same compared with the Reverse index. The Bitmap index and Reverse index consume

the same response time (6 ms).

 38

Figure 3.1: Full scan SELECT evaluation time for different indexing with 100K on Oracle

3.2.1.4 Test 1-d: Single-row SELECT performance with non-row

 This test has been conducted on Oracle 10g platform with 100K as table size. The data attribute

is STUD_ID in the SELECT statement. As seen in Table 3.1, the indexing techniques

approximately have the same response time. The Bitmap index, B-tree and Reverse index take 2

ms to complete, whereas Organization index takes 3 ms.

Further testing results

 According to the above analysis and Table 3.1, the Bitmap index on 100K has the optimal

retrieving time and then it is better performance compared with the other indexing techniques. We

have recommended using Bitmap index in the relational Databases.

0

1

2

3

4

5

6

7

8

BitmapUniqueReverseOrganization

Response Time (ms)

 39

Table 3.1 100k on Oracle

Indexing

Technique

Scan Operation Data Attribute CPU

Consumption

(%)iii

Costiv Response

Time

(ms)

of rows

retrieved

Bitmap Full Scan STU_ID 8 316 4 99996

Bitmap Index Scan STU_ID 0 {Big

Fraction}

2 2 1

Bitmap Index Scan STU_ID 0 2 2 0

Bitmap Full Scan STU_GRADE 6 340 6 99996

Bitmap Index Scan STU_GRADE 0 2 2 19972

Bitmap Index Scan STU_GRADE 0 2 2 0

Unique (B-

tree)

Full Scan STU_ID 6 340 6 99996

Unique (B-

tree)

Index Scan STU_ID 0 5 3 1

Unique (B-

tree)

Index Scan STU_ID 0 5 3 0

Reverse Full Scan STU_ID 6 340 6 99996

Reverse Index Scan STU_ID 0 5 3 1

Reverse Index Scan STU_ID 0 2 2 0

Reverse Full Scan STU_Grade 6 340 6 99996

Reverse Index Range Scan(i) STU_Grade 0 5 3 19972

Reverse Index Range Scan STU_Grade 0 5 3 0

Organization Index Fast Full

Scan(ii)

STU_ID 4 552 8 99996

Organization Index Unique Scan STU_ID 0 4 2 0

Organization Index Unique Scan STU_ID 0 4 2 1

__

(i) INDEX RANGE SCAN: Retrieval of one or more rowids from an index. Indexed values are scanned in ascending
order.

(ii) INDEX FULL SCAN: Retrieval of all rowids from an index when there is no start or stop key. Indexed values are
scanned in ascending order.

(iii) CPU_COST (NUMERIC) CPU cost of the operation as estimated by the query optimizer's approach. The value of
this column is proportional to the number of system cycles required for the operation. For statements that use the rule-
based approach, this column is null.

(iv) COST (NUMERIC): Cost of the operation as estimated by the optimizer's query approach. Cost is not determined
for table access operations. The value of this column does not have any particular unit of measurement; it is merely a
weighted value used to compare costs of execution plans. The value of this column is a function of the CPU_COST
and IO_COST columns.

 40

3.2.2 Test 2: Oracle 10g and 1000K

3.2.2.1 Test 2-a: Single-row SELECT performance

 The single-row select test has been conducted on Oracle 10g platform with 1000K as table size.

It should be noted that the row size is 1K and the data attribute is STUD_ID in the SELECT

statement. As shown in Table 3.2, the performance of Bitmap and Organization indexes are less

costly compared with the other indexing techniques including B-tree (Unique index), Reverse

index, and Organization index. The Bitmap index and Organization index consume less response

time (2 ms) than B-tree (3 ms) and Reverse index (3 ms).

3.2.2.2 Test 2-b: Full scan SELECT performance

 The full scan test has been performed on the data attribute STUD_ID in the SELECT statement.

As shown in Table 3.2, the Bitmap, B-tree and Reverse indexes consume less response time (38

ms) than Organization index (64 ms). Figure 3.2 draws the variances of response times from 38 ms

to 64 ms.

Figure 3.2: Full scan SELECT executions time for different indexing with 1000K on Oracle

0

10

20

30

40

50

60

70

BitmapUniqueReverseOrganization

Response Time (ms)

 41

3.2.2.3 Test 2-c: Single-row SELECT performance with non-row

 As seen in Table 3.2, the indexing techniques have approximately the similar response time.

The Bitmap index and Organization take 2 ms to complete, whereas B-tree and Reverse index take

3 ms.

Further testing results

 In relation with the above analysis and Table 3.2, the Bitmap index on 1000K relatively has the

best retrieving time and then better performance compared with the other indexing techniques. It is

suggested to use Bitmap index in the relational Databases.

Table 3.2 1000k on Oracle

Indexing

Technique

Scan Operation Data Attribute CPU

Consumptio

n (%)

Cost Response

Time (ms)

of rows

retrieved

Bitmap Full Scan STU_ID 8 3018 38 999731

Bitmap Index Scan STU_ID 0 6 2 1

Bitmap Index Scan STU_ID 0 6 2 0

Bitmap Full Scan STU_GRADE 8 3020 38 999731

Bitmap Index Scan STU_GRADE 8 3026 38 200720

Bitmap Index Scan STU_GRADE 8 3026 38 0

Unique (B-

tree)

Full Scan STU_ID 8 3008 38 999731

Unique (B-

tree)

Index Scan STU_ID 0 8 3 0

Unique (B-

tree)

Index Scan STU_ID 0 8 3 1

Reverse Full Scan STU_ID 8 3020 38 999731

Reverse Index Scan STU_ID 0 13 3 0

 42

Reverse Index Scan STU_ID 0 13 3 1

Organization Index Fast Full Scan STU_ID 4 5272 64 999731

Organization Index Unique Scan STU_ID 0 4 2 0

Organization Index Unique Scan STU_ID 0 4 2 1

3.2.3 Test 3: Oracle 10g and 5000K

3.2.3.1 Test 3-a: Single-row SELECT performance

 The single-row SELECT test has been conducted on Oracle 10g platform with 5000K as table

size. As shown in Table 3.3 the performance of Organization index is less costly compared with

the other indexing techniques including B-tree (Unique index), Reverse index, and Bitmap index.

The Organization index consumes less response time (2 ms) than B-tree (3 ms), Reverse index (3

ms) and Bitmap index (3 ms).

3.2.3.2 Test 3-b: Range SELECT performance

 In this test, we have performed a range SELECT experiment on STUD_GRADE attribute. This

attribute has five values A, B, C, D and F. Table 3.3 illustrates that the Bitmap index and Reverse

index have the same response time (1840 ms).

3.2.3.3 Test 3-c: Full scan SELECT performance

 The full scan test has been conducted on Oracle 10g platform with 5000K as table size. As

shown in Table 3.3, the performance of B-tree and Reverse indexes are relatively the best

compared with the other indexing techniques including Bitmap, Organization indexes. The B-tree

and Reverse indexes consume less response time (1840 ms) than Bitmap (1880 ms) and

Organization index (3220 ms).

 43

 Another full scan test has been conducted on Oracle 10g platform with 5000K as table size. The

data attribute is STUD_GRADE in the SELECT statement. Figure 3.3 shows the full scan

SELECT performance with 5000K on Oracle 10g. As shown in Table 3.3 and Figure 3.3, the

performance of Bitmap index is the same compared with the Reverse index. The Bitmap index and

Reverse index consume the same response time (1840 ms).

Figure 3.3: Full scan SELECT executions time for different indexes with 5000K on Oracle 10g

3.2.3.4 Test 3-d: Single-row SELECT performance with non-row

 This test has been conducted on Oracle 10g platform with 5000K as table size. The data

attribute is STUD_ID in the SELECT statement. As seen in Table 3.3, the indexing techniques

(such as Bitmap index, B-tree, Reverse index and Organization index) approximately have the

same response time (3 ms).

Further testing results

 According to the above analysis and Table 3.3, the performance of Bitmap index, B-tree and

Reverse index are much better than Organization index especially at full scan select performance.

We do not recommend using Organization index in the relational Databases.

0

500

1000

1500

2000

2500

3000

3500

BitmapUniqueReverseOrganization

Response Time (ms)

 44

Table 3.3 5000k on Oracle

Indexing

Technique

Scan Operation Data Attribute CPU

Consumption

(%)

Cost Response

Time (ms)

of Rows

Retrieved

Bitmap Full Scan STU_ID 8 15610 1880 4994346

Bitmap Index Scan STU_ID 0 10 3 1

Bitmap Index Scan STU_ID 0 10 3 0

Bitmap Full Scan STU_GRADE 8 15280 1840 4994346

Bitmap Index Scan STU_GRADE 8 15310 1840 998391

Bitmap Index Scan STU_GRADE 0 2 2 0

Unique (B-

tree)

Full Scan STU_ID 8 15280 1840 4994346

Unique (B-

tree)

Index Scan STU_ID 0 8 3 1

Unique (B-

tree)

Index Scan STU_ID 0 8 3 0

Reverse Full Scan STU_ID 8 15280 1840 4994346

Reverse Index Range Scan STU_ID 0 11 3 1

Reverse Index Range Scan STU_ID 0 2 3 0

Reverse Full Scan STU_Grade 8 15280 1840 4994346

Reverse Index Range Scan STU_Grade 0 11 3 0

Reverse Index Range Scan STU_Grade 8 15310 1840 998391

Organization Index Fast Full

Scan

STU_ID 2 26694 3220 5001165

Organization Index Unique

Scan

STU_ID 0 2 2 1

Organization Index Unique

Scan

STU_ID 0 2 3 0

 45

3.2.4 Test 4: MS-SQL Server and 100K

3.2.4.1 Test 4-a: Single-row SELECT performance

 The single-row SELECT test has been conducted on MS-SQL Server with 100K as table size.

As shown in Table 3.4, the Primary Key Clustered and B-tree (Unique Non-clustered) consume the

same response time (0.1 ms).

 It should be noted that the SELECT statement with the clustered index, which is based on the

predictions on the indexed columns, results in an index seek operation, which then gives the data

values requested. While the related SELECT statement without a clustered index results in a seek

operation using the non-clustered index, followed by nested loop join with the table in order to

extract the columns not in the index definition (assuming the index is not a covering index for the

given query), which then gives the requested row.

 A SELECT statement requires the lookup for one or more rows from a table. In the table with a

clustered index, the DBMS engine performs a Clustered Index Seek operation into the table and

yields the requested data row, as shown in the query execution plan in Figure 3.4.

Figure 3.4: Query execution plan for SELECT statement on table with clustered index

 46

3.2.4.2 Test 4-b: Full scan SELECT performance

 The full scan test has been conducted on MS-SQL Server with 100K as table size. As shown in

Table 3.4, the performance of Primary Key Clustered is relatively the faster than B-tree (Unique

Non-clustered). The Primary Key Clustered consumes less response time (15 ms) than B-tree (16

ms).

3.2.4.3 Test 4-c: Single-row SELECT performance with non-row

 As illustrated in Table 3.4, the Primary Key Clustered and B-tree (Unique Non-clustered)

consume the same response time (0.4 ms).

Further testing results

 According to the above analysis and Table 3.4, the performance of Primary Key Clustered is

relatively better than B-tree (Unique Non-clustered) especially at full scan SELECT performance.

Table 3.4 MS SQL Server on 100K

Indexing Technique Scan

Operation

Data

Attribute

CPU

cost(%)

Operator

Cost

Response

Time (ms)

of Rows

Retrieved

Primary Key Clustered Full Scan STU_ID 11 69 15 99996

Primary Key Clustered Index Scan STU_ID 1 1 0.1 1

Primary Key Clustered Index Scan STU_ID 1 3 0.4 0

Unique (B-tree) Non-

Clustered

Full Scan STU_ID 11 69 16 99996

Unique (B-tree) Non-

Clustered

Index Scan STU_ID 1 1 0.1 1

Unique (B-tree) Non-

Clustered

Index Scan STU_ID 1 1 0.4 0

 47

3.2.5 Test 5: MS SQL Server and 1000K

3.2.5.1 Test 5-a: Single-row SELECT performance

 The single-row SELECT test has been conducted on MS-SQL Server with 1000K as table size.

As shown in Table 3.5, the Primary Key Clustered and B-tree (Unique Non-clustered) consume the

same response time (0.4 ms).

3.2.5.2 Test 5-b: Full scan SELECT performance

 The full scan test has been conducted on MS-SQL Server with 1000K as table size. As shown in

Table 3.5, the performance of Primary Key Clustered is relatively faster than B-tree (Unique Non-

clustered). The Primary Key Clustered consumes less response time (11 ms) than B-tree (14 ms).

3.2.5.3 Test 5-c: Single-row SELECT performance with non-row

 As illustrated in Table 3.5, the Primary Key Clustered and B-tree (Unique Non-clustered)

consume the same response time (0.5 ms).

Further testing results

 According to the above analysis and Table 3.5, the performance of Primary Key Clustered is

relatively better than B-tree (Unique Non-clustered) especially at full scan SELECT performance.

 48

Table 3.5: MS-SQL Server on 1000K

Indexing Technique Scan

Operation

Data

Attribute

CPU

cost(%)

Operator

Cost

Response

Time (ms)

of Row

Retrieved

Primary Key Clustered Full Scan STU_ID 110 688 11 999999

Primary Key Clustered Index Scan STU_ID 1 1 0.4 1

Primary Key Clustered Index Scan STU_ID 1 1 0.5 0

Unique (B-tree) Non-

Clustered

Full Scan STU_ID 110 688 14 999999

Unique (B-tree) Non-

Clustered

Index Scan STU_ID 1 1 0.4 1

Unique (B-tree) Non-

Clustered

Index Scan STU_ID 1 1 0.5 0

3.2.6 Test 6: MS SQL Server and 5000K

3.2.6.1 Test 6-a: Single-row SELECT performance

 The single-row SELECT test has been conducted on MS-SQL Server with 5000K as table size.

As shown in Table 3.6, the Primary Key Clustered and B-tree (Unique Non-clustered) consume the

same response time (15 ms). The Unique Clustered consumes (16 ms) to complete the scan.

 In non-clustered index, the data row has first to be located by using an Index Seek operation

with the non-clustered index, followed by Nested Loops with a RID Lookup to extract the set of

selected columns that are not a part of the non-clustered index, as illustrated in Figure 3.5.

 49

Figure 3.5: Query execution plan for SELECT statement on table with non-clustered index in MS-

SQL Server

3.2.6.2 Test 6-b: Full scan SELECT performance

 The full scan test has been conducted on MS SQL Server with 5000K as table size. As shown in

Table 3.6, the performance of Primary Key Clustered is relatively faster than B-tree (Unique Non-

clustered) and Unique Clustered. The Primary Key Clustered consumes less response time (16 ms)

than B-tree and Unique Clustered (17 ms).

3.2.6.3 Test 6-c: Single-row SELECT performance with non-row

 As illustrated in Table 3.6, the Primary Key Clustered, Unique Clustered and B-tree (Unique

Non-clustered) consume the same response time (18 ms).

Further testing results

 According to the above analysis and Table 3.6, the performance of Primary Key Clustered is

relatively better than B-tree (Unique Non-clustered) and Unique Clustered especially at full scan

SELECT performance.

 50

Table 3.6: MS-SQL Server on 5000K

Indexing Technique Scan

Operation

Data

Attribute

CPU

cost(%)

Operator

Cost

Response

Time

(ms)

of Rows

Retrieved

Primary Key Clustered Full Scan STU_ID 560 351 16 5099800

Primary Key Clustered Index

Scan

STU_ID 1 1 15 1

Primary Key Clustered Index

Scan

STU_ID 1 1 18 0

Unique (B-tree) Non-

Clustered

Full Scan STU_ID 560 378 17 5099800

Unique (B-tree) Non-

Clustered

Index

Scan

STU_ID 1 1 15 1

Unique (B-tree) Non-

Clustered

Index

Scan

STU_ID 1 1 18 0

Unique (B-tree)

Clustered

Full Scan STU_ID 560 369 17 5099800

Unique (B-tree)

Clustered

Index

Scan

STU_ID 1 1 16 1

Unique (B-tree)

Clustered

Index

Scan

STU_ID 1 1 18 0

3.3 Recommendations and Further Analysis

 It is very difficult to compare between two different platforms: Oracle and MS-SQL Server

because we do not know the background process for each platform. However, we have attempted

to run our experiment on the identical environment to achieve the possible encouraging results.

 51

 It is clear from the empirical results that the performance of indexing techniques in MS-SQL

Server is much faster than Oracle 10g as shown in Figure 3.6, 3.7 and 3.8. Therefore, using the

index in the SELECT statement over MS-SQL Server is much less costly in terms of I/O

operations, CPU consumptions, and response time than Oracle. However, Figure 3.8 shows that

the B-tree index in the SELELCT statement over Oracle is faster in terms of performance than

MS-SQL Server in the following cases:

• Index scan SELECT performance when retrieved single row.

• Index scan SELECT performance when retrieved non-row.

 A number of technical reports and studies indicate that using index in the retrieval systems over

Oracle platform consumes greater response time than MS-SQL Server. Thus, those studies support

the results in this thesis.

 It should be noted that the B-tree is the common between Oracle and MS-SQL Server. As shown

in Table 3.7-A and Table 3.7-B, the B-tree is the best indexing technique and it is more effective

on huge data. The results of Bitmap index in Oracle are interesting and significant and

unfortunately, this index is not supported by MS-SQL Server.

 52

Table 3.7-A: A summary of the best indexing techniques with different data sizes on Oracle

Data Size Best Indexing

Techniques
Comments

0-100K Bitmap Low Cardinality (i)
Medium
Cardinality(ii)

100-1000K Bitmap, B-tree Low Cardinality
Medium Cardinality
High Cardinality(iii)

1000-5000K Bitmap, B-tree Low Cardinality
Medium Cardinality
High Cardinality

Table 3.7-B: A summary of the best indexing techniques with
 different data sizes on MS SQL Server.

Data Size Best Indexing

Techniques
Comments

0-100K Non clustered
index

Low Cardinality
Medium Cardinality

100-1000K Primary clustered
index

Medium Cardinality
High Cardinality

1000-5000K Primary clustered
index

Medium Cardinality
High Cardinality

__

 (i) Low-cardinality refers to columns with few unique values.

(ii) Medium-cardinality refers to columns with values that are somewhat uncommon. Medium-cardinality column data

values such as names, street addresses, or vehicle types

(iii) High-cardinality refers to columns with values that are very uncommon or unique.

 53

Figure 3.6: Comparison between the response times (ms) of B-tree over

 Oracle and MS-SQL Server on 100K

Figure 3.7: Comparison between the response times (ms) of B-tree over

0
5
10
15
20
25
30
35
40

Full ScanFull ScanIndex
Scan, 1

Index
Scan, 1

Index
Scan, 0

Index
Scan, 0

OracleMS SQL
Server

OracleMS SQL
Server

OracleMS SQL
Server

 Response Time (MS)

0
2
4
6
8
10
12
14
16

Full ScanFull ScanIndex
Scan, 1

Index
Scan, 1

Index
Scan, 0

Index
Scan, 0

OracleMS SQL
Server

OracleMS SQL
Server

OracleMS SQL
Server

Response Time (MS)

 54

Figure 3.8: Comparison between the response times (ms) of B-tree over

 Oracle and MS-SQL Server on 5000K

3.4 Test: INSERT Performance

 In this section, we have described the effects of INSERT statement on the Oracle platform with

100K, 1000K and 5000K. One row has been added on the database that contains 100K and 1000K

with B-tree index technique.

First, we have compiled the following statement on Oracle engine with 100K:

insert into student100k (stu_id ,stu_name , stu_gender , stu_address ,stu_seq)

values ('3748528','amman822195','f','meu92289','202255') ;

This statement inserts one row on the database. As a result, figure 3.9 shows a snapshot of the

execution result. This result ensures that one row will not have an effect on the performance

because the response time is zero ms.

 55

Figure 3.9: Execution result after INSERT one row using B-tree index with 100K

Furthermore, we have complied the above INSERT statement on 1000K. Figure 3.10 illustrates
that there is no effect on the database performance because the response time is too small.

Figure 3.10: Execution result after INSERT one row using B-tree index with 1000K

 56

Further test, we have conducted the same INSERT statement on 5000K. As a result, figure 3.11
shows no change happened to the database performance.

Figure 3.11: Execution result after INSERT one row using B-tree index with 5000K

 57

3.5 Test: Select Performance using Composite Key in Oracle

 In this test, we have conducted several experiments on Oracle with data size: 1000K through

Select statement that contains composite key (STUD_ID, STUD_NAME).

Table 3.8: Select Performance using Composite Key in Oracle 1000k

Indexing

Technique

Scan

Operation

Data Attribute (Composite

Key)

Response Time

(ms)

of rows

retrieved

Bitmap Full Scan STUD_ID, STUD_NAME 38 999731

Bitmap Index Sc]an STUD_ID, STUD_NAME 2 1

Bitmap Index Scan STUD_ID, STUD_NAME 2 0

Unique (B-

tree)

Full Scan STUD_ID, STUD_NAME 38 999731

Unique (B-

tree)

Index Scan STUD_ID, STUD_NAME 3 1

Unique (B-

tree)

Index Scan STUD_ID, STUD_NAME 3 0

Reverse Full Scan STUD_ID, STUD_NAME 38 999731

Reverse Index Scan STUD_ID, STUD_NAME 3 1

Reverse Index Scan STUD_ID, STUD_NAME 3 0

Organization Index Fast

Full Scan(ii)

STUD_ID, STUD_NAME 66 999731

Organization Index Unique

Scan

STUD_ID, STUD_NAME 3 1

Organization Index Unique

Scan

STUD_ID, STUD_NAME 3 0

 The single-row select test has been conducted on Oracle 10g platform with 1000K as table size.

Note that we have used composite key (STUD_ID,STUD_NAME) .As shown in Table 3.8, the

performance of Bitmap, B-tree index and Organization indexes are less costly compared with the

Reverse index. The Bitmap index, Reverse index and B-tree consume less response time (38 ms)

than Organization index (66 ms).

 58

 In case of non-row retrieved data and in retrieving single row, Table 3.8, the indexing techniques

have approximately the similar response time. The Bitmap index takes 2 ms to complete, whereas

B-tree, Organization index and Reverse index take 3 ms.

Further testing results

 In relation with the above analysis and Table 3.8, the Bitmap index on 1000K relatively has the

best retrieving time and then better performance compared with the other indexing techniques.

3.6 Test: Select Performance using Composite Key in MS SQL Server

Table 3.9: Select Performance using Composite Key in MS SQL Server 1000K
Indexing Technique Scan

Operation

Data Attribute

(Composite

Key)

Response

Time (ms)

of Row

Retrieved

Primary Key Clustered Full Scan STUD_ID,

STUD_NAME

33 999999

Primary Key Clustered Index Scan STUD_ID,

STUD_NAME

0.4 1

Primary Key Clustered Index Scan STUD_ID,

STUD_NAME

0.5 0

Unique (B-tree) Non-

Clustered

Full Scan STUD_ID,

STUD_NAME

10 999999

Unique (B-tree) Non-

Clustered

Index Scan STUD_ID,

STUD_NAME

0.4 1

Unique (B-tree) Non-

Clustered

Index Scan STUD_ID,

STUD_NAME

0.5 0

 The single-row SELECT test has been conducted on MS-SQL Server with 1000K using

composite key. As shown in Table 3.9, the Primary Key Clustered and B-tree (Unique Non-

clustered) consume the same response time (0.4 ms).

 59

On the other hand, the full scan test has been conducted on MS-SQL Server. Table 3.9 shows that

the performance of B-tree (Unique Non-clustered) is relatively faster than the Primary Key

Clustered. The Primary Key Clustered consumes more response time (33 ms) than B-tree (10 ms).

The final test has been conducted on composite key when the SELECT does not retrieve any data.

As illustrated in Table 3.9, the Primary Key Clustered and B-tree (Unique Non-clustered) consume

the same response time (0.5 ms).

Further testing results

 According to the above analysis and Table 3.5, the performance of B-tree (Unique Non-

clustered) is relatively better than Primary Key Clustered especially at full scan SELECT

performance.

3.7 Test: Insert Performance using Composite Key in Oracle and MS SQL

Server with 1000K

 After inserting one row in the table, it is clear from Table 3.10 that the Primary Key Clustered

index in MS SQL Server is the best one. This index consumes only 9 ms for full scan using

composite key. On the other hand, the Bitmap index is the best in the Oracle Platform for all scan

operations including Full scan, Index Scan with one row returned and Index scan without rows

returned.

 60

Table 3.10: Insert on MS SQL Server and Oracle with 1000K
Platform Indexing Technique Scan

Operation

Data Attribute

(Composite Key)

Response

Time (ms)

of Row

Retrieved

MS SQL Server Primary Key

Clustered

Full Scan STUD_ID,

STUD_NAME

9 1000001

MS SQL Server Primary Key

Clustered

Index Scan STUD_ID,

STUD_NAME

0.4 1

MS SQL Server Primary Key

Clustered

Index Scan STUD_ID,

STUD_NAME

0.5 0

MS SQL Server Unique (B-tree) Non-

Clustered

Full Scan STUD_ID,

STUD_NAME

26 1000001

MS SQL Server Unique (B-tree) Non-

Clustered

Index Scan STUD_ID,

STUD_NAME

0.4 1

MS SQL Server Unique (B-tree) Non-

Clustered

Index Scan STUD_ID,

STUD_NAME

0.5 0

Oracle Bitmap Full Scan STUD_ID,

STUD_NAME

38 1000001

Oracle Bitmap Index Scan STUD_ID,

STUD_NAME

2 1

Oracle Bitmap Index Scan STUD_ID,

STUD_NAME

2 0

Oracle Unique (B-tree) Full Scan STUD_ID,

STUD_NAME

38 1000001

Oracle Unique (B-tree) Index Scan STUD_ID,

STUD_NAME

3 1

Oracle Unique (B-tree) Index Scan STUD_ID,

STUD_NAME

3 0

Oracle Reverse Full Scan STUD_ID,

STUD_NAME

38 1000001

Oracle Reverse Index Scan STUD_ID,

STUD_NAME

3 1

Oracle Reverse Index Scan STUD_ID,

STUD_NAME

3 0

Oracle Organization Index Fast Full

Scan(ii)

STUD_ID,

STUD_NAME

68 1000001

 61

Oracle Organization Index Unique

Scan

STUD_ID,

STUD_NAME

2 1

Oracle Organization Index Unique

Scan

STUD_ID,

STUD_NAME

2 0

3.8 Test: Update Performance using Composite Key in Oracle and MS SQL

Server with 1000K

 After the Update operation applied on one row, there is not any change for the performance

values, especially in the Oracle Platform. Bitmap, B-tree and Reverse indexes takes 38 ms for full

scan. In the MS SQL Server, a little change happened for the performance after applying Primary

Key Clustered index. Table 3.11 shows all the values with different scan operation.

Table 3.11: Update on MS SQL Server and Oracle with 1000K

Platform Indexing Technique Scan

Operation

Data Attribute

(Composite

Key)

Response

Time (ms)

of Row

Retrieved

MS SQL Server Primary Key Clustered Full Scan STUD_ID,

STUD_NAME

12 1000000

MS SQL Server Primary Key Clustered Index Scan STUD_ID,

STUD_NAME

0.4 1

MS SQL Server Primary Key Clustered Index Scan STUD_ID,

STUD_NAME

0.5 0

MS SQL Server Unique (B-tree) Non-

Clustered

Full Scan STUD_ID,

STUD_NAME

9 1000000

MS SQL Server Unique (B-tree) Non-

Clustered

Index Scan STUD_ID,

STUD_NAME

0.4 1

MS SQL Server Unique (B-tree) Non-

Clustered

Index Scan STUD_ID,

STUD_NAME

0.5 0

Oracle Bitmap Full Scan STUD_ID,

STUD_NAME

38 1000000

Oracle Bitmap Index Scan STUD_ID,

STUD_NAME

2 1

Oracle Bitmap Index Scan STUD_ID, 2 0

 62

STUD_NAME

Oracle Unique (B-tree) Full Scan STUD_ID,

STUD_NAME

38 1000000

Oracle Unique (B-tree) Index Scan STUD_ID,

STUD_NAME

3 1

Oracle Unique (B-tree) Index Scan STUD_ID,

STUD_NAME

3 0

Oracle Reverse Full Scan STUD_ID,

STUD_NAME

38 1000000

Oracle Reverse Index Scan STUD_ID,

STUD_NAME

3 1

Oracle Reverse Index Scan STUD_ID,

STUD_NAME

3 0

Oracle Organization Index Fast

Full

Scan(ii)

STUD_ID,

STUD_NAME

68 1000000

Oracle Organization Index

Unique

Scan

STUD_ID,

STUD_NAME

2 1

Oracle Organization Index

Unique

Scan

STUD_ID,

STUD_NAME

2 0

3.9 Test: Delete Performance using Composite Key in Oracle and MS SQL

Server with 1000K

 Table 3.12 shows that the Delete performance using composite key in Oracle and MS SQL

Server platforms. Indeed, there is no change for the performance values. This means deleting one

row from the table, but has no effect on the performance. Bitmap index and others indexes take 38

ms in Oracle Platform.

 63

Table 3.12: Delete on MS SQL Server and Oracle with 1000K

Platform Indexing Technique Scan Operation Data Attribute

(Composite

Key)

Response

Time (ms)

of Row

Retrieved

MS SQL Server Primary Key Clustered Full Scan STUD_ID,

STUD_NAME

10 999999

MS SQL Server Primary Key Clustered Index Scan STUD_ID,

STUD_NAME

0.4 1

MS SQL Server Primary Key Clustered Index Scan STUD_ID,

STUD_NAME

0.5 0

MS SQL Server Unique (B-tree) Non-

Clustered

Full Scan STUD_ID,

STUD_NAME

10 999999

MS SQL Server Unique (B-tree) Non-

Clustered

Index Scan STUD_ID,

STUD_NAME

0.4 1

MS SQL Server Unique (B-tree) Non-

Clustered

Index Scan STUD_ID,

STUD_NAME

0.5 0

Oracle Bitmap Full Scan STUD_ID,

STUD_NAME

38 999999

Oracle Bitmap Index Scan STUD_ID,

STUD_NAME

2 1

Oracle Bitmap Index Scan STUD_ID,

STUD_NAME

2 0

Oracle Unique (B-tree) Full Scan STUD_ID,

STUD_NAME

38 999999

Oracle Unique (B-tree) Index Scan STUD_ID,

STUD_NAME

3 1

Oracle Unique (B-tree) Index Scan STUD_ID,

STUD_NAME

3 0

Oracle Reverse Full Scan STUD_ID,

STUD_NAME

38 999999

Oracle Reverse Index Scan STUD_ID,

STUD_NAME

3 1

Oracle Reverse Index Scan STUD_ID,

STUD_NAME

3 0

Oracle Organization Index Fast Full

Scan(ii)

STUD_ID,

STUD_NAME

68 999999

Oracle Organization Index Unique STUD_ID, 2 1

 64

Scan STUD_NAME

Oracle Organization Index Unique

Scan

STUD_ID,

STUD_NAME

2 0

3.10 Test: Select Performance using Composite Key in Oracle and MS SQL

Server with 100K

 As shown in Table 3.13, Primary key Clustered and B-tree have the same response time (7 ms)

in the MS SQL Server. On the other hand, Bitmap index in Oracle platform is the best for all

scans, whereas the Organization scan takes the longest time (8 ms). It is clear from the table that

Bitmap and B-tree are recommended for use in the Oracle and MS SQL platform.

Table 3.13: Select on MS SQL Server and Oracle with 1000K

Platform Indexing Technique Scan Operation Data Attribute

(Composite

Key)

Response

Time (ms)

of Row

Retrieved

MS SQL Server Primary Key

Clustered

Full Scan STUD_ID,

STUD_NAME

7 100000

MS SQL Server Primary Key

Clustered

Index Scan STUD_ID,

STUD_NAME

0.1 1

MS SQL Server Primary Key

Clustered

Index Scan STUD_ID,

STUD_NAME

0.4 0

MS SQL Server Unique (B-tree) Non-

Clustered

Full Scan STUD_ID,

STUD_NAME

7 100000

MS SQL Server Unique (B-tree) Non-

Clustered

Index Scan STUD_ID,

STUD_NAME

4 1

MS SQL Server Unique (B-tree) Non-

Clustered

Index Scan STUD_ID,

STUD_NAME

4 0

Oracle Bitmap Full Scan STUD_ID,

STUD_NAME

4 100000

Oracle Bitmap Index Scan STUD_ID,

STUD_NAME

2 1

 65

Oracle Bitmap Index Scan STUD_ID,

STUD_NAME

2 0

Oracle Unique (B-tree) Full Scan STUD_ID,

STUD_NAME

4 100000

Oracle Unique (B-tree) Index Scan STUD_ID,

STUD_NAME

3 1

Oracle Unique (B-tree) Index Scan STUD_ID,

STUD_NAME

3 0

Oracle Reverse Full Scan STUD_ID,

STUD_NAME

4 100000

Oracle Reverse Index Scan STUD_ID,

STUD_NAME

3 1

Oracle Reverse Index Scan STUD_ID,

STUD_NAME

3 0

Oracle Organization Index Fast Full

Scan(ii)

STUD_ID,

STUD_NAME

8 100000

Oracle Organization Index Unique

Scan

STUD_ID,

STUD_NAME

2 1

Oracle Organization Index Unique

Scan

STUD_ID,

STUD_NAME

2 0

3.11 Test: Insert Performance using Composite Key in Oracle and MS SQL

Server with 100K

In Insert operation using composite key for MS SQL Server and Oracle, no change happened for

performance. This confirms that inserting one row will not affect the performance, as shown in

Table 3.14.

 66

Table 3.14: Insert on MS SQL Server and Oracle with 1000K

Platform Indexing Technique Scan

Operation

Data Attribute

(Composite

Key)

Response

Time (ms)

of Row

Retrieved

MS SQL Server Primary Key Clustered Full Scan STUD_ID,

STUD_NAME

7 100001

MS SQL Server Primary Key Clustered Index Scan STUD_ID,

STUD_NAME

0.1 1

MS SQL Server Primary Key Clustered Index Scan STUD_ID,

STUD_NAME

0.4 0

MS SQL Server Unique (B-tree) Non-

Clustered

Full Scan STUD_ID,

STUD_NAME

7 100001

MS SQL Server Unique (B-tree) Non-

Clustered

Index Scan STUD_ID,

STUD_NAME

6 1

MS SQL Server Unique (B-tree) Non-

Clustered

Index Scan STUD_ID,

STUD_NAME

4 0

Oracle Bitmap Full Scan STUD_ID,

STUD_NAME

4 100001

Oracle Bitmap Index Scan STUD_ID,

STUD_NAME

2 1

Oracle Bitmap Index Scan STUD_ID,

STUD_NAME

2 0

Oracle Unique (B-tree) Full Scan STUD_ID,

STUD_NAME

4 100001

Oracle Unique (B-tree) Index Scan STUD_ID,

STUD_NAME

3 1

Oracle Unique (B-tree) Index Scan STUD_ID,

STUD_NAME

3 0

Oracle Reverse Full Scan STUD_ID,

STUD_NAME

4 100001

Oracle Reverse Index Scan STUD_ID,

STUD_NAME

3 1

Oracle Reverse Index Scan STUD_ID,

STUD_NAME

3 0

Oracle Organization Index Fast

Full

Scan(ii)

STUD_ID,

STUD_NAME

8 100001

 67

Oracle Organization Index

Unique

Scan

STUD_ID,

STUD_NAME

2 1

Oracle Organization Index

Unique

Scan

STUD_ID,

STUD_NAME

2 0

3.12 Test: Update Performance using Composite Key in Oracle and MS SQL

Server with 100K

Table 3.15 illustrates no change took place for the performance. Updating one record on the table

does not make sense on the performance values.

Table 3.15: Update on MS SQL Server and Oracle with 1000K

Platform Indexing Technique Scan

Operation

Data Attribute (Composite

Key)

Response

Time (ms)

of Row

Retrieved

MS SQL

Server

Primary Key Clustered Full Scan STUD_ID, STUD_NAME 7 100000

MS SQL
Server

Primary Key Clustered Index

Scan

STUD_ID, STUD_NAME 0.1 1

MS SQL
Server

Primary Key Clustered Index

Scan

STUD_ID, STUD_NAME 0.4 0

MS SQL
Server

Unique (B-tree) Non-

Clustered

Full Scan STUD_ID, STUD_NAME 7 100000

MS SQL
Server

Unique (B-tree) Non-

Clustered

Index

Scan

STUD_ID, STUD_NAME 6 1

MS SQL
Server

Unique (B-tree) Non-

Clustered

Index

Scan

STUD_ID, STUD_NAME 4 0

Oracle Bitmap Full Scan STUD_ID, STUD_NAME 4 100000

Oracle Bitmap Index

Scan

STUD_ID, STUD_NAME 2 1

 68

Oracle Bitmap Index

Scan

STUD_ID, STUD_NAME 2 0

Oracle Unique (B-tree) Full Scan STUD_ID, STUD_NAME 4 100000

Oracle Unique (B-tree) Index

Scan

STUD_ID, STUD_NAME 3 1

Oracle Unique (B-tree) Index

Scan

STUD_ID, STUD_NAME 3 0

Oracle Reverse Full Scan STUD_ID, STUD_NAME 4 100000

Oracle Reverse Index

Scan

STUD_ID, STUD_NAME 3 1

Oracle Reverse Index

Scan

STUD_ID, STUD_NAME 3 0

Oracle Organization Index Fast

Full

Scan(ii)

STUD_ID, STUD_NAME 8 100000

Oracle Organization Index

Unique

Scan

STUD_ID, STUD_NAME 2 1

Oracle Organization Index

Unique

Scan

STUD_ID, STUD_NAME 2 0

3.13 Test: Delete Performance using Composite Key in Oracle and

MS SQL Server with 100K

As shown in Table 3.16, only one change happened for the value of the Primary Key Clustered

index in the MS SQL Server. On the other hand, all indexes keep the values which have shown the

above tests.

 69

Table 3.16: Delete on MS SQL Server and Oracle with 1000K

Platform Indexing Technique Scan

Operation

Data Attribute (Composite

Key)

Response

Time (ms)

of Row

Retrieved

MS SQL

Server

Primary Key Clustered Full Scan STUD_ID, STUD_NAME 1 99999

MS SQL
Server

Primary Key Clustered Index Scan STUD_ID, STUD_NAME 0.1 1

MS SQL
Server

Primary Key Clustered Index Scan STUD_ID, STUD_NAME 0.4 0

MS SQL
Server

Unique (B-tree) Non-

Clustered

Full Scan STUD_ID, STUD_NAME 7 99999

MS SQL
Server

Unique (B-tree) Non-

Clustered

Index Scan STUD_ID, STUD_NAME 6 1

MS SQL
Server

Unique (B-tree) Non-

Clustered

Index Scan STUD_ID, STUD_NAME 4 0

Oracle Bitmap Full Scan STUD_ID, STUD_NAME 4 99999

Oracle Bitmap Index Scan STUD_ID, STUD_NAME 2 1

Oracle Bitmap Index Scan STUD_ID, STUD_NAME 2 0

Oracle Unique (B-tree) Full Scan STUD_ID, STUD_NAME 4 99999

Oracle Unique (B-tree) Index Scan STUD_ID, STUD_NAME 3 1

Oracle Unique (B-tree) Index Scan STUD_ID, STUD_NAME 3 0

Oracle Reverse Full Scan STUD_ID, STUD_NAME 4 99999

Oracle Reverse Index Scan STUD_ID, STUD_NAME 3 1

Oracle Reverse Index Scan STUD_ID, STUD_NAME 3 0

Oracle Organization Index Fast

Full

Scan(ii)

STUD_ID, STUD_NAME 8 99999

Oracle Organization Index

Unique

Scan

STUD_ID, STUD_NAME 2 1

Oracle Organization Index

Unique

Scan

STUD_ID, STUD_NAME 2 0

 70

3.14 Test: Select Performance using Composite Key in Oracle and MS SQL

Server with 5000K

 In Table 3.17, B-tree is the best for the MS SQL Server and Oracle. This index consumes 49

ms in MS SQL Server and 184 ms in Oracle platform. We are not recommended to use the

organization index in the Oracle platform. This index takes 336 ms in Oracle. Further details are

shown in Table 3.17.

Table 3.17: Select on MS SQL Server and Oracle with 1000K

Platform Indexing Technique Scan

Operation

Data Attribute (Composite

Key)

Respo

nse

Time

(ms)

of Row

Retrieved

MS SQL

Server

Primary Key Clustered Full Scan STUD_ID, STUD_NAME 53 5000000

MS SQL
Server

Primary Key Clustered Index Scan STUD_ID, STUD_NAME 1 1

MS SQL
Server

Primary Key Clustered Index Scan STUD_ID, STUD_NAME 0.4 0

MS SQL
Server

Unique (B-tree) Non-

Clustered

Full Scan STUD_ID, STUD_NAME 49 5000000

MS SQL
Server

Unique (B-tree) Non-

Clustered

Index Scan STUD_ID, STUD_NAME 1 1

MS SQL
Server

Unique (B-tree) Non-

Clustered

Index Scan STUD_ID, STUD_NAME 0.4 0

Oracle Bitmap Full Scan STUD_ID, STUD_NAME 184 5000000

Oracle Bitmap Index Scan STUD_ID, STUD_NAME 2 1

Oracle Bitmap Index Scan STUD_ID, STUD_NAME 2 0

Oracle Unique (B-tree) Full Scan STUD_ID, STUD_NAME 184 5000000

Oracle Unique (B-tree) Index Scan STUD_ID, STUD_NAME 3 1

Oracle Unique (B-tree) Index Scan STUD_ID, STUD_NAME 3 0

Oracle Reverse Full Scan STUD_ID, STUD_NAME 184 5000000

Oracle Reverse Index Scan STUD_ID, STUD_NAME 3 1

Oracle Reverse Index Scan STUD_ID, STUD_NAME 3 0

 71

Oracle Organization Index Fast

Full Scan(ii)

STUD_ID, STUD_NAME 336 5000000

Oracle Organization Index

Unique Scan

STUD_ID, STUD_NAME 2 1

Oracle Organization Index

Unique Scan

STUD_ID, STUD_NAME 2 0

3.15 Test: Insert Performance using Composite Key in Oracle and MS SQL

Server with 5000K

Table 3.18 shows a very a little bit change in MS SQL Server. This change does not have an effect

on the performance values.

Table 3.18: Insert on MS SQL Server and Oracle with 1000K

Platform Indexing Technique Scan

Operation

Data Attribute (Composite

Key)

Response

Time (ms)

of Row

Retrieved

MS SQL

Server

Primary Key Clustered Full Scan STUD_ID, STUD_NAME 53 5000001

MS SQL
Server

Primary Key Clustered Index Scan STUD_ID, STUD_NAME 6 1

MS SQL
Server

Primary Key Clustered Index Scan STUD_ID, STUD_NAME 6 0

MS SQL
Server

Unique (B-tree) Non-

Clustered

Full Scan STUD_ID, STUD_NAME 57 5000001

MS SQL
Server

Unique (B-tree) Non-

Clustered

Index Scan STUD_ID, STUD_NAME 8 1

MS SQL
Server

Unique (B-tree) Non-

Clustered

Index Scan STUD_ID, STUD_NAME 6 0

Oracle Bitmap Full Scan STUD_ID, STUD_NAME 184 5000001

Oracle Bitmap Index Scan STUD_ID, STUD_NAME 2 1

Oracle Bitmap Index Scan STUD_ID, STUD_NAME 2 0

Oracle Unique (B-tree) Full Scan STUD_ID, STUD_NAME 184 5000001

Oracle Unique (B-tree) Index Scan STUD_ID, STUD_NAME 3 1

Oracle Unique (B-tree) Index Scan STUD_ID, STUD_NAME 3 0

Oracle Reverse Full Scan STUD_ID, STUD_NAME 184 5000001

 72

Oracle Reverse Index Scan STUD_ID, STUD_NAME 3 1

Oracle Reverse Index Scan STUD_ID, STUD_NAME 3 0

Oracle Organization Index Fast

Full Scan(ii)

STUD_ID, STUD_NAME 336 5000001

Oracle Organization Index

Unique Scan

STUD_ID, STUD_NAME 2 1

Oracle Organization Index

Unique Scan

STUD_ID, STUD_NAME 2 0

3.16 Test: Update Performance using Composite Key in Oracle and MS SQL

Server with 5000K

 As illustrated in Table 3.19, the only change happened in MS SQL Server. The Primary Key

Clustered index takes 142 ms. On the other hand; the values of indexes in the Oracle take 184 ms.

Table 3.19: Update on MS SQL Server and Oracle with 1000K

Platform Indexing Technique Scan

Operation

Data Attribute (Composite

Key)

Response

Time

(ms)

of Row

Retrieved

MS SQL

Server

Primary Key Clustered Full Scan STUD_ID, STUD_NAME 142 5000000

MS SQL
Server

Primary Key Clustered Index Scan STUD_ID, STUD_NAME 6 1

MS SQL
Server

Primary Key Clustered Index Scan STUD_ID, STUD_NAME 6 0

MS SQL
Server

Unique (B-tree) Non-

Clustered

Full Scan STUD_ID, STUD_NAME 49 5000000

MS SQL
Server

Unique (B-tree) Non-

Clustered

Index Scan STUD_ID, STUD_NAME 1 1

MS SQL
Server

Unique (B-tree) Non-

Clustered

Index Scan STUD_ID, STUD_NAME 1 0

Oracle Bitmap Full Scan STUD_ID, STUD_NAME 184 5000000

Oracle Bitmap Index Scan STUD_ID, STUD_NAME 2 1

 73

Oracle Bitmap Index Scan STUD_ID, STUD_NAME 2 0

Oracle Unique (B-tree) Full Scan STUD_ID, STUD_NAME 184 5000000

Oracle Unique (B-tree) Index Scan STUD_ID, STUD_NAME 3 1

Oracle Unique (B-tree) Index Scan STUD_ID, STUD_NAME 3 0

Oracle Reverse Full Scan STUD_ID, STUD_NAME 184 5000000

Oracle Reverse Index Scan STUD_ID, STUD_NAME 3 1

Oracle Reverse Index Scan STUD_ID, STUD_NAME 3 0

Oracle Organization Index Fast

Full

Scan(ii)

STUD_ID, STUD_NAME 334 5000000

Oracle Organization Index

Unique

Scan

STUD_ID, STUD_NAME 2 1

Oracle Organization Index

Unique

Scan

STUD_ID, STUD_NAME 2 0

3.17 Test: Delete Performance using Composite Key in Oracle and MS SQL

Server with 5000K

No change happened here in delete operation.

Table 3.20: Delete on MS SQL Server and Oracle with 1000K

Platform Indexing Technique Scan

Operation

Data Attribute

(Composite

Key)

Response

Time (ms)

of Row

Retrieved

MS SQL

Server

Primary Key Clustered Full Scan STUD_ID,

STUD_NAME

59 4999999

MS SQL
Server

Primary Key Clustered Index Scan STUD_ID,

STUD_NAME

6 1

MS SQL
Server

Primary Key Clustered Index Scan STUD_ID,

STUD_NAME

6 0

MS SQL
Server

Unique (B-tree) Non-

Clustered

Full Scan STUD_ID,

STUD_NAME

57 4999999

 74

MS SQL
Server

Unique (B-tree) Non-

Clustered

Index Scan STUD_ID,

STUD_NAME

10 1

MS SQL
Server

Unique (B-tree) Non-

Clustered

Index Scan STUD_ID,

STUD_NAME

6 0

Oracle Bitmap Full Scan STUD_ID,

STUD_NAME

184 4999999

Oracle Bitmap Index Scan STUD_ID,

STUD_NAME

2 1

Oracle Bitmap Index Scan STUD_ID,

STUD_NAME

2 0

Oracle Unique (B-tree) Full Scan STUD_ID,

STUD_NAME

184 4999999

Oracle Unique (B-tree) Index Scan STUD_ID,

STUD_NAME

3 1

Oracle Unique (B-tree) Index Scan STUD_ID,

STUD_NAME

3 0

Oracle Reverse Full Scan STUD_ID,

STUD_NAME

184 4999999

Oracle Reverse Index Scan STUD_ID,

STUD_NAME

3 1

Oracle Reverse Index Scan STUD_ID,

STUD_NAME

3 0

Oracle Organization Index Fast

Full

Scan(ii)

STUD_ID,

STUD_NAME

334 4999999

Oracle Organization Index

Unique

Scan

STUD_ID,

STUD_NAME

2 1

Oracle Organization Index

Unique

Scan

STUD_ID,

STUD_NAME

2 0

 75

3.18 Guidelines to Select Indexing Techniques

 This section will describe the guidelines to select indexing techniques which helps the DBAs to

select indexing techniques that are suitable for databases.

3.18.1 Using Decision Table to Select the Indexing for the DBAs:

1. Decision Tables

 Decision tables are precise and compact way to model complicated logic. They are ideal for

describing situations in which a number of combinations of actions are taken under varying sets of

conditions (Fisher, D.L. 1966). The benefit of using the decision table is to make it easy to observe

all possible conditions. Decision tables are also used to analyze a problem. The conditions

applying in the particular problems are set out, and the actions to be taken as a result of any

combination of the conditions arising, are shown below in this section.

2. Cardinality

 The word cardinality is an SQL term to refer to the uniqueness of a data value in a particular

column in a database table (Burleson 2010). Low cardinality means that the values in the data

column of the data table are pretty common. For example, data value such as gender, race, age,

hair color or Boolean data represents a kind of low cardinality. On the other hand, Medium-

cardinality means that the columns with data values are somewhat uncommon. Normal-cardinality

or medium- cardinality column data values include, names, street addresses, or vehicle types. The

last type of cardinality a high cardinality data may refer to data in a column which are unique. That

data may include identification numbers, user telephones number; email addresses or social

security number.

 76

Example Cardinality Attribute

 The following samples on the STUDENT table demonstrate the variety of query-processing

techniques that are necessary for optimal performance.

CREATE TABLE UI.STUDENT_index100K

(
 STU_ID NUMBER(10),
 STU_NAME VARCHAR2(50),
 STU_GRADE VARCHAR2(1),
 STU_ADDRESS VARCHAR2(100),
 STU_SEQ NUMBER(10),
 CONSTRAINT STUDENT_index100K_PK
 PRIMARY KEY
 (STU_ID)
)

Example 1: High-Cardinality Attribute

select * from student100k where STU_ID = 974166938;

Example 2: Medium-Cardinality Attributes

select * from student100k where STU_NAME='meu1253398454';

Example 3: Low-Cardinality Attributes

select * from student100k where STU_GRADE = 'A' ;

 In the following section a guidelines to select indexing techniques that decision table to help the

DBAs to select indexing techniques suited for their databases on MS-SQL Server environment and

ORACLE environment:

3.18.1.1 Oracle Environment:

 Scenario: A DBA wishes to construct a decision table to decide how to select an indexing

techniques to three characteristics: Data size: A (under 100,000), B (between 100,000 and

1,000,000), and C (over 1,000,000). Cardinality type: L (Low cardinality), M (Medium

cardinality), and H (High cardinality), and Columns: S (Single columns) and C (Combine

 77

columns). The DBA has two indexes (X,Y) to select. Index X will appeal to Bitmap index. Index

Y will appeal to B-Tree index.

1. Identify Conditions & Values

The three data attributes tested by the conditions in this problem are

 Data size: with values A, B and C; Cardinality L, M and H; and Columns: S and C as

stated in the problem.

2. Compute Maximum Number of Rules

The maximum number of rules is 3 x 3 x 2 = 18.

3. Identify Possible Actions

The two actions are: Bitmap index X, B-Tree index Y.

4. Enter All Possible Rules

The top of the table would look as follows: Note that all combinations of values are

present.

Table 3.21: Possible Rules

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Process

C C C C C C B B B B B B A A A A A A Data size

H H M M L L H H M M L L H H M M L L Cardinality

C S C S C S C S C S C S C S C S C S Columns

5. Define Actions for each Rule

The bottom of the table would look as follows:

Table 3.22: Actions for each rule

 78

Indexes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

X X X X X X X X X X X

Y X X X X X X X X

6. Simplify the table

The revised table is as follows:

Table 3.23: Final simplified table of rules and actions on ORACLE environment

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Proccess

C C C C C C B B B B B B A A A A A A Datasize

H H M M L L H H M M L L H H M M L L Cardinality

C S C S C S C S C S C S C S C S C S Columns

 X X X X X X X X X X X (Bitmap

index)

X X X X X X X X Y (B-Tree)

3.18.1.2 MS-SQL Server Environment:

 In MS-SQL Server will do the same steps on section 3.18.1.1 on Oracle environments except

step 3. That Identify Possible Actions that will be the two actions are: Clustered index X, Non-

Clustered index Y.

 79

Table 3.24: Final simplified table of rules and actions on MS-SQL Server environment.

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Process

C C C C C C B B B B B B A A A A A A Datasize

H H M M L L H H M M L L H H M M L L Cardinality

C S C S C S C S C S C S C S C S C S Columns

X X X X X X X X X X X X X X X X X(Clustered
index)

 X X Y (Non-
Clustered
index)

 The performance benefits of having a clustered index on a table outweigh the negatives for our

sample database table. For the case where the performance was lower (SELECT statements Test4,

Test5, Test6), the difference was insignificant. Given this, we recommend creating a clustered

index on all SQL Server user tables.

3.18.2 Descriptive Guidelines and Advices for the DBAs

 There are several aspects which affect the DBAs performance. However , to select the best

indexing technique in Oracle or MS-SQL Server, the DBAs should take into account the following

guidelines and pieces of advices.

1. If two database objects are used at the same time, the DBA should store them on different

disk drives to minimize disk head contention. For example, if the DBA runs a SELECT

statement on two tables or more, the I/O will be at the same time - any two B-tree indexes

that show I/O at the same time, or a table that shows I/O at the same time as the B-tree

index defined on it.

2. If users are randomly accessing a table and if the total size of the table is much larger than

any practical buffer size, then increasing the buffer size is not helpful. For example, if the

 80

table size is 100 MBytes, then a 2000-page buffer does not work much better than a 1000-

page buffer.

3. The B-tree indexing is the intersection between Oracle and MS-SQL Server. As a result,

the B-tree is the best indexing technique and it is more effective on huge data. But the

Bitmap index in Oracle are interesting and significant, unfortunately this index is not

supported by MS-SQL Server.

4. Creating an index on a column in any of the following situations:

• The column is queried frequently.

• A referential integrity constraint exists on the column.

• A UNIQUE key integrity constraint exists on the column.

5. It is possible to create an index on any column if the column is not used in any of the above

situations. In this case, creating an index on the column does not increase performance and

the index takes up resources unnecessarily.

6. Assuming the composite index is on (Col1, Col2), then DBAs cannot use the B-Tree and

will either do a complete index scan or a table scan (depending on which it thinks is faster

to complete the processing of the SQL statement). Composite index is an index that

contains more than one column. In both SQL Server 2005 and 2008, DBA can include up

to 16 columns in an index, as long as the index does not exceed the 900-byte limit. Note

that both clustered and non-clustered indexes can be composite indexes. In Oracle and MS-

SQL Server, composite index could be also a B-tree index, which consists of many

columns.

7. A composite index has a significant advantage in the following two cases:

a) assumes that the frequent use in the WHERE clause of the following conditions:

STUD_ID = 1 and STUD_GRADE = 'A'. If the DBA creates an index for each column,

then to search out the value of the two indexes should be read, but if the two have created a

 81

composite index, only an index is read, it certainly demands more than two indexes fewer

I/O.

b) Using the same conditions as the previous example: if the DBA creates a composite

index, then it will retrieve the line quickly, because the DBA is excluding all STUD_ID not

a line, thereby reducing the number of rows STUD_GRADE search.

8. In composite index, B-tree is the preferable indexing technique on both platforms: Oracle

and MS SQL Server with different data table sizes (small, medium and large).

9. An experiment is an implementation tested with real data. Experiments should be designed

to obtain clear results. Experiments should be reproducible, which means that they should

not only be conducted rigorously but their description should be sufficiently comprehensive

those others can reproduce the conditions and verify the claimed results. Experiments

should be based on benchmarks such as standard sets of data and queries; use of such

benchmarks allows easy comparison with other work.

10. DBAs can judge the success of the used technique according to its performance on the

basis of the stated. Assumptions should not only be claimed to be reasonable, they should

be argued for, and, where possible, demonstrated as being reasonable.

11. DBA should also note that the scaling can relatively change the oval performance. Having

larger data table can reduce the chance of sequential seeks to the same block; can increase

data fetch costs, even relative to seek costs; and can even affect the proportion of records

that are answers.

3.19 Observations and Recommendations

 82

 After conducting these tests using our sample database table (100K, 1000K and 5000K), we

have made the following general observations and recommendations. Thus, it is suggested that

Database DBA’s are encouraged to use them as standard recommendations only and validate the

applicability of the results to certain target scenario.

1. In Oracle, the Bitmap index on 100K has the efficient retrieving time compared with the

other indexing techniques.

2. In Oracle, the Bitmap index on 1000K relatively has the best retrieving time compared with

the other indexing techniques.

3. In Oracle with size: 5000K, the performance of Bitmap index, B-tree and Reverse index are

much better than Organization index especially at full scan select performance.

4. In MS-SQL Server with size: 100K, the performance of Primary Key Clustered is relatively

faster than B-tree (Unique Non-clustered) especially at full scan select performance.

5. In MS-SQL Server with sizes: 1000K and 5000K, the performance of Primary Key

Clustered is relatively better than B-tree (Unique Non-clustered) especially at full scan

select performance.

6. Some technical studies indicate that using index in the retrieval systems over Oracle

platform consumes greater response time than MS-SQL Server. Thus, those studies support

our results in this thesis.

7. B-tree is the common between MS-SQL Server and Oracle. The results of Bitmap index in

Oracle are interesting and significant and unfortunately, this index is not supported by MS-

SQL Server.

 83

Chapter 4

Conclusions and Future Work

 84

4.1 Conclusions

1. The proposed methodology is in thesis driven by our desire to undertake a formal comparison

between the current indexing techniques. In this work we have applied the guidelines described in

this chapter to one particular problem, and but felt the guidelines themselves are sufficiently

interesting to warrant separate description. A set of criteria by which indexing techniques should

be compared are discussed.

2. Our methodology is based on a series of experiments to test a set of indexing techniques on two

different platforms (Oracle and MS SQL Server) with different data sizes (small – 100K, medium

– 1000K, and very large – 5000K) over the same technical environment (Multiple processors,

memory, and I/O devices).

3. To run the experiments, we have taken the following indexing techniques in Oracle: B-tree,

Bitmap, Reversed, and organization index. In the meanwhile, we have taken the following

indexing techniques in MS-SQL Server: B-tree, Clustered index, and unique non-clustered index

and Primary Key Clustered index.

4. The empirical results show that the overall performance of indexing techniques (B-tree, reverse,

organization, clustered, and bitmap indexes) in MS-SQL Server is much faster than Oracle 10g.

Thus using the index in the SELECT statement over MS-SQL Server is less much costly in terms

of I/O operations, CPU consumptions, and response time than Oracle. However, the B-tree index

in the SELELCT statement over Oracle is faster in terms of performance than MS-SQL Server in

the following cases:

• Index scan select performance when retrieved single row.

• Index scan select performance when retrieved non-row.

 85

5. We have attempted to achieve the thesis objectives to be real outcomes at the end of this thesis.

The main outcomes of this thesis are summarized as follows:

a- Building a referenced guide is to help database developers and DBAs for selecting the indexing

method in order to retrieve their data in efficient method. This outcome is very clear in Chapter 3

because we have shown the best indexing technique on Oracle and MS-SQL Server with different

data sizes (100K, 1000K, and 5000K).

b- Making two types of comparisons between the available indexing methods (Clustered and Non-

Clustered indexes) on two platforms: Oracle and MS-SQL Server. The first outcome is shown in

chapter 1 where we have offered a cooperative comparison between the indexing techniques in

accordance with the previous research. The second outcome is shown in chapter 2 and chapter 3

because we have described experimental results among the indexing techniques on Oracle and MS-

SQL Server with different data sizes (100K, 1000K, and 5000K).

c- Finding the rules and criteria that make the decision of selecting appropriate indexing technique.

This outcome is shown in chapters 2 and chapter 3 because we have provided a flowchart of

methodology procedure and methodology scenarios for conducting the comparisons between the

available indexing techniques.

4.2 Future Work

In this research, we have pointed out the following subjects that can be performed in Future Work.

 86

1. Develop a methodology for selecting the indexing techniques for the object oriented

databases indexing techniques.

2. The experimental tests can be run on very huge data such as 50,000K. When the data is

being huge, the results will be more valid. For example, Google search engine has a very

huge retrieval system that contains trillion of documents and files.

3. Apply the indexing techniques on distributed systems.

References:

 87

1. Gaffar A. ,(2001), ' Design Of A Framework For Database Indexes ', Thesis , degree of

master of computer science ,Concordia Univirsity.

2. An Oracle White Paper,(2005), 'Technical Comparison of Oracle Database 10g vs. SQL

Server 2005: Focus on Performance', an Oracle White Paper October , viewed 10

September 2010 ,

< http://www.oracle.com/technetwork/database/features/performance/twp-perf-oracle-2.pdf>

3. Ozgur A., Taflan I. Gundem, (2006), ' Efficient indexing technique for XML-based

electronic product catalogs' , Electronic Commerce Research and Applications, pp. 56–77.

4. Yu B. and Guoliang L., (2007), 'Effective Keyword-based Selection of Relational

Databases', SIGMOD'07, Beijing, China. Copyright 2007 ACM .

5. Burleson C., (2010) , 'Bitmapped Index Usage' , viewed at 1 December 2010 , <

http://www.remote-dba.net/t_grid_rac_bitmapped_index_usage.htm> .

6. Fisher D., (1966), 'Data, Documentation and Decision Tables', Comm ACM , Vol. 9 No. 1,

pp. 26–31.

7. Lin D., Jensen C., Ooi B., and Saltenis S., (2005), 'Efficient indexing of the historical',

present and future positions of moving objects. In MDM, pp. 59–66.

8. Graefe G., (2010) ,'A survey of B-tree locking techniques' , published in ACM

Transactions on Database Systems (TODS), Volume 35, Issue 2.

 88

9. Choi I. , Bongki M. and Hyoung J.,(2007), 'A clustering method based on path similarities

of XML data', Data & Knowledge Engineering 60 , pp. 361–376.

10. Lo J., Barroso L., Eggers S., Gharachorloo K., Levy H., and Parekh S., (1998), 'An

analysis of database workload performance on simultaneous multithreaded processors', in

ISCA’98: Proceedings of the 25th annual international symposium on Computer

architecture, pp. 39–50.

11. King J., (2001), ' ORACLE8I INDEXING CHOICES : BEST OF BREED' ,Designing,

Developing and Deploying Applications , viewed 20 June 2010 , <

http://www.kingtraining.com/confdownloads/downloads/O8index_paper.pdf>.

12. Zobel, J., Moffat, A. and Ramamohanarao, K. (1996), ‘Guidelines for Presentation and

Comparison of Indexing Techniques’. SIGMOD Record, Vol. 25.,PP 10-15.

13. Aouiche K., Darmont J., Boussaïd O. and Bentayeb F., (2005) , ' Automatic Selection of

Bitmap Join Indexes in Data Warehouses', Data Warehousing And Knowledge Discovery ,

Volume 3589, pp. 64-73.

14. Elbassioni K., Elmasry A., and Kamel I., (2003), 'An efficient indexing scheme for multi-

dimensional moving objects', In ICDT, pp. 422–436.

 89

15. Keeton K., Patterson D., Raphael R. and Baker W., (1998), 'Performance Characterization

of a Quad Pentium Pro SMP using OLTP Workloads' , In Proceedings of the 25th

International Symposium on Computer Architecture, pp. 15 – 26, Barcelona, Spain.

16. Nguyen L., Walid G. Aref and Mohamed F. Mokbel, (2003), 'Spatio-Temporal Access

Methods: Part 2 (2003 - 2010)', Bulletin of the IEEE Computer Society Technical

Committee on Data Engineering .

17. Cyran, M, Lane, P & Pol. JP (2005) , Oracle® Database Concepts , 10g Release 2

(10.2) , Oracle , U.S.A, viewed 10 September 2010 ,

<http://www.datacons.it/oradoc/26004.pdf>.

18. Giugno R., (2002) , PhD Thesis ,'Searching Algorithms and Data Structures for

Combinatorial, Temporal and Probabilistic Databases' ,UNIVERSIT`A DEGLI STUDI

DI CATANI.

19. Martin R. Frank, Edward R. Omiecinski and Shamkant B. Navathe , 1992, Adaptive and

automated index selection in RDBMS , Advances In Database Technology , Volume

580/1992, pp. 277-292, viewed 20 Augest 2010 ,

<http://www.springerlink.com/content/d4327448p5342880/>.

20. Chaudhuri, S., and Narasayya, V. , (1998),' Autoadmin “what-if” Index Analysis Utility',

In Proceedings of the ACM SIGMOD International Conference on Management of Data,

pp. 367–377.

 90

21. Chaudhuri, S., Datar, M., and Narasayya, V. , (2004) ,' Index Selection for Databases', A

Hardness Study and a Principled Heuristic Solution. IEEE Transactions on Knowledge and

Data Engineering, 16(11), pp. 1313–1323.

22. Dessloch S, Mattos N., (1997), 'Integrating SQL Databases with Content-specific Search

Engines' , Proceedings of the 23rd VLDB Conference Athens, Greece.

23. Halawani1 S., Albidewi I., Alam J. and Khan Z, (2010),'A Critical Evaluation of

Relational Database Systems for OLAP Applications', (IJCNS) International Journal of

Computer and Network Security, Vol. 2, No. 5, PP.122-126.

24. Madhulatha S. , 2010, ' A Study on Index Selection Problem', Dept of Informatics Alluri

Institute of management sciences, viewed 2 September 2010, <

http://www.articlesbase.com/print/2930457>.

25. Ponce S., Vila P. and Hersch R.,(2002), 'Indexing and selection of data items in huge data

sets by constructing and accessing tag collections', 19th IEEE Symposium on Mass Storage

Systems & TenthGoddard Conf. on Mass Storage Systems and Technologies Uni†v. of

Maryland, College Park, Maryland, USA, pp. 181-192.

 91

Glossary

Attribute

Describes the value found in each field in a table. Every field or column in a database table

represents a single attribute of that table. (An attribute is what the data in that field represents,

while the value is the actual data that a specific field contains. See also: Value.

Cardinality

 In SQL (Structured Query Language), the term refers to the uniqueness of data values contained

in a particular column (attribute) of a database table.

Case; Casing

To designate which characters in an alpha string will be uppercase and which will be lowercase.

Common casing methods include: uppercase all characters; lowercase all characters; uppercase

first character of the string; uppercase the first character of each “word” (space-separated

substrings) contained (aka called “Proper” case); lowercase the entire string, then uppercase the

first character; or lowercase the entire string, then uppercase the first character of each “word”.

Case-Sensitive

To be aware of the case of character values. In this context, “SPUD,” “Spud” and “spud” would all

be considered as different strings, so the case-sensitivity of a function or query will influence the

values they will return.

 92

Client

That part of a DBMS that displays information on the screen and responds to user input (the front-

end).

Client/Server System

A multi-user system in which a central processor (server) is connected to multiple intelligent user

workstations (clients).

Column

Synonymous with field. See also: Field and Attribute.

Commit

Decision to proceed with the actual posting of a change to the database.

Composite Key

A primary key that consists of two or more attributes is known as composite key

Concurrent Access

Two or more users operating on the same records in the same database table at the same time.

Constraints

Data restrictions specified in a database; rules that determine what values the field to the table can

assume.

 93

Data Dictionary

The database stores metadata in an area called the data dictionary, which describes the tables,

fields, indexes, constraints, and other related items that make up the database.

Data Model

The logical data structures, including operations and constraints provided by the DBMS to

effectively process data; system used for the representation of data (the ERD, or relational model).

Data Redundancy

Having the same data stored in more than one place in a database.

Data Retrieval

It's a data extraction from disparate sources, most operational, some legacy -- typically in different

formats.

Data Source

It's the source of data used by a database application. It maybe a DBMS, table or a data file.

Data Structure

Is a logical relationship among data elements that is designed to support specific data manipulation

functions (trees, lists, and tables).

 94

Data Type

Every field in every table in a database must be declared as a specific type of data with defined

parameters and limitations (e.g. numeric, character or text, date, logical, etc.), known as a data

type.

Database

1) A collection of all the data needed by a person or organization to perform their required

functions, 2) A collection of related files or tables; 3) Any collection of data organized to answer

queries; or, 4) [Informally,] a database management system. (Databases usually consist of both

data and metadata [data about the database’s data]. When a database contains a description of its

own structure, it is said to be self-describing. A database is integrated when it includes its

relationships among data items as well as the data items themselves.)

Database Administrator [DBA]

The person who is ultimately responsible for the functionality, integrity, and safety of the database.

Database Engine

That part of the DBMS that directly interacts with the database (part of the back-end).

Database Management System [DBMS]

Also called a database manager. An integrated collection of programs designed to enable people to

design databases, enter and maintain data, and perform queries.

 95

Database Manager

1) The person with primary responsibility for the design, construction, and maintenance of a

database. 2) [Informally,] a database management system.

Database Warehouse –Short: A copy of transaction data specifically structured for query, analysis

and reporting. Long: The database warehouse, a single repository depicting a logical view of an

enterprise's data, accessible to developers and business users alike. Effective database warehousing

requires frequent updates and impeccable data quality to insure business end-users and decision

makers are using the same data, at the same extraction level, as everyone else when they run

queries and reports or formulate analyses.

Distributed Database

Is a database in which resources are stored on more than one computer system, often at different

physical locations.

Entity

A real-world object, observation, transaction, or person about which data are to be stored in a

database.

Expression

An SQL statement that returns a value.

Extraction

The process of selecting data from one environment and transporting it to another environment.

See also: Data Transformation.

 96

Field

Synonymous with column. A component of a relation or table that holds a single attribute of that

relation or table. See also: Column and Attribute.

File

1) The separately named unit of storage for all data, programs and indexes on most computer

systems. For example, a table or a whole database may be stored in one file; 2) Term used as a

synonym for relation or table in some database managers [usually smaller or older], like dBase,

FoxPro, Alpha Four/Five, etc.

Functional Dependency

Is a relationship between or among fields where one field is functionally dependent on another if

the value of the second field determines the value of the first. (If you know the value of the second,

you can determine the value of the first.)

High-cardinality

It refers to columns with values that are very uncommon or unique. High-cardinality column

values are typically identification numbers, email addresses, or user names. An example of a data

table column with high-cardinality would be a STUDENT table with a column named STU_ID.

This column would contain unique values of 1-n. Each time a new user is created in the

STUDENT table, a new number would be created in the STU_ID column to identify them

uniquely. Since the values held in the STU_ID column are unique, this column's cardinality type

would be referred to as high-cardinality.

 97

Implementation

A particular relational DBMS running on a specific hardware platform.

Index

1) A method used to reorder display or output records in a specific order; 2) A data structure of

pointers used to provide rapid, random access to rows in the table.

Information Schema- See: Schema, Information.

Integrity

The property of the database that ensures that the data contained in the database is as accurate and

consistent as possible.

Join

A relational operator (query) that combines data from multiple tables into a single result table.

Tables must have at least one field (sometimes called the join or linking field) in common, so that

values from corresponding records in each table are matched up correctly.

Join, Cross

Cross joins return all rows from the left table, each row from the left table is combined with all

rows from the right table. Cross joins are also called Cartesian products.

Join, Inner

An inner join discards all records from the result table that don't have corresponding records in

both source tables, while an outer join preserves unmatched records.

 98

Key

A key is a field, or combination of fields, that uniquely identifies a record in a table. See also: Key,

Primary.

Key, Candidate

1) One or more fields that will uniquely identify one record in a table; 2) A potential primary key.

Key, Composite

A key made up of two or more table columns that, together, guarantee uniqueness, when there is

no single column available that can guarantee uniqueness by itself.

Key, Database

The unique value that exists for each record in a database. The value is often indexed.

Key, Foreign

A column or group of columns in a table that corresponds to or references a primary key in another

table in the database. A foreign Key need not itself be unique, but must uniquely identify the field

or fields in the table that the key references.

Key, Primary

A field or combination of fields that uniquely identifies each record in a table, so that each record

can be uniquely distinguished from every other occurring in the table. A table cannot have more

than one primary key, and a primary key, by definition may not contain a null value.

 99

Key, Secondary

A key that is not the primary key for a table.

Low-cardinality

That refers to columns with few unique values. Low-cardinality column Boolean values, or major

classifications such as gender. An example of a data table column with low-cardinality would be a

STUDENT table with a column named NEW_STUDENT. This column would contain only 2

distinct values: Y or N, denoting whether the student was new or not. Since there are only 2

possible values held in this column, its cardinality type would be referred to as low-cardinality.

 Medium-cardinality

That refers to columns with values that are somewhat uncommon. Normal-cardinality column

values are typically names, street addresses, or vehicle types. An example of a data table column

with normal-cardinality would be a STUDENT table with a column named LAST_NAME,

containing the last names of customers. While some people have common last names, such as

Mohammed, others have uncommon last names. Therefore, an examination of all of the values

held in the LAST_NAME column would show "clumps" of names in some places (e.g.: a lot of

Mohammed) surrounded on both sides by a long series of unique values. Since there are a variety

of possible values held in this column, its cardinality type would be referred to as normal-

cardinality.

Normal Form

1) A condition of tables and databases intended to reduce data redundancy and improve

performance; 2) Rules and processes for putting tables and databases into normal form.

 100

Normalization

1) The process of breaking up a table into multiple tables, each of which has a single theme,

thereby reducing data redundancy; 2) The technique that reduces or eliminates the possibility that a

database is subject to modification anomalies. See also: Data Redundancy.

Query

1) Literally, a question you ask about data in the database in the form of a command, written in a

query language, defining sort order and selection, that is used to generate an ad hoc list of records;

2) The output subset of data produced in response to a query.

Record

Synonymous with row and tuple. An instance of data in a table, a record is a collection of all the

facts related to one physical or conceptual entity; often referring to a single object or person,

usually represented as a row of data in a table, and sometimes referred to as a tuple in some,

particularly older, database management systems.

Schema

1) The database’s metadata -- the structure of an entire database, which specifies, among other

things, the tables, their fields, and their domains. In some database systems, the linking or join

fields are also specified as part of the schema

2) The description of a single table. Also called a Logical Schema.

Select; Selection

A query in which only some of the records in the source table appear in the output.

 101

Sort; Sorting

The act of putting records in a particular order.

SQL

Pronounced “Sequel”, it stands for Structured Query Language, the standard format for commands

that most database software understands. There are different dialects, since every program handles

certain types of data differently, but the core commands are always the same. ODBC uses SQL as

the "Lingua Franca" to transfer information between databases. Currently accepted ANSI standard

is SQL-92.

Table

Synonymous with relation. A collection of data organized into records and fields (aka rows and

columns), with fields being descriptions of the kinds of information contained in each record

(attributes); and records being specific instances usually referring to specific objects or persons

(entities). See also: Relation and Attribute.

Transaction

1) The fundamental unit of change in many (transaction-oriented) databases. A single transaction

may involve changes in several tables, all of which must be made simultaneously in order for the

database to be internally consistent and correct

2) A real-life event which is modeled by the changes to the database; 3) The sequence of SQL

statements whose effect is not accessible to other transactions until all of its statements have been

executed.

 102

